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Abstract

Predicting the distribution of metabolic fluxes in biochemical networks is of major interest in
systems biology. Several databases provide metabolic reconstructions for different organ-
isms. Software to analyze flux distributions exists, among others for the proprietary
MATLAB environment. Given the large user community for the R computing environment, a
simple implementation of flux analysis in R appears desirable and will facilitate easy interac-
tion with computational tools to handle gene expression data. We extended the R software
package BiGGR, an implementation of metabolic flux analysis in R. BIGGR makes use of
public metabolic reconstruction databases, and contains the BiGG database and the recon-
struction of human metabolism Recon2 as Systems Biology Markup Language (SBML) ob-
jects. Models can be assembled by querying the databases for pathways, genes or
reactions of interest. Fluxes can then be estimated by maximization or minimization of an
objective function using linear inverse modeling algorithms. Furthermore, BiGGR provides
functionality to quantify the uncertainty in flux estimates by sampling the constrained multidi-
mensional flux space. As a result, ensembles of possible flux configurations are constructed
that agree with measured data within precision limits. BiGGR also features automatic visual-
ization of selected parts of metabolic networks using hypergraphs, with hyperedge widths
proportional to estimated flux values. BIGGR supports import and export of models encoded
in SBML and is therefore interoperable with different modeling and analysis tools. As an ap-
plication example, we calculated the flux distribution in healthy human brain using a model
of central carbon metabolism. We introduce a new algorithm termed Least-squares with
equalities and inequalities Flux Balance Analysis (Lsei-FBA) to predict flux changes from
gene expression changes, for instance during disease. Our estimates of brain metabolic
flux pattern with Lsei-FBA for Alzheimer’s disease agree with independent measurements
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of cerebral metabolism in patients. This second version of BiGGR is available from
Bioconductor.

Introduction

Metabolism directly reflects cellular functioning. If the biochemical reactions that operate in

a cell type are known together with uptake or release measurements of some metabolites, the
distribution of metabolic flux in the metabolic system can often be predicted. Large scale recon-
structions of metabolic networks are valuable resources for building models for flux estimation.
In recent years, genome-scale metabolic networks have been reconstructed for various organ-
isms, such as microorganisms, animals and humans [1]. Public resources, for instance the Bio-
Models database [2] and the BiGG database [3], exist that store metabolic reconstructions in
the standard modeling format SBML [4]. BiGG stores reconstructions of metabolism consist-
ing of large lists of metabolites and reactions for H. sapiens, M. barkeri, S. cerevisiae, H. pylori,
E. coli, P.putida, M. tuberculosis and S. aureus. The new version of the metabolic reconstruction
for H. sapiens, Recon 2 [5], is presently the most comprehensive reconstruction of human me-
tabolism. The reconstructions recorded in these databases consist of genes, proteins, metabo-
lites and reactions that are connected with each other, forming metabolic networks.

Constraint-based modeling has proven to be effective to analyze the functional states of
metabolic networks when the structure of the network is known (see e.g. [6]). The parameters
to be estimated are the feasible reaction fluxes throughout the network. The reconstruction da-
tabases provide the stoichiometry of a large number of reactions in many metabolic systems.
Constraints are imposed to narrow the solution space. Often an optimum value is determined
of a certain function of the network, for instance maximal ATP synthesis or maximal
biomass production.

Several FBA software tools support import from databases [7]. The free COBRA 2.0 tool-
box [8] accesses the reconstructions in the BiGG database, but requires the commercial soft-
ware package MATLAB. The first version of the open source package BIGGR was to our best
knowledge the first R package for constraint-based modeling of metabolic systems and has
been available for several years from the CRAN repository [9]. An initial version of BIGGR was
described in [10]. Since then two other R packages appeared for constraint-based modeling.
The sybil package [11] is an object-oriented implementation of constraint-based modeling
methods in R with emphasis on fast computation of large problems. The abcdeFBA package
[12] has a more generic approach, but does not appear to include ensemble modeling and net-
work visualization. Recently, an open source object-oriented implementation of constraint-
based modeling in Python, COBRApy [13], appeared.

Here we demonstrate the substantially extended second version of BIGGR which is specifi-
cally designed for automated model generation and visualization of FBA results and was re-
cently included in the Bioconductor open source project for bioinformatics. Emphasis is placed
on functionality to assess the uncertainty of flux distributions estimated from measurements of
metabolite uptake and release from the cells under study. This is accomplished by sampling en-
sembles of flux distributions using Markov chain Monte Carlo (MCMC) approaches. We fur-
ther demonstrate incorporation of gene expression changes in metabolic analyses. BiGGR is
still a relatively lightweight, low-threshold implementation of constraint-based analysis with
direct access to reconstruction databases to import reactions. It links models built from the
metabolic reconstructions with linear inverse modeling routines developed by ecologists [14]
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which turn out to be very convenient to analyze metabolic models. Many analyses for geno-
mics, metabolomics and proteomics studies require extensive use of statistical libraries that are
readily available within the R [15] and Bioconductor [16] frameworks. These libraries can be
combined together to form an integrated workflow for analysis and interpretation of “omics”
data. BiGGR provides an additional feature to construct models based on simulation as well as
visualize these results using the “hypergraph” [17] framework. This framework is an intuitive
and appropriate way to visualize chemical reaction networks. This representation is helpful to
an investigator to analyze results and examine model results for further analysis.

We propose that BiGGR is a relatively easily accessible way to analyze metabolic networks,
especially for users of R and Bioconductor. Tools available in R and Bioconductor for handling
‘omics’ data can readily be combined with BiGGR. Below we therefore demonstrate the func-
tionality of BIGGR by estimating metabolic fluxes in brain from measurements of metabolite
exchange and gene expression in healthy humans and patients with Alzheimer’s disease. To
this end we developed and demonstrate a new algorithm, termed Least-squares with equalities
and inequalities Flux Balance Analysis (Lsei-FBA), which predicts changes in metabolic flux
distribution from changes in gene expression between health and disease.

