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Anne-France Viet1*, Stéphane Krebs1, Olivier Rat-Aspert1,2, Laurent Jeanpierre3,

Catherine Belloc1, Pauline Ezanno1
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Abstract

The effectiveness of infectious disease control depends on the ability of health managers to

act in a coordinated way. However, with regards to non-notifiable animal diseases, farmers

individually decide whether or not to implement control measures, leading to positive and

negative externalities for connected farms and possibly impairing disease control at a

regional scale. Our objective was to facilitate the identification of optimal incentive schemes

at a collective level, adaptive to the epidemiological situation, and minimizing the economic

costs due to a disease and its control. We proposed a modelling framework based on

Markov Decision Processes (MDP) to identify effective strategies to control PorcineRepro-

ductive andRespiratorySyndrome (PRRS), a worldwide endemicinfectiousdisease thatsigni-

ficantly impactspig farmproductivity. Using a stochastic discrete-time compartmental model

representing PRRS virus spread and control within a group of pig herds, we defined the

associated MDP. Using a decision-tree framework, we translated the optimal policy into a

limited number of rules providing actions to be performed per 6-month time-step according

to the observed system state. We evaluated the effect of varying costs and transition proba-

bilities on optimal policy and epidemiological results. We finally identifiedan adaptive policy

that gave the best net financial benefit. The proposed framework is a tool for decision sup-

port as it allows decision-makers to identify the optimal policy and to assess its robustness

to variations in the values of parameters representing an impact of incentives on farmers’

decisions.

Introduction

The control of animal diseases is a major concern for the livestock sector. Animal diseases are

an important source of vulnerability due to the diversity of their economic impacts [1]. They

create substantial shortfalls for farms, by degrading their technical and economic performance

(production losses), and lead, for some of them, to the loss of commercial opportunities. The
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control of animal diseases also implies the allocation of resources, both ex ante in terms of sur-

veillance and prevention, and ex post to mitigate the sanitary and economic consequences if

the disease occurs (e.g. curative expenditures, disinfection, carcass disposal). These shortfalls

and costs induced by animal diseases weigh heavily on the economy of farms and have a wider

effect on the competitiveness of animal production chains. Beyond these direct impacts on the

livestock sector, animal diseases can have a broader impact on regional and national agricul-

tural economies (animal feed, for example), as well as on firms engaged in the processing of

animal products for food.

For infectious diseases, the effectiveness of control measures often depends on the ability to

act in a coordinated manner across a group of farms. However, for non-notifiable animal dis-

eases such as Bovine Viral Diarrhoea orPorcine Respiratory and Reproductive Syndrome–

most of them being endemic diseases–farmers individually decide whether or not to control

the disease, balancing the benefit of implementing or not control measures within their own

farm (decentralized decision-making process). As a result, it can lead to a too low proportion

of farms under control to ensure disease control at larger (e.g., regional) scale. Indeed, conta-

gious pathogens spread among farms through numerous transmission pathways such as:

animal purchases (e.g., in paratuberculosis [2]), direct contacts between animals from neigh-

bouring herds (e.g., in bovine viral diarrhoea [3]), environmental contamination (e.g., in Q

Fever through airborne transmission; [4,5]), equipment shared between farms, animal vectors

such as insects (e.g., in Bluetongue [6]), small mammals, wildlife (e.g., in tuberculosis; [7]), and

movement of persons [8]. Therefore, decision-making at farm level gives rise to externalities

that have sanitary and economic consequences to interconnected farms.A farmer who decides

to protect his herd against a particular disease by vaccinating or by adopting strict biosecurity

measures (e.g., hygiene, quarantine, etc.) creates a positive externality, in that his action bene-

fits other farmers by lowering the risk of pathogen spread [9]. Conversely, a farmer could

behave as a free rider, seeking to benefit from the efforts of his neighbours without bearing the

costs [10]. This behaviour generates a negative externality since it contributes to maintaining

the disease within a given geographic area. This results in strong interrelationships among

individual decisions to control animal diseases at the regional scale. Furthermore, the regional

epidemiological situation may vary only if a sufficient number of farmers implements a given

control strategy. In a laissez-faire situation, it is likely that the observed outcome of a decentral-

ized decision-making process is not the best outcome for the collective level (pursuit of self-

interest does not lead to maximized utility on the aggregate level) [11, 12, 13]. Control deci-

sions should also be understood in a dynamic perspective. Individual decisions regarding dis-

ease control are made over time. They vary according to the health statuses of herds to better

account for disease spread. Hence, the decision should be adaptive, a key challenge in design-

ing effective schemes. Since the herd health status changes over time, incentives should also

vary over time.

Modelling is a powerful tool to assess ex-ante adaptive strategies. Often, coordination sce-

narios are defined in a non-adaptive way (e.g., [12]). Scenarios are simulated and compared to

identify the best ones regarding given criteria. More recently, adaptive approaches have been

developed to construct a guideline with rules varying over time and optimizing given criteria.

The scope of application encompasses herd management [14, 15], species conservation prob-

lems [16, 17], human health management [18, 19, 20], and animal health management [21,

22]. Nevertheless, the issue of adaptive coordination has not been considered yet in animal

health management.

Our objective was to facilitate the identification of optimal incentiveschemes at a collective

level, adaptiveaccording to theepidemiologicalsituation, and minimizing the economic costs to

the community due to a disease and its control. We focused on the collective dimension (i.e.,
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individual decisions are not modelled). We considered a social planner supervising the health

management decisions of a group of farmers and proposing collective disease management

devices. In the first part of the paper, the modelling framework based on Markov Decision

Processes (MDP) is presented.In the second part, this framework is used to identify effective

disease control strategies, with application to the control of PorcineReproductive andRespira-

torySyndrome (PRRS), an endemicinfectiousdisease thatsignificantly impactsthe productivity

of pig farms [23, 24].

