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Abstract
This study used radiomics image analysis to examine the differences of texture feature values extracted from oropharyngeal and
hypopharyngeal cancer positron emission tomography (PET) images on various tumor segmentations, and finds the proper and
stable feature groups. A total of 80 oropharyngeal and hypopharyngeal cancer cases were retrospectively recruited. Radiomics
method was applied to the PET image for the 80 oropharyngeal and hypopharyngeal cancer cases to extract texture features from
various defined metabolic volumes. Kruskal-Wallis one-way analysis of variance method was used to test whether feature value
difference exists between groups, which were grouped by stage, response to treatment, and recurrence. If there was a significant
difference, the corresponding feature cutoff value was applied to the Kaplan–Meier estimator to estimate the survival functions. For
the various defined metabolic volumes, there were 16 features that had significant differences between early (T1, T2) and late tumor
stages (T3, T4). Five images and 2 textural features were found to be able to predict the tumor response and recurrence, respectively,
with the areas under the receiver operating characteristic curves reaching 0.7. The histogram entropy was found to be a good
predictor of overall survival (OS) and primary relapse-free survival (PRFS) of oropharyngeal and hypopharyngeal cancer patients.
Textural features from PET images provide predictive and prognostic information in tumor staging, tumor response, recurrence, and
have the potential to be a prognosticator for OS and PRFS in oropharyngeal and hypopharyngeal cancer.

Abbreviations: 18F-FDG = fluorodeoxyglucose, AUC = area under curve, CT = computed tomography, DFS = disease free
survival, DVH= dose-volume histogram, GLCM= gray level co-occurrence matrix, GLNU= gray level non-uniformity, GLSZM= gray
level size zone matrix, GTV = gross tumor volume, HIE = high intensity emphasis, IRB = institutional review board, IV = intensity
variability, IVH = intensity-volume histogram, LOOCV = leave-one-out cross-validation, LRE = long run emphasis, MD =moderately
differentiated, MTV = metabolic tumor volume, NGTDM = neighborhood gray-tone difference matrix, OS = overall survival, PD =
poorly differentiated, PET= positron emission tomography, PRFS= primary relapse-free survival, RBF= radial basis function, RLM=
run length matrix, RLNU = run length non-uniformity, ROC = receiver operating characteristic, ROI = region of interest, RPC = run
percentage, SAE = small area emphasis, SD = standard deviation, SRE = short run emphasis, STARD = standard for reporting
diagnostic accuracy, SUV = standardized uptake value, SUVmean = mean SUV value, SVM = support vector machine, SZV = size
zone variability, T1= tumor stage 1, T2= tumor stage 2, T3= tumor stage 3, T4= tumor stage 4,WD=well-differentiated, ZP= zone
percentage.
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1. Introduction

As development in medical computational technologies advan-
ces, analysis in gene sequence or protein composition in a disease
lesion can provide helpful information in personalized treatment
plan. However, the collection of the specimen of lesion tissues for
such analysis is always invasive, and the analysis itself requires
certain hardware and software. Thus, there are some limitations
for applying the technologies clinically.[1] In addition, the
specimen is from a small part of the lesion, of which, the results
cannot reflect the characteristics of the whole lesion. On the other
hand, medical imaging is noninvasive and can provide informa-
tion of the whole lesion both anatomically and functionally.
Currently, medical imaging has been widely applied in clinical
lesion diagnosis and treatment response monitoring.
Positron emission tomography (PET) has been clinically used

in cancer diagnosis, cancer staging, detection of necrosis, tumor
heterogeneity, tumor location and size, and treatment response
evaluation.[2] Some studies demonstrated that the standardized
uptake value (SUV) of fluorodeoxyglucose (18F-FDG) in tumors
can predict the treatment response and survival rate.[3] An
example of such studies showed that for oropharyngeal and
hypopharyngeal cancer patients, if the mean SUV value
(SUVmean) is high in the primary tumor, the survival rate
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would be low.[4] Because the SUV is affected by multiple factors,
such as the patient weight, blood sugar level, FDG injection
timing, dose correction, and image reconstruction algorithm,[5]

SUV cannot accurately provide quantitative information, and
thus it cannot accurately predict patients’ treatment outcome.
More robust image analysis techniques are needed to provide
quantitative information to help clinical diagnosis and treatment
evaluation.
The emerging image analysis method, radiomics, extracts a

large amount of information from medical images, including
quantitative values in tumors’ physical pattern, texture features
based on the intensity distribution in the image voxels, and
analyzes the relationship to other medical information. This
method has been clinically applied in image identification,
segmentation, contouring, and tumor heterogeneity analysis.[6]