Methods
Software Features

The R package BIGGR comprises the databases from BiGG [3] and the recent reconstruction of
human metabolism Recon 2 [5] as SBML objects in R. Other metabolic reconstructions can be
imported, e.g. from the BioModels database [2]. BIGGR provides functionality to query the da-
tabases for specific pathways, reactions or genes and select the entire network or sub-networks
to which FBA can be applied. FBA is conducted by converting a network into a linear inverse
model, which is then solved using linear programming algorithms [14,18]. In addition to model
assembly and analysis, automatic visualization of selected parts of metabolic reconstructions
with estimated reaction rates is implemented using hypergraphs which provide graphically intu-
itive plots of biochemical pathways [17]. BIGGR is available at http://bioconductor.org/
packages/release/bioc/html/BiGGR.html. A detailed tutorial is available as a vignette within the
package documentation.

BiGGR provides the following functionalities (see Fig. 1 for a graphical summary):

Overview of the functionality of the BiGGR package

Model creation. Models can be assembled by querying the metabolic reconstruction data-
bases for specific pathways (e.g. glycolysis, TCA cycle). All reactions with annotations indicat-
ing that they belong to a certain pathway can be imported in one go. Further, reactions can be
imported by specification of lists of reactions, metabolites or gene identifiers. Irrelevant reac-
tions can also be removed.

Model import/export. Models in SBML format can be easily imported into BiGGR for
further analysis. Model files exported from the web interface of the BiGG database (bigg.ucsd.
edu) can also be imported. Each model created or modified within BiGGR can be exported in
SBML format.

Flux estimation. BiGGR uses linear inverse model (LIM) approaches for flux estimation.
The fluxes in an underdetermined system can be calculated based on a linear function (i.e. a
weighted sum of the unknown variables) which is either minimized (a “cost” function) or max-
imized (a “profit” function). The function to be minimized or maximized can be subject to in-
equality constraints, e.g. due to irreversibility of reactions which cannot carry negative fluxes,
and equality constraints which reflect the metabolic steady state assumption. BIGGR can also
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generate ensembles of parameter combinations with a probability density reflecting the likeli-
hood of explaining measured data.

Visualization. BiGGR provides automatic visualization of a network with hypergraphs
using the hyperdraw package [19]. The graph displays metabolites connected with each other
using hyperedges which represent reactions. Edge widths represent the intensity of estimated
fluxes. It usually works best to plot a selected subset of metabolites or reactions.

An overview of flux balance and ensemble modeling methods implemented in BiGGR is
given below. This is followed by a description of the methods used to predict redistribution of
fluxes based on measurement of changes in gene expression during disease. In the results, ex-
amples of the application of these methods are given.

Flux Balance Analysis in BIGGR

Flux Balance Analysis (FBA) is a constraint-based modeling method which derives the vector
of fluxes by optimizing an objective function while subject to given constraints. The objective
function can either be a profit or a cost function for maximizing or minimizing certain (com-
binations of) fluxes given the constraints. Constraints can be equality constraints, such as
the steady state assumption and inequality constraints, e.g. posed by the irreversibility of re-
actions. FBA is a widely used modeling technique and therefore not explained in detail here.
For more information, the reader is referred to a large body of literature on FBA, e.g. [6].

In brief, FBA uses a linear programming routine to optimize a flux vector x given a cost or
profit function with respect to the constraints:

Ex = f 1)

Gx > h (2)

Matrix E is the stoichiometry matrix of the given reaction system with the rows representing
internal metabolites that should be balanced to zero, but without rows that represent external
metabolites which are not balanced to zero. These external metabolites may for instance
accumulate or decrease in level in the medium outside the cells in a cell culture, or may be
metabolites in the cell which are used in unknown reactions not yet fully accounted for in
the model. The entries in the vector f are usually set to zero. The first equation therefore en-
sures that the optimized flux vector x is in the null space of the stoichiometry matrix and
therefore the assumption of metabolic steady state holds. In some cases in an FBA, additional
equality constraints are desirable, if for instance the value of a certain flux is known beforehand
with great precision. The flux can then be fixed to this reference value using matrix E and
vector f.

The inequality constraint Gx > h usually constrains fluxes in irreversible reactions. Matrix
G therefore indicates irreversible fluxes and the vector h consists of zeroes. In BIGGR, FBA is
conveniently performed by interfacing the model with the linear programming routines in
the ‘LIM’ package [14]. Equality constraints for fluxes that were determined experimentally
can be easily set. If a model is assembled from a metabolic reconstruction database, BiIGGR au-
tomatically sets reversibility constraints for reactions that are defined as irreversible in
the database.

The constraints represented by E and G matrix can be combined with a linear function
that specifies (a combination of) fluxes to be minimized or maximized. Maximization of
ATP production (see equation 4 in Results section) is an example of such a linear
programming approach.
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Sampling of feasible flux distributions

If the measurement error of experimentally determined fluxes is known, it would be of interest
to know how the estimates of the rest of the fluxes are sensitive to this error. In order to predict
the sensitivity of model estimates with respect to uncertainty in the values of model parameters,
MCMC methods can be used to sample ensembles of parameter sets that agree with experi-
mental data within a certain error [20,21]. By sampling an ensemble of flux parameters, the un-
certainty in all estimated fluxes is quantified directly. Measured fluxes are allowed to vary in
the ensemble within their measurement errors. It is important to note that for all flux vectors
in the ensemble, the equality and inequality constraints (see above) still hold and equations 1
and 2 still apply. The sampling procedure must therefore sample within the feasible region of
the solution space which is spanned by the given constraints. With the approximate equality
constraints added via matrix A, an ensemble of feasible flux vectors is generated where the den-
sity of points in the ensemble is proportional to the likelihood of that region in the parameter
space explaining the measured data.