A new modelling framework based on MDP

Description

We considered that farmers are facing the spread of a non-notifiable endemic animal disease.

Farms differ according to the health status of the herd (e.g., virus-free, infected). For a given

herd status, we assumed that all of the farmers are facing similar economic losses due to the

disease and similar disease control costs. Farmers’ individual decisions were not explicitly

modelled. However, we integrated an epidemiological model describing at each time-step the

proportion of herds moving from one health status to another depending on the epidemiologi-

cal processes that characterize the disease, but also on control measures implemented by

farmers.

At the collective level, we considered a social planner [25], whose objective was to improve

the welfare of all of the participants in the primary production chain (i.e., the farmers and the

social planner). By taking into account the herd statuses (which derived from epidemiological

processes and implemented control measures), the social planner coordinates farmers’ efforts

as related to disease control. The social planner’s objective was here to define a sequence of

actions over H time-steps {a1,a2,. . .,aH} to improve the economic situation of the primary pro-

duction chain over this given time horizon (H can be finite or infinite). The impact of the

actions on the proportion of herds moving from one herd status to another was assumed to be

known by the social planner. This proportion is a function of farmers’ compliance with

advised measures as well as measure efficacy. These two factors were separated in the frame-

work. Each action had a specific associated cost. The optimization economic criterion used in

our model was to seek to minimize, over the given time horizon, the sum of economic costs

supported by farmers (i.e., economic losses due to the disease and disease control costs) and

the costs of actions offered by the social planner.

In our framework, the epidemiological model thus dynamically interacts at each time-step

with the decision process at the collective level. Herd statuses change over time according to

control measures implemented, and thus incentives decided at a collective level.On the other

hand, the collective actions are chosen based on farm statuses at each time.

Model formalization

Markov Decision Processes (MDP) are commonly used to solve sequential decision-making

problems under uncertainty [26, 27]. The objective is to provide an optimal policy based on

the evolution of the epidemiological situation within a group of herds, and according to the

actions taken by the social planner. A glossary of terms is provided in Table 1.

Formally, our MDP is defined by < S, A, T, R> where S is the set of states that can be

reached by the system, Ais the set of actions that can be implemented by the social planner,

Tare the probabilities of transitions between states depending on the taken action, and Rare

the rewards associated with the social planner’s actions.

States (S). A state s is the distribution of the N herds among the m possible herd statuses.

The set of statesS is defined by {s = (n1,n2,. . .,nm)|n1 + n2 + � � � + nm = N}.

Framework to coordinate disease control decisions
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Actions (A). At each time-step, the social planner chooses one of the available actions A =

{a1,a2,. . .,ak}, each consisting of a combination of recommendationsand incentives. Each

action has a given impact the proportion of farmers implementing advised control measures.

Transitions (T). T(t,s,s0,a) is the probability to go from state s 2 S at timetto state s0 2 S at

time t + 1 when using action a 2 A. It depends on the stochastic epidemiological processes and

on control measures implemented by farmers.

Rewards (R). The reward for the social planner r(t,s,s0,a) when usingactionaat time t is

associated with a transition of the system from state s at timet to state s0 at time t + 1. At each

time-step, rewards (always positive) consist of losses due to the disease and control costs, both

depending on the number of herds in each status. Moreover, it may include a cost associated

with the action chosen by the social planner, unrelated to herd statuses (e.g., advising).

Resolution

Solving a MDP model consists in finding the optimal policy, noted π�. A policy is a function

assigning an action for each possible state at each time-step (π:st! at). To each policy is asso-

ciated a cumulative reward. The optimal policy π� is the policy π that minimises the expected

rewards (costs and losses) cumulated over the time horizon H: E[∑t = 1,..,Hρtr(t,st,st+1,at)|π]

where E[.] is the expectation operator and ρthe discount factor (Table 1). The discount factor

captures the fact that the social planner overvalues more immediate compared to delayed

rewards (the longer a reward is delayed, the more its value decreases). Given this optimal pol-

icy, the social planner knows at each time-step which action should be used according to the

observed system state. To find π�, the MPD can be solved using the Value Iteration algorithm

[26]. Here we used a threshold of 0.1. For a given MDP, this optimal policy always exists [26].

Case study: Porcine Reproductive and Respiratory Syndrome

PorcineReproductive andRespiratorySyndrome (PRRS) is a major issue for swine industry in

most producing countries. For example, annual costs due to PRRS virus have been estimated

to be approximately 664 million dollars in the United States in 2011 [24]. Within and between-

Table 1. Glossary of terms used in our modelling framework.

Term Notation Meaning

Social Planner Collective decision-maker who attempts to achieve the best result for all of the parties

involved.

State s 2 S A discrete situation of the system

Action a 2 A Control variable, here incentive to be used by the social planner

Rewards r(t,s,s0,a) Cost from moving from state s at time-step t to state s0 at time t + 1 using action a (in k

€)

Transitions T(t,s,s0,a) Probability at time-step t to move from state s to state s0 when using action a
Objective The aim targeted by the social planner. It is calculated by summing all of the rewards

over the time horizon

Horizon H Number of successive time-steps (in 6 month periods). At each time-step a decision

should be made

Discount

factor

ρ Parameter determining how current rewards are valued relative to future rewards

Decision Determination of the social-planner’s action to take at a given time-step—limited to 1

time-step

Strategy Succession of decisions over the time horizon

Policy π Guideline that defines the strategy by indicating at each time-step the action to be taken

depending on the state of the system

https://doi.org/10.1371/journal.pone.0197612.t001
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herd spread of PRRS virus occurs through several transmission routes: purchase of infected

pigs, infected semen, introduction from vehicles, people, equipment or supplies, transmission

by insects or by air [28]. Depending on the intensity of within-herd virus spread, herds can be

classified as negative, positive unstable during the acute phase of infection, or positive stable

after stabilization [29]. Measures available to control PRRS in infected herds mostly include

biosecurity and immunization through vaccination to limit within-herd spread [30]. To eradi-

cate PRRS virus from the herd, a whole herd depopulation-repopulation is the most effective

means but with a high financial cost [30]. Control and eradication programs have been imple-

mented at national or regional levels [31, 32]. Most often they are based on a voluntary adher-

ence byfarmers and require collective organization with coordinated actions of producers and

practitioners [30, 32, 33]. Depopulation-repopulation is rarely used in practice due to high

associated costs.