Tumor characteristic parameters, such as shape, size, texture
features and heterogeneity, have been extracted from PET/
computed tomography (CT) images,[7,8] with the texture features
and heterogeneity being discussed more often. Many groups
reported that the texture features and tumor heterogeneity
extracted from PET/CT could provide more tumor phenotypic
information in addition to SUV measurement.[9–11] El Naqa
et al[9] reported that PET image features could give very good
specificity and sensitivity for oropharyngeal and hypopharyngeal
cancer patients’ prognosis. Additionally, the extra information
extracted from clinical images using radiomics method not only
can be used alone as reference indices, but can also be combined
with other information, such as genomics, metabolomics,
proteomics, to enhance the discrimination ability in phenotypic
information and prediction ability in treatment outcome and
prognosis.
Although many reports proposed that radiomics features are

effective predictors of treatment outcome and diagnosis for
various cancers, it is still a big challenge to pick proper ones from
the large options of the texture features. This study used
Figure 1. The STARD (Standard for Reporting Diagnostic Ac
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radiomics image analysis to examine the differences of texture
feature values extracted from oropharyngeal and hypopharyng-
eal cancer PET images on various tumor segmentations, and
found the proper and stable feature groups, based on statistics
and correlation to the clinical data (phenotype, stage), response
to treatment and survival rate. These feature groups were then
applied in clinical diagnosis and survival correlation. The
purpose of this study was to establish robust and suitable image
texture features for clinical diagnosis and treatment evaluation
for oropharyngeal and hypopharyngeal cancer patients.
2. Methods and materials

2.1. Patient data

The requirement to obtain institutional review board (IRB)
approval was waived for this retrospective study (certificate
number of local IRB, DMR99-IRB-010-1). A total of 80
oropharyngeal and hypopharyngeal cancer cases treated during
2009 and 2013 in the department of radiation oncology in China
Medical University Hospital, were retrospectively recruited
(Fig. 1). All patients were male, and the mean age was 53 years.
In 80 patients, 40 patients had primary tumors located in the
oropharynx, and 40 patients had primary tumors located in the
hypopharynx. All patients were treated with radiotherapy
combined with chemotherapy. In all cases, PET images were
taken and clinically relevant information was recorded, such as
gender, cancer stage and tumor differentiation, whether or not
surgery was done, tumor location, and number of lesions, etc.
The collected information also included the treatment results and
prognosis, including overall survival (OS), disease-free survival
(DFS), and primary relapse-free survival (PRFS). The voxel size in
all the PET images was 5.5�5.5�3.3mm3 where 3.3mm was
the slice thickness. The relevant information is listed in Table 1.
All PET images were loaded to the Eclipse treatment planning
curacy) diagram of the 80 patients selected for analysis.



Table 1

Patient characteristic.

Characteristic Value

Mean age (years) 53 (37–78)
Primary lesion site
Oropharynx 40
Hypopharynx 40

T stage
I 7
II 31
III 24
IV 18

N stage
0 1
I 13
II 60
III 6

AJCC stage
II 5
III 12
IV 63

Pathology
Well-differentiated (WD) 27
Moderately differentiated (MD) 21
Poorly differentiated (PD) 15
Unclassified 15
Missing 2

Primary response
Complete response 56
Partial response 24

Recurrence
Yes 37
No 43

Concurrent chemotherapy
Cisplatin 64
Cetuximab 4
None 12

Figure 2. Metabolic tumor volume definitions of various SUV threshold values
in PET image. Red=MTV2.5, lime=MTV3.0, plum=MTV40%, teal=
MTV50%. PET = positron emission tomography, SUV = standardized uptake
value.
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system (version 11.0, Varian Medical Systems, Inc, Palo Alto,
CA) to get metabolic tumor volume (MTV) defined.

2.2. PET/CT image acquisition

All patients had undergone the standard procedure of PET/CT
(PET/CT-16 slice, Discovery STE, GE Medical System, Milwau-
kee, WI) scanning. Patients were injected with 370 MBq of 18F-
FDG and rested during the pharmacokinetics uptake period. The
original data included a low-radiation dose CT scan and PET
emission images. Low-radiation dose CT images were obtained
with 120 kVp, variable mA with AutomA (GE Medical Systems,
Milwaukee, WI) technique, 1.75:1 pitch, and 3.75mm slice
thickness, which were acquired for anatomic reference and
attenuation correction. PET data were acquired at the 1.5min per
field of view in 3-dimensional acquisition mode. The PET images
were reconstructed by 3-dimensional iterative algorithms (VUE
Point, GE Medical Systems, Milwaukee, WI).
2.3. Target delineation

The MTV was semi-automatically defined using various SUV
threshold values of the primary tumor, including MTV2.5,
MTV3.0, MTV40%, and MTV50%, where MTV2.5 means the
MTV defined with the threshold SUV value being 2.5, MTV40%
3

means theMTV defined with the threshold SUV value being 40%
of the maximum value (Fig. 2).[12] The texture features were
extracted from the various MTVs using software developed by
our team.