Ax=b+e (3)

A is the matrix containing the information of which fluxes were measured, b contains the
measured flux values and € is the measurement error. The sampling procedure then constructs
a series of samples x for which Ax—b = ¢ To this end, BIGGR uses the xsample function from
the LIM package [18] which in turn uses the Metropolis-Hastings algorithm to sample a poste-
rior distribution of flux vectors within the given constraints. The measured values of fluxes, for
instance exchange fluxes with the culture medium in a cell culture or between blood and brain
(see Results), are entered in b while the measurement error for e is given by the standard error
of the measurements. The MCMC algorithm produces an ensemble which approximates a
probability density function giving the likelihood of a point in flux parameter space given the
measured exchange flux data. In BIGGR, approximate equality constraints and measurement
errors can be entered in a convenient fashion.

To sample a posterior distribution of feasible flux vectors, we used the BIGGR function sam-
pleFluxEnsemble which provides an interface to the xsample function in the LIM package. Met-
abolic exchange rates for glucose, lactate and pyruvate and their standard deviations (values
are given in the ‘Results section’) were passed to the sampling function. Sampling was per-
formed with the ‘mirror’ algorithm implemented in xsample. After an initial burn-in of 10
Monte-Carlo steps, we sampled 107 flux vectors, from which every 100" vector was included in
the ensemble, resulting in an ensemble of size 100000. While neither burn-in or thinning of the
Markov chain to minimize autocorrelation are mandatory practices [22], they reduce the
amount of data saved from an MCMC run, which makes further analyses and visualization
convenient. Convergence of the algorithm was assessed by a visual inspection of the trace for
each estimated flux in the ensemble and by calculating the autocorrelation function. The jmp’
parameter determining the relative proposal step size of the Metropolis-Hastings algorithm
was adjusted to 0.1 to ensure convergence.

Analysis of flux distribution based on gene expression changes

In the example presented below, the aim was to predict changes in metabolism based on mea-
sured changes in gene expression data of Alzheimer’s disease (AD) patients (see Results). Mi-
croarray CEL files were downloaded from the Gene Expression Omnibus with the accession ID
GSE5281 [23]. This dataset contains microarray gene expression measurements from laser cap-
tured micro dissected neurons from healthy and AD subjects. For the present analysis, only the
hippocampal region, which is the region most affected during the early stages of the disease is
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used. The CEL files were preprocessed and normalized using the RMA method from the R
package limma [24]. Log2 fold change values were used to calculate differences in expression
levels of the AD patients against healthy controls. Probeset to gene annotation is extracted
from the Affymetrix annotation library in Bioconductor using the package annotate. Subse-
quently, annotations linking genes to reactions were extracted from the Reconl database in the
BiGGR package using the extractGeneAssociations function. In case of multiple genes linked
with a reaction, the average of the fold changes is computed.

In the following part of the Methods section we detail the computational procedure to calcu-
late changes in metabolic fluxes from changes in gene expression. The rationale for this computa-
tional approach is discussed further in the Results. We started from the flux distribution in
normal healthy brain, determined using FBA with total ATP production maximized and with
the pentose phosphate pathway (PPP) and GABA shunt fluxes constrained to measured values
relative to glucose uptake. For the diseased brain, an initial estimate of the fluxes in the AD pa-
tients is first computed by multiplying the flux estimate in each reaction in normal brain with the
fold change in gene expression for the genes mapped to that reaction. In the second step, this ini-
tial rough flux estimate was refined by taking the flux balance (equality) and irreversibility (in-
equality) constraints into account, see equations 1 and 2. To compute the final prediction a cost
function was minimized by putting the initial rough estimate in the b vector of the Ax = b equa-
tion and providing a reference in the A matrix to the corresponding flux. In this way the sum of
the squares of the differences between the final estimated fluxes and the initial rough estimate
of the fluxes is minimized, subject to equations 1 and 2. This problem of least squares with equal-
ities and inequalities is solved using the Isei routine from the LIM package [14]. These final esti-
mates of changes in metabolism during disease are then compared with independent
measurements of the changes in metabolism during the disease state that had not been used in
the estimation process. For additional explanation see Results. For convenience we term our new
algorithm to predict changes in metabolic fluxes from changes in gene expression Least-squares
with equalities and inequalities Flux Balance Analysis (Lsei-FBA).

Results
Example of a Flux Balance Analysis with BIGGR

To demonstrate the functionality of BiGGR, we conducted a flux balance analysis using a meta-
bolic model that was previously used to study the effect of physical exercise on glucose and lac-
tate metabolism in the human brain [10]. The small model represents the core of brain energy
metabolism. We used the small model to estimate metabolic fluxes in the normal brain. Please
note that all code necessary to reproduce the analysis shown here can be found in the package
vignette of the BiIGGR Bioconductor package.

The model consists of 89 metabolites and 71 reactions representing the glycolytic pathway,
the pentose phosphate pathway (PPP), the citric acid cycle, malate-aspartate shuttle, the gluta-
mate and GABA shunt and oxidative phosphorylation in the brain and was assembled from the
Recon 1 reconstruction database. A list of full reaction equations, metabolites and a model
scheme of the whole network is given in S1 and S2 Tables and the S1 Fig., respectively. Cerebral
rates of metabolite uptake and release had been determined previously in five older (55-65 years)
human subjects at rest [25] and the median values were used as equality constraints in the analy-
sis. Assuming a brain mass of 1.4 kg for a healthy, adult human [26] we calculated uptake rates
of 0.284+0.058 mmol/min for glucose (median+standard deviation), -0.013+0.032 mmol/min
for lactate and-0.003+0.004 mmol/min for pyruvate. The standard deviations reported here were
estimated from the ranges reported for the original data using an approach published by Hozo
etal. [27]. Note that a negative uptake rate means that the brain releases the metabolite. Other
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measurements had shown a small flux in the he PPP in the normal brain, which amounts to
6.9% of glycolysis [28]. Flux through the GABA shunt accounts for 32% of the total glucose oxi-
dation in the brain [29]. To account for these facts, fluxes of the glutamate decarboxylase produc-
ing GABA and the glucose-6-phosphate dehydrogenase were therefore set to 0.091 and 0.020
mmol/min, respectively, representing the appropriate fractions of glucose uptake.