Epidemiological model

A stochastic discrete-time compartmental model was developed to represent the spread and

control of PRRS virus within a group of pig herds. Herds were classified into 5 mutually exclu-

sive statuses combining infection states and individual control measures implemented within

the herds: 2 statuses for virus-free herds (F and Fd) and 3 statuses for infected herds (I, I0, and

IC; Fig 1). We use throughout the paper similar letters to denote herd statuses and number of

herds in these statuses.

F herds are virus-free (i.e., without any virus circulation). When farmers implement biose-

curity measures to prevent virus introduction, virus-free herds F become Fd (virus-free with

biosecurity). Both F and Fd herds can be infected and then become I (with virus spread with-

out control). When control measures to limit virus spread are implemented, infected herds

become I0, with a lowered virus spread. When spread is controlled, I0 herds become IC (con-

trolled infected herds). We assumed that farmers will not stop control measures in I0 herds

until reaching status IC. Then, farmers can depopulate, IC herds then becoming Fd. As IC herds

Fig 1. Diagram of transitions between herd statuses. F (virus-free herd), Fd (virus-free herd with biosecurity

measures undertaken), I (infected herd without any control), I0 (infected herd with a control measure undertaken but

not yet sufficient), IC(controlled infected herd). Letters appearing over the arrows denote transmission probabilities

(Table 2, Eqs 1 and 2).

https://doi.org/10.1371/journal.pone.0197612.g001
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already experienced infection, we assumed that they will maintain biosecurity measures. On

the other hand, IC herds can become I again when control measures are stopped without

depopulation.

Virus transmissionto F and Fd herds occurred from herds in I, I0, and IC statuses. Because

of the control measures implemented by farmers in I0 and IC herds, virus transmission is

reduced compared to transmission by I herds. The virus can also be introduced due to contacts

with herds located outside of the modelled group of herds (external risk). Pig production sys-

tems are almost closed. However, the external risk is not nil, and, even with a very low value,

could impair disease control and thus should be accounted for. Transitions from statuses F
and Fd to status I were modelled using a frequency-dependent function [34, 35] (Eq 1). We

assumed that the transition rate from Fd to I is equal to the one from F to I, weighted by factor

γ, representing the protection induced by biosecurity (Eq 2).

bF ¼ bI
I
N
þbI0

I0

N
þbIC

IC
N
þ out ð1Þ

bFd ¼ gbF ð2Þ

where N is the total number of herds, and βI, bI0
; bIC

, and out are the transmission rates to

herd F from a herd I, I0, IC, and from outside, respectively.

The other transitions were defined as constant probabilities representing the proportion of

herds in each status that implements the control measures (biosecurity, management practices,

vaccination, and depopulation). Parameter values provided in Table 2 correspond to the case

where the social planner was assumed not to influence measure implementation in farms.

These values were chosen from expert’s opinion assuming a time-step of 6 months.

MDP model

States. The set of states is given by S = {s = (F,Fd,I,I0,Ic)|F + Fd + I + I0 + Ic = N}. The

number of states is given by the combination (binomial coefficient)
N þ 4

4

 !

. For a group of

50 herds, there are 316,251 possible states. Only a small proportion of these states is expected

to be reachable, reached states depending on initial conditions and parameter values.

Table 2. Parameters of the epidemiological model without any action of the social planner: Nominal values and intervals of tested values in the sensitivity analysis

of the model.

Symbol Parameter Nominal value

(per 6 months)

[Min; Max] values

βI Transmission rate by I herds 0.06 [0.045; 0.075]

bI0
Transmission rate by I0 herds 0.04 [0.03; 0.05]

bIC
Transmission rate by IC herds 0.01 [0.0075; 0.0125]

out Transmission rate from outside 0.0001 [0.000075; 0.000125]

γ Protection due to biosecurity in Fd herds 0.5 [0.375; 0.625]

α Proportion of F herds implementing biosecurity measures 0 [0.075; 0.125]a

ν Proportion of I herds implementing vaccination and biosecurity 0.1 [0.075; 0.125]

κ Proportion of IC herds implementing depopulation and biosecurity 0.01 [0.0075; 0.0125]

φ Proportion of IC herds stopping vaccination and biosecurity 0.05 [0.0375; 0.0625]

δ Proportion of I0 herds with a controlled infection 0.5 [0.375; 0.625]

aFor sensitivity analysis, we explored no null values

https://doi.org/10.1371/journal.pone.0197612.t002

Framework to coordinate disease control decisions

PLOS ONE | https://doi.org/10.1371/journal.pone.0197612 June 13, 2018 6 / 20

https://doi.org/10.1371/journal.pone.0197612.t002
https://doi.org/10.1371/journal.pone.0197612


Actions. We modelled the consequences of the social planner’s action on farmers’ deci-

sions by modifying the value of model parameters related to transitions between herd statuses

(Table 3). Four actions were considered: None, Incent1, Incent2, and Incent3(Table 3). Transi-

tions between herd statuses (Table 3 in lines) involved one or several measures, or their end, as

defined in Table 2. Actions(Table 3 in columns) correspond to a level of incentives to imple-

ment a set of measures according to herd status, incentives increasing from none to incent3.

When using action None, the social planner did not influence measure implementation on

farms but some measures still were assumed to be implemented. When using incent1, there

was a positive but low incentive to protect virus-free herds and to control infection in infected

herds (fewer new infections and returns to I state). When using incent2, the same measures

were advised but with a higher effect, corresponding either to an increasing efficacy of mea-

sures or a higher level of farmers’ compliance. For realism, we nevertheless considered that

farmers’ compliance was not complete and that for each status, a given proportion of farmers

did not implement control measures (we assumed that farmers with infected herds were less

reluctant to implement the prescribed control measures than those within virus-free herds).

When using incent3, measure efficacy and farmers’ compliance was much higher. In addition,

depopulation-repopulation of infected herds was considered with no possible return to state I
from state IC. With such an action, eradication is expected to be achievable.

Transitions. Transitions in the decision model were computed based on transitions

defined in the epidemiological model (Fig 1). A transition probability given action a from state

st = (Ft,Fdt,It,Iot,Ict) to state st+1 = (Ft+1,Fdt+1,It+1,Iot+1,Ict+1) was defined based on the number

of herds moving from one status to another. The probability was not null if, for all statuses, the

number of herds at time t + 1 is consistent with the one at timet given the transitions between

herd statuses (Fig 1). For example, as no herd can become F, the number of F herds at time t
+ 1 should be lower than or equal to the one at t. Let us denote:

• w the number of herds moving from F to Fdat time t

• l the number of herds moving from F to Iat time t

• m the number of herds moving from Fd to Iat time t

• u the number of herds moving from I to I0 at time t

• y the number of herds moving from I0 to ICat time t

• x the number of herds moving from IC to Fdat time t

• z the number of herds moving from IC to Iat time t

Table 3. Modification of epidemiological parameter with social planner’s actions (in bold) and tested values in the one at a time sensitivity analysis (between brack-

ets [Min, Max]).

Transition Parameter Values according to the considered action

None Incent1 Incent2 Incent3
F!Fd α 0 0.1

[0.075; 0.125]

0.3

[0.225; 0.375]

0.75

[0.5625; 0.93725]

I!I0 ν 0.1 0.2

[0.15; 0.25]

0.4

[0.3; 0.5]

0.7

[0.525; 0.875]

IC!Fd κ 0.01 0.01

[0.0075; 0.0125]

0.01

[0.0075; 0.0125]

0.1

[0.125; 0.075]

IC! I φ 0.05 0.025

[0.01875; 0.03125]

0.01

[0.0075; 0,0125]

0

[0.005]

https://doi.org/10.1371/journal.pone.0197612.t003
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According to Fig 1, we have

Ftþ1 ¼ Ft � w � l

Fdtþ1 ¼ Fdt þ w � mþ x

Itþ1 ¼ It þ l þm � uþ z

Iotþ1 ¼ Iot þ u � y

Ictþ1 ¼ Ict þ y � x � z

ð3Þ

8
>>>>>>><

>>>>>>>:

Therefore, knowing states st and st+1, we only need to consider potential values of w, x, and

y. Indeed, from w, we can deduce l, from x and w, we can deduce m and from w,x,and y, we

can deduce z and u.

The transition probability when using actiona was then given by (noting that
n

k

 !

is the

binomial coefficient):

PminðIct ;Fdtþ1 ;Ict � Ictþ1þIotÞ
x¼0

PminðFt � Ftþ1 ;Fdtþ1 � xÞ
w¼maxð0;Fdtþ1 � FdtþxÞ

PminðIot ;Ictþ1 ;IotþIt � Iotþ1Þ

y¼maxð0;Ictþ1 � Ictþx;Iot � Iotþ1Þ

Ict

x

 !
Ict � x

z

 !

kðaÞxφðaÞzð1 � kðaÞ � φðaÞÞðIct � x� zÞ

" #

Ft

w

 !
Ft � w

l

 !

aðaÞwPðF ! IÞlð1 � aðaÞ � PðF ! IÞÞðFt � w� lÞ

" #

Fdt

m

 !

PðFd ! IÞmð1 � PðFd ! IÞÞðFdt � mÞ

" #
Iot

y

 !

d
y
ð1 � dÞ

ðIot � yÞ

" #

It
u

 !

nðaÞuð1 � nðaÞÞðIt � uÞ

" #

ð4Þ

with P(F! I) = 1 − exp(−βF) and P(Fd! I) = 1 − exp(−βFd).

In this formula, the first term in square brackets corresponds to the product of two binomi-

als. The first binomial denotes for the x herds chosen among Ict to go to Fdt+1 with probability

Ict

x

 !

kðaÞxð1 � kðaÞÞðIct � xÞ
. The second binomial denotes for the z herds chosen among the

remaining ones (Ict − x) to go to It+1 conditionally they are not going to Fd, with probability

Ict � x

z

 !

φðaÞ
1� kðaÞ

� �z
1 �

φðaÞ
1� kðaÞ

� �ðIct � x� zÞ
. It has to be noted that the probability for herds not to

go to Fd while going to I is one. Once aggregated you end with the sub-formula in square

brackets. Similarly, the second term in square brackets corresponds to the probability for w
herds to go from Ft to Fdt+1 times the probability for l herds among remaining ones to go from

Ft to It+1. The last three terms in square brackets are simpler and corresponds respectively to m
herds going from Fdt to It+1, y herds going from I0t to Ict+1, and u herds going from It to I0t+1.