With the constraints given above, we optimized the network for maximal ATP synthesis. To
this end, the net balance of ATP producing and ATP consuming fluxes is maximized:

VATPsyn ~ Vnork T VHe = Ve~ Ve T Ve (4)

Where ATPsyn is the mitochondrial FO/F1 ATPase producing ATP from ADP and inorganic
phosphate, NDPK the mitochondrial nucleoside-diphosphate kinase which usually carries a
negative flux corresponding with ATP production. Hex (hexokinase) and PFK (phosphofructo-
kinase) consume ATP to phosphorylate glucose. PGK (phosphoglycerate kinase) and PYK (py-
ruvate kinase) usually produce ATP (the PGK flux is negative in that case).

The resulting maximal net ATP production (the objective function value) given the mea-
sured uptake of glucose and release of lactate and pyruvate was calculated to be 8.49 mmol/min
with a mitochondrial ATP synthase flux of 7.48 mmol/min. Numerical values for all flux esti-
mates are given in S3 Table. Flux Variability Analysis [30,31] showed that the flux distribution
at maximal ATP synthesis provides a unique solution. To visualize the estimated fluxes, subsets
of the metabolites in the model representing the glycolytic pathway and parts of the PPP (Fig. 2,
left) and the citric acid cycle (Fig. 2, right), respectively, are automatically plotted using BIGGR.

Grey boxes represent metabolites, edges (arrows) represent reactions. Labels for boxes and
edges show the Recon 1 identifiers for metabolites and reactions, respectively. Estimated flux
values in mmol/min for the whole brain (rounded to two decimal places) are plotted together
with the reaction identifier. Note that only part of the whole network is displayed. The left
hand side of the plot shows the reactions in the glycolysis pathway and a subset of the reactions

R_SUCD1m:0.55 R_FUMm:0.55

~ R_G6PDH2r:0.02
M_6pgl_c
R_PFK:0.28 R_PGL:0.02
R_GND:0.02
M_ruSp DASH D ¢
R_FBA:0.28 R_RPE:0.01 R_RPI:-0.01
M_xuSp_DASH_D_c
[R_TKT1:0.01

R_SUCOAS1m:-0.45

R_AKGMALtm:0.55

M_mal_DASH_L_m

R_ICDHyrm:0 ASPTAmM:-0.55

R_ICDHxm:0.55 R_CSm:0.55
[Mcit m[  [M_cit_ m|
R_ACONTm:0.55

Fig 2. Automated plot of estimated fluxes in a model of brain energy metabolism.

doi:10.1371/journal.pone.0119016.g002

PLOS ONE | DOI:10.1371/journal.pone.0119016 March 25, 2015 8/21



@'PLOS ‘ ONE

Metabolic Flux Estimation in Brain Using Bioconductor Package BiGGR

of the pentose phosphate pathway. The right-hand side shows the citric acid cycle. Edge widths
are proportional to the estimated reaction fluxes. Arrows point in the direction of the calculat-
ed flux. Negative fluxes (reaction runs in reverse direction relative to the one defined as forward
in Recon 1) are plotted in red and the flux values are printed as negative. R_AKGMAL is a
transport reaction across the mitochondrial inner membrane exchanging alpha-ketoglutarate
for malate. Note that not all metabolites involved in a reaction are always plotted. For instance,
R_ASPTAm is a transamination reaction inside the mitochondrial matrix which involves as-
partate and glutamate (not in scheme) in addition to M_oaa_m and M_akg m which

are plotted.

Example of sampling feasible flux distributions using in vivo data

Experimentally determined exchange fluxes for metabolic systems are subject to measurement
error. Internal fluxes in the system can be estimated by model analysis using the exchange
fluxes as input. It is desirable to quantify the effect of measurement error on the estimates for
the internal fluxes. The uncertainty of estimated parameters can be quantified by sampling an
ensemble in parameter space which describes the experimental data within precision limits
posed by the measurement error [21]. The resulting parameter ensemble then directly reflects
the uncertainty in the estimated parameters based on the measurement error of the data given
as input.

BiGGR provides the functionality to sample a posterior parameter ensemble using the Me-
tropolis-Hastings algorithm in constrained linear systems, implemented in the xsample algo-
rithm [18]. In the FBA described in the previous section, the values for uptake and release of
various substrates, determined experimentally, were entered into the FBA procedure as equali-
ty constraints. In contrast, in this section we take possible variation of the in vivo flux measure-
ments [25] into account in our flux estimation procedure: we entered the measured values and
their standard deviations as approximate rather than exact equality constraints in the model
(equation 3, see Methods section for details). In addition, fluxes for glucose-6-phosphate dehy-
drogenase and glutamate decarboxylase were constrained to be 6.9 and 32% of glucose uptake,
respectively, exactly as in the FBA of the previous section.

We then sampled an ensemble consisting of 100000 parameter sets, allowing the measured
fluxes to deviate according to normal probability distributions with the given standard devia-
tions. As a starting point for the Markov chain, we used the parameter set resulting from the
FBA performed above. It is important to note that all parameter sets still satisfy all other con-
straints posed by the model, such as the steady state and reaction irreversibility constraints (see
Methods section for further details). Initial ensemble simulations showed that, given the uncer-
tainty in the measured metabolite uptake and release rates, a relatively high flux in the glycerol-
phosphate shuttle was predicted, which in turn lead to reversal of the malate-aspartate shuttle.
In the ensemble simulation reported here we therefore additionally constrained the flux of the
glycerol-3-phosphate dehydrogenase to zero. Mean values and standard deviations of all fluxes
in the ensemble are given in S3 Table.

Histograms for fluxes together with their mean and standard deviation within the ensemble
are plotted in Fig. 3. Due to the assumption of metabolic steady state, the values of many fluxes
in the ensembles are equal, for example the fluxes for phosphofructokinase and aldolase, since
they are connected in series without branch points. We therefore only plot the histograms for a
selection of all estimated fluxes.

Shown are histograms for selected fluxes of a flux parameter ensemble sampled with Me-
tropolis-Hastings. The top row shows exchange fluxes of metabolites, the bottom row predicted
internal fluxes. The spread of the histograms reflects the potential spread of the estimates,
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Fig 3. Ensemble analysis of uncertainty of flux estimations for brain metabolism.

doi:10.1371/journal.pone.0119016.9003

based on the input measurements with their errors. The estimates are subject to the constraints
on the network. The size of the parameter ensemble was n = 100000. Mean and standard devia-
tion for the flux values in the ensemble are given above each histogram.

With the ensemble sampling method, we can directly identify the uncertainty of the flux es-
timates given the error on the measured exchange fluxes. The upper four histograms in Fig. 3
show the ensemble results for these exchange fluxes while the bottom row shows estimates for
internal fluxes.

Some estimated fluxes that had not been directly measured, e.g. for succinate dehydroge-
nase, show relatively well defined peaks and low standard deviations in the ensemble (see
Fig. 3). In particular, the ensemble simulation suggests potential variability in the way malate is
transported into the mitochondria as part of the malate-aspartate shuttle: while all malate flux
into the mitochondria is via the alpha-ketoglutarate/malate transporter according to the FBA
results, a substantial fraction of the malate transport goes via the citrate/malate exchange reac-
tion in a major part of the ensemble (see S3 Table). This explains why the flux for isocitrate de-
hydrogenase also shows a larger spread in the ensemble. However, despite such variation in
internal fluxes the net ATP production rate is predictable with relative precision (see Fig. 3).
Note that the maximized ATP synthesis value resulting from the FBA in the previous section,
8.49 mmol/min, is within the range predicted by the ensemble method.

An uncertainty measure on the flux estimate represents valuable information on what is
known on the functioning of the biological system encoded in the model. The sampling of poste-
rior parameter ensembles to assess the uncertainty of the flux estimates and reveal potential alter-
native metabolic patterns has therefore significant advantages to complement an FBA procedure.

Example of flux prediction during a disease from gene expression data

We illustrate in the following the integration of “omics” data such as gene expression using
BiGGR jointly with other Bioconductor tools. The aim was to predict changes in fluxes. As an
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example we shall predict fluxes during a disease state from gene expression data, using mRNA
expression measurements from Alzheimer’s disease (AD) patients against healthy controls [23]
in the hippocampal region of the brain.

Available methods to predict changes in fluxes from changes in gene expression work best
when there are large changes in gene expression, but their assumptions seem less applicable
when there are many small, largely congruent changes in gene expression in a pathway (see
Discussion). The latter is applicable to changes seen in the brain during neurodegenerative dis-
eases. To tackle this situation, our method is based on the bold assumption that fluxes for each
enzyme tend to change proportionally to the changes in mRNA expression. This assumption is
likely not true on the level of a single enzyme, but applies under some conditions by reasonable
approximation to a large metabolic network [32]. We assume that if many modest changes in
gene expression in a metabolic pathway point in the same direction that may be associated
with a congruent real change in flux in that pathway. The lack of hard data on control strengths
of enzymes, kinetic parameters that are valid in vivo in the brain, translation of gene expression
into enzyme activity, etc., not only preclude an exact calculation of the effect of gene expression
changes, but also makes it difficult to prove our assumption. However, we will test whether our
simple assumption works reasonably well here by comparing predictions on changes of metab-
olism during disease with available measurements on patients of actual changes in metabolic
fluxes. Please note that the measurements of changed metabolic fluxes during disease are not
used in any way for the model prediction. If the comparison between predicted and indepen-
dently measured fluxes during disease is favorable, this would increase the confidence in pre-
dictions of those fluxes in parts of the metabolic network for which no measurement
is available.

The fluxes for the normal adult human brain at rest were obtained from the FBA with ATP
synthesis maximized (see above). The fold changes in mRNA gene expression are subsequently
used to provide an initial rough estimate of the changes in the metabolic network. To this end
for each reaction in the network the flux estimate for the healthy brain is multiplied by the fold
change of the expression of genes linked to that reaction. This first estimate is then refined by
using the balance and irreversibility of fluxes in the metabolic network as additional con-
straints. To this end we minimize the sum of the squared deviations between the final estimates
of the fluxes and the first rough estimates.

Fig. 4 shows the flux distribution in the normal brain and during AD. During the disease,
flux through glycolysis is predicted to be reduced by about 29% compared with healthy con-
trols, while oxygen uptake into the brain is predicted to be reduced by 46%. Other pathways
are also predicted to be reduced markedly during AD: the TCA cycle flux at the level of isoci-
trate dehydrogenase by 52%, mitochondrial ATP synthesis via oxidative phosphorylation by
46% and the alpha ketoglutarate dehydrogenase (AKGDm) reaction is reduced by 76%, which
is compensated by the activation of the GABA shunt.

According to the prediction, the pentose phosphate pathway (PPP) increased twofold from
normal during AD.

Predictions of flux distributions in normal healthy brain (top, black numbers) and during
Alzheimer’s disease (bottom, red and green). Unit for flux is mmol/min for the whole brain.
Fluxes in green represent decreases from the normal condition and red increases. Only major
reaction fluxes are plotted to simplify network visualization. Metabolite names are according to
the Reconl reaction database. PPP: Pentose phosphate pathway, OxPhos:
oxidative phosphorylation.