Then, we sum over all of the possible values for x, w, and y, accounting for constraints on these

sums, each being limited by the number of herds that can change of status (i.e., not more than

available in source status at time t, not more than needed at time t+1 in receiving status, and

not more than missing in the source status at time t+1 compared to time t).
Rewards. For the social planner, the choice of any action a 2 A except for action None

induced a fixed cost Cdiff(a). Moreover, at each time-step, the other control costs (C) and

losses (L) due to the disease incurred by the social planner were expressed as functions of the

Framework to coordinate disease control decisions

PLOS ONE | https://doi.org/10.1371/journal.pone.0197612 June 13, 2018 8 / 20

https://doi.org/10.1371/journal.pone.0197612


number of herds in each herd status or transiting between statuses. We assumed that the magni-

tude oflosses in controlled infected herds (LIc) were lower than those in other infected herds

(LI).Herds in statuses I0and IC had costs due to external biosecurity (Cbe) and internal biosecu-

rity with vaccination (Cbi). Herds in status Fd had costs due to external biosecurity (Cbe).

Finally, a cost related to depopulation CdepconcernedICherds becoming Fd(transition flow

between the two statuses). For the social planner in state st = (Ft,Fdt,It,Iot,Ict) at time t moving to

state st+1 = (Ft+1,Fdt+1,It+1,Iot+1,Ict+1) at time t + 1 when using action a, the reward at timet was:/)

rðt; st; stþ1; aÞ ¼ CdiffðaÞ þ Fdt:Cbeþ ItLI þ IotðLI þ Cbeþ CbiÞ þ IctðLIc þ Cbeþ CbiÞ
þ x:Cdep ð5Þ

As herds were not individually modelled, we used the expected number computed using

the transition probabilities given the initial and final states. The values of losses and costs are

given in Table 4.

As we considered an endemic disease, we looked for optimality in the long run. For the MDP

resolution, we fixed an infinite horizon with a discount factor ρof 0.975 per time-step (6 months).

Model scenarios and analysis

Initial conditions. We considered a group of 50 herds. In order to reflect the endemic sit-

uation of the disease, an initial state was chosen corresponding to 40% of the herds in a virus-

free status (5 in F and 15 in Fd), 40% of the herds in status IC (20 herds), and the remaining

20% in statuses I(5 herds) and I0 (5 herds). A program was developed in Java language (S1

File) [36] and the model was simulated (5,000 replications) over 100 time-steps of 6 months

(50 years) (S2 File).

Outputs. Two outputs were of interest to represent the simulation outcomes: the number

of virus-free herds representing the clearance level (F + Fd) and the number of controlled

infected herds (IC). These outputs, corresponding to non-transient states, were regarded as rel-

evant for an endemic disease.

Model behaviour when the social planner always chose action None. We first calibrated

the epidemiological model so that it produced a realistic equilibrium situation over time if the

social planner always chose action None. The objective was to represent the endemic situation

of the disease in production areas. We then checked the effect of uncertainty in model parame-

ters to identify the parameters that need to be accurately determined. In particular, we verified

that the model behaviour was appropriately impacted by parameters influenced by actions.

We also conducted a global variance-based sensitivity analysis using the FAST sampling design

for varying parameters simultaneously ([37]; 100,000 scenarios), assuming a uniform and con-

tinuous distribution between minimal and maximal values (Table 2). For each parameter and

Table 4. Loss (L) and cost (C) values at each time-step for the social planner, as used in the computation of rewards (time-step of 6 months).

Parameter Definition Nominal

value

Other values tested one-at-a-time

[Min; Max]

Comments

LI Losses for I and I0 herds 6,550 [4,912.5; 8,187.5] Applied to I and I0 herds

LIC
Losses for IC herd 4,775 [3,581.25; 5,968.75] Applied to IC herds

Cbe External biosecurity cost 250 [187.5; 312.5] Applied to Fd, I0 and IC herds

Cbi Internal biosecurity and vaccination cost 2,300 [1,725; 2,875] Applied to I0 and IC herds

Cdep Depopulation cost 100,000 [75,000; 125,000] Applied to herds moving from IC to Fd
Cdiff(1) Fixed costs–Incent1 10 [7.5; 12.5] Applied if action Incent1is retained

Cdiff(2) Fixed costs–Incent2 1,000 [750; 1,250] Applied if action Incent2is retained

Cdiff(3) Fixed costs–Incent3 20,000 [15,000; 25,000] Applied if action Incent3is retained

https://doi.org/10.1371/journal.pone.0197612.t004
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each model output, we computed the first order and total sensitivity indices using the sensitiv-
ity package of the R software [38].

Computed optimal policy. To assess the advantage of using the optimal policy π�, we com-

pared the epidemiological results and the discounted cumulative rewards
P100

t¼0
rtrðt; st; stþ1; atÞ

obtained when using π� versus one action consistently (irrespective of the state).

Approximated policy. The optimal policy π� consists of a table of 316,251 lines (each line

corresponding to a possible state of the system, the whole table thus describing the action to be

performed for each of the possible distributions of the 50 herds among the 5 herd statuses).

Such atable cannot be easily used under field conditions. To provide the social planner with a

simpler but approximated policy made of alimited number of rules, π� was approximated

using a decision-tree into π�,approx, providing the actions to be performed at each time-step

according to the observed state of the system. Only 7.4% of the possible states can be reached

from our initial state given our parameter values. The approximation of π� was done only

using these states, called hereafter available states. A supervised classification approach was

performed using the C4.5 algorithm [39, 40] available as anR package (RWeka Package). This

method uses as dataset available states and their associated actions as known in the optimal

policy and generates errors corresponding to misclassifications (i.e., for a few states, another

action than the one given by π� can be predicted by π�,approx). We evaluated the quality of

π�,approx by calculating the percentage of misclassifications.

Scenario analysis. As model parameters were roughly estimated, particularly transition

probabilities for which no observed data were available, we evaluated the effect on π� and epi-

demiological results of varying costs and losses (16 scenarios; Table 4), transition probabilities

(19 scenarios; Table 3), and the level of protection conferred to virus-free herds by biosecurity

implementation (γ; 2 scenarios; Table 2) one-at-a-time, resulting in a total of 37 scenarios. We

restricted analyses to transitions impacted by the social planner’s actions, i.e. all except None.

As a result ofthe high computing time needed for each scenario (nearly 20 hours despite the

use of multi-thread programming), we did not investigate interactions among factors. We

compared π�,approx among scenarios and evaluated a weighted divergence index to account for

differences between retained actions in the policy for the available states only (states which can

be reached from the initial state). First, we evaluated the frequency of visits of each state for all

of the scenariosincluding the reference one (with all nominal values), noted wg(s)for state s.
The divergence index for scenario iwas the sum of the visit frequencies over all states for which

the action implemented for state s in scenario i was not similar to the action implemented for

the same state sin the reference scenario:
P

s2SwgðsÞ1faiðsÞ6¼aref ðsÞg
where 1faiðsÞ6¼aref ðsÞg

is a Boolean.

A weighted divergence index equal to 0means that the approximated policies are similar. How-

ever, it does not inform about other states. We compared also the cumulative simulated use of

each action by defining usei(a) − useref (a) with usek(a) the cumulative proportion over time of

the use of action a for scenario k = {i,ref }. For epidemiological results, we compared the

median proportion of infected controlled herds (IC) and of non-infected herds (F + Fd) after

50 years in scenario i and in the reference. Finally, we compared the median discounted cumu-

lative rewardsobtained after 50 years in scenario i and in the reference.

Results

When the social planner does not influence measures implemented on

farms

A description of the evolution of (F + Fd) and IC numbers is provided in Fig 2A and 2C respec-

tively. The median numbers of IC and of (F + Fd) after 50 years were impacted (Fig 2C) by the
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probability of transition from IC to Fd corresponding to the use of the individual measure of

depopulation (κ), the protection due to biosecurity when in Fd (γ), the probability of transition

from IC to I corresponding to virus reintroduction due to lower biosecurity and vaccination

(φ), and the transmission rate due to I herds (βI). The parameter γ impacted more (F + Fd)

than IC as it was directly associated to the risk of infection (leaving status Fd) and indirectly to

the control (for IC). The probability of transition from I to I0 corresponding to the biosecurity

and vaccination (ν) impacted mainly the mean number of IC (Fig 2C) (which was expected as

it concerns the control and not the virus clearance). Interactions barely influenced model out-

put variations.

All of the parameters which can be impacted by actions of the social planner, except the

transition from F to Fd (α), had a direct influence on both virus clearance and control within

the system. Hence, if the social planner chose an action different from None, the prevalence of

infected herds and of controlled herds should vary. The parameters that most impacted model

outputs were all influenced by the social planner except the transmission rate due to I herds.

As the median value of the number of (F + Fd) herds was near equilibrium (Fig 2A), we con-

cluded that we had a good approximation of the value.

Optimal computed policy

Using π�, the social planner always used action Incent3during the first time-steps (Fig 3A).

Then, according to the evolution of the system, the other actions also were used, action

Incent2being barely used (Fig 3A). The use of π� reduced the disease prevalence (Fig 3B and

3C). After 45 years, the discounted cumulated rewards when using π� was lower than the one

Fig 2. Behaviour of the epidemiological model of PRRS virus spread and control in a population of 50 herds when assuming no intervention from the social

planner (5 000 replications). (A) Median number of virus-free herds (F + Fd). (B) Median number of infected controlled herds (IC). The 90% confidence interval [5th

percentile; 95th percentile] was provided for each graph in light blue. (C) Contribution of each tested parameter to output variance (βI, bI0
;bIC

, out,γ,α,ν,κ,φ,δ) after 50

years with the principal effect in blue and the effect associated to first order interactions in red (see Table 2 for parameter definition).

https://doi.org/10.1371/journal.pone.0197612.g002
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obtained if the social planner systematically used any other action (Fig 3D). After 50 years,

using π� reducedthe rewards of 4% compared to the systematic use of action Incent3, and of

33% compared to the systematic use of action None. Such a result was expected as π� is defined

as minimizing the discounted cumulative rewards. Nevertheless, the advantage of π� was

observed after 18 years when comparing median values. Before 12 years, the discounted cumu-

lative rewardswere similar to those obtained systematically using action Incent3because this

action was used almost systematically in the first time-steps (Fig 3A). Although π� was more

expensive than other actions over the first years (Fig 3D), we observed an advantage after 30

years as the prevalence and the discounted cumulative rewards were lower than those obtained

with other actions (Fig 3C).