Our flux predictions agree with available experimental measurements. The decrease in met-
abolic rate in the temporal lobe measured by positron emission tomography (PET) was 77%
for oxygen [33] and 36% for glucose [34]. Global cerebral metabolic rate for glucose (CMRglc)
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is reduced 20-25% in AD (reviewed in [35]). This compares with our calculated prediction of
46% and 29% reduction for oxygen and glucose, respectively. Thus, analysis from mRNA gene
expression data leads to the prediction that energy metabolism in the brain is strongly compro-
mised ([36]), particularly affecting reactions in the mitochondria. An estimated decrease by
50% in ATP production has been reported in sporadic AD [37], compared with 46% decrease
in ATP synthase flux in our calculations. The model prediction is that lactate and pyruvate
transport out of the brain is increased which agrees with increases in lactate and pyruvate levels
measured in the cerebrospinal fluid of AD patients [38, 39]. Thus similar trends in metabolism
in AD patients are seen in calculated predictions and independent measurements. In addition,
the present analysis provides predictions for fluxes that have not been measured, which can
among others be used for further assessment of the validity of the model if some of these fluxes
are measurable in the future.

We also compared our predictions with the reported analysis of a larger multicellular model
of brain metabolism [40]. In that study changes in fluxes were predicted based solely on a mea-
sured reduction in AKGDm activity rather than measured changes in gene expression for all
reactions in the network as in our present analysis. The large model does not predict the de-
crease in overall ATP production predicted by our model and reported in [37] (see S4 Table for
comparison of the predictions of both models). However, the large model predicts that
AKGDm is bypassed via the GABA shunt, agreeing with our present prediction. This bypass
helps to maintain aerobic metabolism.

Discussion

The BiGGR open source package is built in R, is part of Bioconductor, and derives its input for
model construction from metabolic reconstruction databases. BiGGR can be used to automati-
cally construct mathematical and graphical representations of metabolic networks on the fly.

Many constraint based modeling software packages are currently available (see [7] for an
overview), each having a different scope and flavor. Most of the tools are based on MATLAB,
such as the COBRA Toolbox 2.0 [8], CellNetAnalyzer [41], FBA-SimVis [42] or the RAVEN
toolbox [43]. Other tools are stand-alone software, for instance SurreyFBA [44] or OptFlux [45].
FAME is the first web-based approach to stoichiometric flux analysis [46].

BiGGR provides easy access to metabolic flux analysis for the large user base of the R envi-
ronment. The vast number of open source analysis tools available in R is easily combined with
the functionality in BiGGR. By supporting the modeling standard SBML and being embedded
in the Bioconductor framework, BiGGR can be used in combination with other R packages, as
e.g. sybil [11] or abcdeFBA [12]. A feature of BiGGR is the integration of metabolic reconstruc-
tion databases which facilitates model generation by querying the databases. Further, BIGGR
directly supports Markov chain Monte Carlo methods to sample within the constrained
solution space.

Core model of human brain metabolism

Here we demonstrated the functionality of BIGGR by presenting a flux analysis of human
brain metabolism. A model comprising glycolysis, PPP, citric acid cycle, oxidative phosphory-
lation and GABA shunt was automatically assembled within BiGGR from a list of reaction
identifiers. We use a core model that represents all important ATP production processes in-
cluding the glycolytic chain and oxidative phosphorylation. Recent mechanistic models of ATP
metabolism in brain based on kinetic equations are of similar size and tend to contain the same
reactions as included in our model [47,48]
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This small model of the core of human brain energy metabolism was compared with a large
model of human brain metabolism containing more than a thousand reactions and several brain
cell types [40]. This comparison allowed to systematically examine branch points in the metabol-
ic network connected with reactions that were neglected in the small model. From the compari-
son we concluded that the reactions quantitatively relevant for ATP production were adequately
represented by our present small model. A detailed description and comparison of the differ-
ences between the large model of Lewis et al. and our smaller model is given in the S1 Text
(‘Comparison with a large, multicellular model of brain metabolism’) and S4 and S5 Tables.

Tests showed that the calculation with our algorithm is feasible on models with the size of
the Lewis model (>1000 reactions) [40] within fifteen sec of CPU time on an ordinary laptop.
However, we have no gene expression data that are differentiated for the different cell types in
the Lewis model and therefore do not report results for this large model.

As an example of applying BIGGR, we performed an FBA procedure with the objective to
maximize net energy production of the brain cell with the small model. Published measure-
ments of cerebral uptake and release rate of metabolites in the brain of healthy elderly control
subjects ([25]) were used as input to the analysis. Parts of the model and estimated fluxes were
visualized using BiGGR (Fig. 2). An MCMC procedure was then used to assess the uncertainty
of the flux estimates. To this end, an ensemble of possible flux configurations that agree with
the measurements of cerebral metabolic rates was generated (Fig. 3). We then used the model
to predict how fluxes are changed during Alzheimer’s disease compared to healthy subjects
(Fig. 4). For this analysis, fold changes in gene expression measured by microarray experiments
were taken into account. Model predictions show the same trends as PET measurements of ce-
rebral metabolism during Alzheimer’s disease (see Results). An extensive analysis of the predic-
tion of flux changes based on gene expression changes in other neurodegenerative diseases and
other brain regions will be published separately.

Objective function for analysis of brain metabolism

An appreciable part of the total energy turnover of the human body at rest takes place in the
brain. It seems reasonable to assume that, given a certain uptake of nutrients to support energy
metabolism, ATP synthesis is maximized. Several alternative objective functions for models of
metabolism in brain have been discussed by Cakir et al. [49] (see their S2 Table). Maximal ATP
production was one of the objective functions considered. The drawbacks of maximal ATP pro-
duction are considered by Cakir to be the predicted inactivity of the pentose-phosphate pathway
flux and zero flux in the GABA cycle. Note that these disadvantages of maximal ATP production
as objective function were avoided in our approach by constraining the PPP and GABA shunt
fluxes. The third deficit mentioned by Cakir et al., low lactate release flux, is actually in good cor-
respondence with the measurements in the control group of elderly healthy people which we
used. Cakir et al. considered maximization of the glutamine/glutamate/ GABA cycle a reasonable
objective function for brain metabolism. This cycle is not a focus of our present model which
does not include multiple cell types because we aim to analyze gene expression measurements
made on whole brain tissue and not differentiated to different cell types. However, note that the
glutamine/glutamate cycle in Cakir’s model is a ‘futile cycle’ from the biochemical point of view
which requires ATP splitting. Because this cycle is very active, forming a major part of total ATP
hydrolysis, maximizing ATP turnover is compatible with a very active glutamine/glutamate
cycle. Given that our model focuses on ATP producing processes, maximizing ATP production
seems a reasonable objective.

The adult brain is not growing, and therefore the emphasis on biomass components as seen
in objective functions for metabolic models of microorganisms is not appropriate. However, to
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produce a reasonable baseline flux distribution, not only ATP synthesis was considered, but
other metabolic functions in the brain were taken into account: the pentose phosphate pathway
flux and the GABA shunt flux were set to fractions of glucose uptake that are representative of
measurements in normal brain cells. We therefore consider ATP the limiting commodity given
a certain level of measured nutrient uptake, while considering additional constraints to take
other aspects of brain metabolism into account.

Predicting metabolism from gene expression

Here we introduce an algorithm termed Lsei-FBA to predict changes in metabolic fluxes from
measured changes in gene expression. Several algorithms to predict metabolism from gene ex-
pression changes have been designed previously [50]. Some of these algorithms use coarse, dis-
crete levels of gene expression, which is less suited for data from diseased tissue which often
shows relatively modest changes in gene expression. Many of these algorithms are not suited
for the situation where measurements of metabolite exchange during disease are not available.
We discuss some of the best known algorithms here.

The iMAT algorithm [51] predicts which biochemical reactions are active in a certain or-
ganism. It subdivides gene expression levels in low, normal and high. Note that quantitative
prediction of fluxes from modest, continuous changes in gene expression is not a suitable appli-
cation area for iMAT. The GIMME method [52] has the same application area as iMAT, but
minimizes a linear combination of fluxes whose associated gene expression is below a certain
threshold, with weights for the fluxes to be optimized proportional with the degree of gene ex-
pression below the threshold value. At the same time metabolic functions are maintained at rel-
atively high minimum values. MADE [53] sets expression levels to 0 or 1 without invoking an
explicit threshold, based on the statistical significance of changes in expression levels. Setting
gene expression to merely two discrete levels is much too coarse for our application where gene
expression levels change modestly and in a continuous fashion. Lee et al. [32] replace the usual
cellular objective function (maximal growth or ATP production) with an objective function
based on the correspondence between absolute gene expression and estimated flux. Although
this yields good results to predict metabolic flux in an organism, especially if the measurement
yields an absolute measure of gene expression, this approach does not directly apply to predic-
tions based on changes in gene expression between two conditions. E-Flux [54] models maxi-
mum flux constraints based on measured gene expression.

The GX-FBA algorithm was developed by Navid and Almaas [55] and applied to gene ex-
pression data of the bacterium Yersinia pestis. In their algorithm use is made of nutritional con-
straints specific for the test condition, which is not directly compatible with our application
area. Reversible reactions are not taken into account in GX-FBA. The upper and lower bounds
of reactions are modified, and the upper bound for a reaction may for instance be set lower
than original even if gene expression for that reaction is increased. Their cost function maxi-
mizes fluxes for which gene expression is upregulated and minimizes fluxes for which gene ex-
pression is down regulated, weighted by the logarithm of the ratio of gene expression between
test and control. Note that although the weight of a flux in the cost function increases with the
logarithm of the fold change of gene expression, the flux is not optimized to be near the fold
change times the wild type value as in our algorithm.

Machado and Herrgard [50] compared the performance of seven of such algorithms used to
make predictions about metabolic systems based on gene expression measurements on yeast
and E. coli. We ran the algorithms in the Machado framework on our brain model and data,
making use of the code provided by Machado. The results of several algorithms are summa-
rized in S6 Table. However, the test condition for these algorithms was necessarily entirely
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different than for the case of these microorganisms, because Machado and Herrgard made use
of the measured uptake of nutrients not only for the control condition but also for the test con-
ditions. The uptake of glucose and oxygen measured separately under each test condition in
yeast was for instance given as input to the algorithms, in addition to gene expression. This is
not compatible with our application area where there are uptake measurements for the control
condition, but the uptake under disease conditions has not been measured and must be esti-
mated using our algorithm.

A further important difference is that Machado tested the algorithms on bacteria and yeast
where in several of the algorithms the growth rate was maximized. The results of Machado
show that the predictions made by the algorithms for the fluxes in the microorganisms were of
limited quality. It is therefore remarkable that the results of our algorithm on brain disease
were reasonable.

Our application area is to estimate changes in fluxes, including uptake rates, in the disease
condition without the availability of measurements of uptake rates during disease. Because the
exchange rates during disease have not been measured, we tested two extreme situations:

(1) the exchange rates are given as measured in the control condition or (2) the upper bound
for the exchange rate was set to an unrestrictive value (2 mmol/min). For test 1 GIMME gives
the same result as flux balance analysis under the control condition, despite that the FBA for
the control does not take the gene expression for the disease data into account, as opposed to
GIMME. For test 2 GIMME gives fluxes and uptake rates that approach the maximum values
compatible with the upper bounds imposed in the model, e.g. 2 mmol/min for glucose uptake,
which is equal to the imposed upper bound. Given the nature of the GIMME algorithm which
tends to maintain metabolic functionality and given the modest changes in gene expression in
the AD data set, these results were to be expected.

We also tried the implementation in the Machado test suite of the Lee-12 algorithm [32],
which is based on the assumption that maximal correspondence between gene expression and
fluxes provides a good objective function for predictions. This algorithm was shown to outper-
form classic objective functions for yeast. Run in the Machado test suite on our model a deviant
pattern of metabolism was found: for instance, pyruvate uptake was predicted to be higher
than the measured glucose uptake and lactate release was four times the glucose uptake in Alz-
heimer patients (see S6 Table). The predictions of Lee-12 for Alzheimer patients were in sharp
contrast to measurements of Lying-Tunell et al. in suspected Alzheimer disease [25].