Approximated policy

The computed optimal policy π� was very complex. Working only on available states,we

obtained 8 simple rules (Fig 4A). For a number of IC herds higher than or equal to 4 (most

states), Incent3was used (Fig 4A, top leaf). Otherwise, for a number of I herds equals 0, actions

None, Incent1,andIncent2were used with respect to the number of IC herds (Fig 4A, bottom

leaf). If there was at least one I herd, actions Incent2andIncent3were used with respect to the

number of S, IC, and I0herds (Fig 4A, bottom leaf). It has to be noted that on the branch with

I� 1 and IC� 2 herds, it is not known how many infected herds there are. Hence, it is not pos-

sible to conclude on the actual level of infection in the system. Actions predicted by π�,approx

were mostly the same as in π� (Fig 4B), and slightly differed only for states with actions Incent2
and Incent3 corresponding to less than 0.04% of misclassified actions among all of the available

states. In addition, the epidemiological dynamics obtained following π�,approx was close to the

Fig 3. Model predictions when the social planner followed the optimal computed MDP policy, the approximated policy, or

systematically used a single action. (A) Frequency of incentive actions over timewhile applying the optimal computed policy; (B)

Variation of the median number of virus-free herds (F + Fd) when using the computed policy (MDP), the approximated one, or

systematically a single action (None, Incent1, Incent2, Incent3); (C) Boxplot of the number of virus-free herds (F + Fd); (D) Boxplot of

the discounted cumulated rewards summing losses and costs (in k€). (C-D): Dots corresponded to the minimal and maximal values,

whisker limits are the 10 and 90 percentiles, box limits are the 25 and 75 percentiles, median and mean values are represented by a line

and a cross, respectively. Boxplots are provided at 4 specific time points. Per scenario, 5,000 replications were performed.

https://doi.org/10.1371/journal.pone.0197612.g003

Fig 4. Approximated policy π�,approx obtained using the C4.5 algorithm on the optimal policy π� when considering only available states. (A)

Representation as a decision tree; (B) Concordance between π�,approx and π� with π� as a reference (sum to 100 over a column).

https://doi.org/10.1371/journal.pone.0197612.g004
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one obtained following π� both in terms of number of virus-free herds over time (Fig 3B and

3C) and in terms of cumulated cost (Fig 3D). Hence, the decision tree π�,approx was a good

approximation of the optimal policy π�, but providing a much more practical tool for deci-

sion-makers.

Impact of uncertainty in parameter values on the model behavior

Only two parameter variations induced a divergence between computed policies (Fig 5A): a

decrease in the loss due to infection in IC herds (LIc), and a decrease in the probability of transi-

tion from IC to Fd when action Incent3was considered (noted κ(3)). A decreased value of LIc

induced an increase in the cumulative use of action Incent1, a decrease in the cumulative use

of action Incent3, and a decrease in the clearance level corresponding to an increase of the

infection prevalence (Fig 5C). LIcas a cost impacted the median total cost when both decreasing

and increasing (Fig 5C). For the variation of the transition probability between IC and Fd (κ
(3)), the use of each action and the total costs were impacted (Fig 5D), its increase particularly

decreasing the use of Incent3while increasing the use of None and Incent1.

Variations of other parameter valuesbarely impacted π�, resulting in only few variations of

simulated results. Obviously, if a cost varied, the total cost was modified as expected. Parame-

ters inducing no variation of π� on available states were the cost of external biosecurity (Cbe),

the transition probability between F and Fd (αirrespective of the action of the social planner,

the transition probability between I and I0 (ν) for action Incent1only, the transition probability

between IC and I (φ) for action Incent3only, and the fixed cost (Cdiff) for action Incent1.

Discussion

In this paper, we proposed a framework which can be used by a decision-maker acting as a

social planner to identify an adaptive strategy consisting of incentives in order to optimise the

net financial benefit at the collective scale for a group of farmers. We applied this framework

for the control of PRRS, an endemic non-notifiable disease. The computed policy providing

better net financial benefit was adaptive. It illustrated the potential of adaptive approach to

propose an optimal dynamic strategy. Even if some incentives were expensive, the optimisa-

tion over a long horizon took into account the incentive benefits to balance these high costs.

This framework is a tool to help a social planner to define collective schemes, provided that the

social planner is accurately informed about the health status of the herds.As an example, for

PRRS, the Morrison’s Swine Health Monitoring Project is conducted on a convenience sample

of 910 herds for which diagnostic status is reported weekly [41]. To be used in field conditions

(and thus as a tool for decision support), the framework should be specified according to the

aim of the collective decision-maker by defining the corresponding objective function, the

horizon for optimisation, the incentive levels, and the impact of farmers’ response to incen-

tives. As the framework can become verycomplex for use by a decision maker (“curse of

dimensionality”), a compromise should be found between realism and simplification. In such

a case, the decision-maker should be involved in the modelling phase to inform the model

assumptions and interpret results. One perspective to this study is to implement a participative

research project in which stakeholders would be involved in order to incentivize them to test

and improve our framework.

The definition of the objective function is one of the most important components. Accord-

ing to the objective function, the MDP policies can be different as shown in [20]. In our case

study, we optimised the net financial benefit at the collective scale. The disease prevalence

which is a result of interest for epidemiologists was introduced indirectly in the objective func-

tion as each infected farm induced losses and control costs for the decision-maker. Even if the
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optimisation was based on losses and control costs, the computed policy in our case study had

a positive impact on disease prevalence. On the other hand, decision-makers may be interested

in optimising simultaneously several objectives (for instance decreasing both costs and disease

prevalence). For optimising more than one criterion at a time, the framework has to be

adapted.The method used here to compute the optimal policy does not allowthe use of com-

bined criterion. However, relevant algorithms to compute the optimal policy in such a case

can be found in the literature [42, 43].

It is not straightforward to anticipate when a given disease situation will show a large

impact of an adaptive policy compared to a fixed one.Of course, it is expected to vary with the

pathosystem, as well as with the considered control options and incentives. As regards our

case study on PRRS virus, the difference between the adaptive policy and a fixed one is small as

regards saved euros (4%) but large as regards acceptability of the collective scheme. Indeed,

eradication can almost be achieved without the need of implementing forever a very constrain-

ing action (depopulation). This action is already known by health managers as the main one

that can impact PRRS herd prevalence.It is also known by that eradication of such an endemic

disease cannot be achieved in a few years only. However, when to stop a control action such as

depopulation was unknown. We highlighted that 10 years after the start of depopulation

implementation in detected infected herds, this action could be progressively stopped and

replaced by lighter ones for the next 10 years without impairing the large reduction in preva-

lence almost achieving eradication which would have been obtained with a fixed action on the

same duration.

Another main component of the framework to be decided with the decision-maker is the

horizon of optimisation. In our case study, we used an infinite time horizon. It was retained as

PRRS virus is highly prevalent [28] and often no eradication was looked for at first, leading us

to assume that the disease may persist in the long run. The optimal policy computed with the

infinite time horizon can be acceptable even for a finite horizon if the finite horizon is long

enough and if an accurate discount factor is used. In our case study, the total cost obtained

with the optimal policy was better than others after 25 years onward (Fig 3D). Nevertheless,

the social planner may choose to reach an objective before a specified time (finite horizon). In

our framework, the computation of the optimal policy should be modified to optimise only

over a finite horizon. Meanwhile, when computing a policy over a finite horizon, it has to be

assumed that the system does not exist after the end of the optimisation horizon, which may

induce some drawbacks when the policy is used for long-term system [27]. For example, some

incentives may avoid the steps just before the end of the horizon if their impact can be

observed only a few time-steps after. To avoid such drawbacks, a rolling horizon approach has

been proposed [44] but optimality is not guaranteed [45]. The decision-maker thus should

define the horizon having knowledge about advantages and drawbacks. Regarding our frame-

work, we used the Value Iteration algorithm [26] which can be used for computing both finite

and infinite horizons and adapted for computing rolling horizon.

To render the policy usable in field conditions, we proposed a way to approximate the opti-

mal computed policy which was far too complex for practical purposes. For a decision-maker,

having simple decision rules is important for practical use in field conditions as pointed out by

Fig 5. One-at-a-time sensitivity analysis of the optimal policy (Min and Max correspond to the minimal and maximal parameter values; Tables 2–4).

(A) Weighted divergence index, parameters having different values according to the social planner’s action as shown by the number in parentheses (1 for

Incent1, 2 for Incent2, and 3 for Incent3). (B) Reference spider plot provided for label definitions (no parameter variation): branches denote the considered

outputs, curve position on a given branch describes the impact of varying the value of one parameter on this output. For each output, relative values are

provided with respect to the reference scenario (thick line at 0.0). A value below (above) the thick line denotes a decrease (an increase) in the output (green ’-’

and red ’+’ areas, respectively). (C) Spider plot obtained when varying the cost of controlled infected herds (LIc, Table 3) (D) Spider plot obtained when

varying k(3), i.e. the transition probability from ICto Fdwhen action Incent3 (depopulation) is retained by the social planner (Table 4).

https://doi.org/10.1371/journal.pone.0197612.g005
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Pichancourtet al. [46]. It was possible to transform the policy into decision rules (if . . . then . . .

else . . .), using for example the approach of Gil et al. [47]. However, due to the complexity of

the optimal computed policy in our case study, the number of obtained rules using such an

approach would have been far too high to be usable under field conditions. Therefore, we used

a method developed in the area of data mining for the analysis of large volume of data [39] and

produced a decision tree having only eight rules. We showed that this approximation was rele-

vant regarding retained actions. In [48], an approximated policy was also computed to simplify

their complex policy. As in our paper, the agreement was verified only in terms of actions, not

on the value of the objective function. The optimality thus is not guaranteed. Steimle and Den-

ton [49] considered that proposing a simple approximated policy although sub-optimal is a

way to enhance the application of the policy by decision-makers.

The sensitivity analysis is a crucial step in modelling work to assess the impact of parameter

uncertainty on model outputs [37]. Performing a sensitivity analyses helps the decision-maker

to identify knowledge gaps impacting predictions. Here, two analyses have been performed.

The first one was based on the model without incentive (always doing nothing), which allows

the decision-maker to identify possible policy instruments. The second one highlighted

parameters impacting the predicted optimal policy, illustrating for the decision-maker the

impact of parameter uncertainty on the policy. More precise values are needed for parameters

corresponding to pathogen spread or to an economic value (for example in our case study,

parameter LIc corresponding to the losses for Ic herds). In addition, some identified parameters

correspond to the impact of the farmer’s response to a decision-maker action (incentive), such

as the transition from IC to Fdwhich corresponds to depopulation when the social planner

retains action Incent3.For such parameters, a knowledge on how farmers would respond to

incentives is needed. To estimate farmers’ responses, either data on previous use of incentives

can be explored [50] or behaviour experiments can be proposed such as in [51]. Moreover,

global sensitivity analysis—in which the values of all parameters simultaneously vary—can be

done only for the first analysis. For the second one, the approach proposed by [52] evaluated

the result confidence both on policy and objective function. In this approach, parameters

would be considered either one by one or jointly. In our case study, we did only scenario anal-

ysis corresponding to a one-at–a-time (OAT) analysis with two values for each parameter due

to the high computing time per parameter set.

Our framework is a novel contribution in terms of a decision-making support that can be

applied to animal disease control situations. In the special case of non-notifiable diseases, con-

trol decisions are made by farmers based on the risk of their herd being infected and on disease

consequences, sometimes in interaction with a social planner. In animal health literature,

models focused on individual decision and scenarios comparing collective incentive schemes

[12, 53]. These models did not consider an optimal decision of the social planner,but only the

impact of incentives on farmer’s decisions. Instead, we proposed to consider interactions

between farmers’ decisions and collective actions through incentives. Our framework provides

a practical tool for decision makers to evaluate a prioritheir policy under a variety of epidemio-

logical situations and incentive levels.
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