Similar observations were made for the E-Flux algorithm which also predicts a very deviant
pattern of metabolism. High lactate and pyruvate release was predicted in controls and AD pa-
tients [25]. The results in S6 Table demonstrate that most of the algorithms tested by Machado
perform less well than our new Lsei-FBA algorithm for the condition that exchange fluxes of
metabolites between tissue and blood are not known. However, it is possible that these other al-
gorithms are useful if metabolite exchange has been measured and can be used as a constraint.

Mapping genes to biochemical reactions

When multiple genes are associated with a biochemical reaction, we average the fold changes
of gene expression. This is perhaps the simplest possible choice to map gene expression to the
reactions. One finds a range of approaches in the literature. Lewis et al [40], for instance, also
averaged gene expression in an analysis with their model of brain metabolism. Fang et al. [56]
took the geometric mean of the expression of all genes associated with a reaction, Navid and
Almaas [55] take the value of the gene that deviated most from 1 (either up or down) and
when genes associated with a certain reaction are inconsistent in their direction of up- or
downregulation, the reaction is not taken into account. The approach by Lee et al. [32], taking
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the minimum of gene expression for all genes associated with an enzyme complex, seems plau-
sible, although perhaps a complex which lacks a certain peptide can still be partially active. One
can even imagine an inhibitory subunit being downregulated in a complex, leading to increased
enzyme activity. The choice for the sum of the components when alternative enzymes (iso-
forms) are involved may be regarded as equivalent to taking the average of gene expression
changes as done in the present analysis. Machado and Herrgard [50] in their comparison of
several algorithms seem to use the different approaches taken in the original papers on the test-
ed algorithms. To the best of our knowledge, hard empirical evidence supporting one choice or
the other to map gene expression to a reaction has not yet been reported. We chose to apply
perhaps the simplest possible assumption, averaging of the expression of genes associated with
a reaction, in our present example calculation. However, algorithms for more complex map-
pings of gene expression to the associated reactions have been added to BIGGR.

Testing model predictions with independent data

The model contains more than seventy fluxes and the flux distribution is estimated based on
six measured fluxes (four exchange fluxes and two flux ratios for the pentose phosphate path-
way and GABA shunt respectively). The exchange data can of course be precisely fitted by the
model. This does not add further proof to the correctness of the model which is based on the
extensive biochemical literature, but instead the experimental data are used to calibrate the
fluxes in the control condition. Using Flux Variability Analysis we showed that the solution for
the internal flux distribution in the control condition is unique.

To predict the metabolic flux pattern in the patient group we make use of two distinct
sources of data: (1) the flux distribution for the normal brain as described above, and (2) gene
expression measurements from Alzheimer’s disease (AD) patients in comparison with a control
group. We predict the metabolic fluxes in AD patients based on data source 1 and 2, using the
Lsei-FBA algorithm. The final predictions of changes of metabolic fluxes during AD from the
control condition are then compared with data source 3: independent in vivo measurements of
metabolic changes (glucose and oxygen uptake, ATP synthesis, lactate and pyruvate levels) in
AD patients compared to controls (data source 3). Note that the data from source 3 were not fit-
ted by the model, but used to test the model by comparing with the model predictions.

Determining variability of estimates by sampling

The procedure of sampling posterior ensembles of possible flux distributions that agree with
measured input fluxes is based on Bayesian parameter inference. Knowledge of the measurement
error of known fluxes is thereby used as prior information. Compared to an FBA analysis based
on cost or profit function optimization, sampling a distribution of possible flux vectors has the
advantage that uncertainty in the estimated fluxes can be directly quantified. As a result, confi-
dence bounds can be defined on flux estimates that are difficult to measure directly. The method
thus allows for assessing the robustness of estimates based on a metabolic model. The incorpo-
ration of prior knowledge on measured exchange fluxes helps to better delimit feasible and infea-
sible regions in flux space. Sampling the multidimensional flux space based on hypothetical
exchange fluxes with very permissive upper and lower bounds without providing accurately mea-
sured prior values could still be used, e.g. to identify whether reactions are used at all or are corre-
lated. Another approach to assess the range of possible fluxes in constraint based models is Flux
Variability Analysis (FVA) [30,31]. FVA differs from our approach because it quantifies the pos-
sible variation in each estimated flux separately, e.g. to assess which values for a flux are compati-
ble with the unique optimal value of the objective function. Also for FVA setting realistic upper
and lower bounds on blood-to-tissue exchange fluxes based on measurements may be useful to
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delimit feasible flux ranges more precisely. However, in contrast to the ensemble approach, FVA
does not reveal the correlation of different reactions.

A Bayesian approach to FBA was applied by Heino et al [57]. Posterior flux distributions for
a model of skeletal muscle metabolism were estimated using MCMC sampling. Other than in
the ensemble sampling approach described here, the method in [57] takes the objective func-
tion to maximize ATP production into account as prior information in the model analysis and
also bound constraints were used as priors. The MATLAB-based software METABOLICA de-
veloped by the same group [58] also allows for setting Gaussian prior probabilities, similar to
the ensemble sampling presented here. We chose to use Gaussian priors on measured input
fluxes in our analysis to best reflect the measurement uncertainty in the estimated posterior
distribution. However, prior probabilities on bounds and on objective function values could be
easily added due to the modular design of BiGGR.

Conclusions

The Bioconductor R package BiGGR facilitates constraint based modeling using metabolic re-
construction databases. Special emphasis was placed on the functionality to query metabolic re-
construction databases for pathways, reactions, metabolites or genes to compile constraint-
based metabolic models. Metabolic fluxes can be estimated by interfacing linear programming
routines. Further, metabolic models and estimated fluxes can be automatically visualized and
integration with Markov chain Monte Carlo methods allows for sampling of possible flux con-
figurations. BIGGR is open-source, free of charge and platform independent. As examples of
the application of BIGGR, we predicted the metabolic flux distribution in the normal human
brain and derived predictions of changes in metabolic patterns during Alzheimer’s disease
using the new Lsei-FBA algorithm based on gene expression measurements.
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