2.4. Radiomics texture analysis

The feature extraction software developed by our team calculates
values of radiomics features of shape, intensity based, gray level
co-occurrence matrix (GLCM), run length matrix (RLM), and
gray level size zone matrix (GLSZM) based on the MTVs. Image
feature values were obtained by statistics, modeling, and
conversion. The statistical features were calculated using the
regional intensity distribution in the image. The feature values
were determined by the relationship between the neighboring
voxels, can be divided into 1st order, 2nd order, and higher order
features.[13] An example of the feature extraction process is
shown in Figure 3.
The 1st order features describe the intensity distribution inside

the region of interest (ROI). They are often calculated using the
intensity histogram, including mean intensity value, maximum
and minimum intensity values, standard deviation, skewness,
kurtosis, uniformity, and entropy.[11] With the extension of the
intensity histogram concept, the intensity-volume histogram
(IVH) simplifies the 3-dimensional information into a curve
which is easy to understand and analogous to the concept of dose-
volume histogram widely used in radiotherapy treatment
planning. One can easily obtain the correspondence between
the volume and intensity value from the IVH. For example, I30
means the intensity value that 30% of the ROI volume is under it,
V40 means the volume inside the ROI that is under 40% of the
maximum intensity.[9]

The GLCM-based features are 2nd order features, initially
proposed by Haralick and Shanmugam[6] and Haralick [14] and
introduced into 3-dimensional clinical image data by Liang.[15]

http://www.md-journal.com


Figure 3. Two slices of PET which show the FDG uptake from 2 patients with oropharynx (A–C) and hypopharynx (D–F) tumors, respectively. A and D show the
original PET images with the delineation (red dashed lines). B and E show the zoomed images of the segmented tumor. C and F show the histogram of the positron
signal versus the photon counting. FDG = fluorodeoxyglucose, PET = positron emission tomography.
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The matrix is generated using the intensity relationship in the
proximity space in the ROI. In this study, the intensity values in
PET image data were binned into 256 levels, which defined the 2-
dimensional co-occurrence matrix to be 256�256 in dimension.
The co-occurrence matrix was calculated in 13 directions in the 3-
dimensional PET data and the final matrix was an average over
the 13 directions and converted to a probability matrix. All the
GLCM-based features were calculated using the probability
matrix. The 2nd order features based on GLCM include entropy,
uniformity, contrast, homogeneity, and correlation, etc.[13,16]

RLM is an L�R matrix, with L being the number of gray levels
(256 in this study) and R being the possible runs which should be
case dependent. A run is defined as the group of voxels with the
same gray level in a certain direction. It was calculated in 13
Table 2

Features.

Features groups

Intensity-based features Minimum, mean, and maxim
spherical disproportion, st

Co-occurrence features Entropy, contrast, homogene
Run-length based features Short run emphasis (SRE), lo

(RLNU)
Gray-level size-zone-based features Zone percentage (ZP), intens
Neighborhood gray-tone difference matrix-based features Coarseness, contrast, busyne
Fractal dimension features Standard deviation (SD), mea

4

directions in the 3-dimensional PET data. The final matrix is
normalized for the feature calculation.
GLSZM and neighborhood gray-tone difference matrix

(NGTDM)-based features are also 2nd order features. Similar to
GLCM and RLM, these matrices are also based on the intensity
relationship between neighboring voxels in ROI, but different
relationship is used. The features include coarseness, contrast,
busyness, and complexity, where coarseness is a feature similar to
granularity, contrast describes the intensity variation range and
regional intensity variation, busyness is related to intensity variation
rate, complexity is the sum of the normalized intensity variation.[17]

This study applied statistical image feature analysis to calculate
6 categories of image texture features in PET images including
intensity-based, co-occurrence, run-length, gray-level size-zone,
Examples

um intensity, volume, surface area, surface to volume ratio, sphericity, compactness,
andard deviation, skewness, kurtosis
ity, dissimilarity, uniformity, entropy, correlation, cluster shade, difference entropy
ng run emphasis (LRE), gray level non-uniformity (GLNU), run length non-uniformity

ity variability (IV), size zone variability (SZV)
ss, complexity, texture strength
n fractal dimension
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NGTDMs based features and fractal dimension features,
94 features in total (Table 2).
3. Statistical analysis

The texture features were examined if they followed normal
distribution using Kolmogorov–Smirnov test. Those that fol-
lowed normal distributions were analyzed using one-way
analysis of variance, ANOVA, and independent samples T test
to evaluate if the feature average values differed significantly
between groups of tumor differentiations, tumor stages,
treatment responses, and recurrences. Kruskal-Wallis test and
Mann–Whitney U test were applied to those non-normal
distributed features to examine if the median values differed
significantly between the groups. Receiver operating characteris-
tic (ROC) curves using differentMTVswere generated for feature
values. The typical feature groups that had discrimination power
for tumor differentiation and/or tumor stage were selected, and
the cut values that best distinguishing the groups were obtained
from the ROC curve analysis. Kaplan–Meier survival analysis
was performed using the cut values to evaluate if the differences in
Figure 4. Features that had significant differences between different tumor differen
Area Emphasis (SAE), (D) High Intensity Emphasis (HIE). WD=well differentiated,

5

OS, DFS, and PRFS were significant or not between the patient
groups with feature value higher/lower than the cut values. The
P value less than .05 was considered to indicate a significant
difference in all statistical methods.
4. Results

Using MTV2.5, 4 features had significant differences between
groups of tumor differentiations, while with MTV3.0, only 1
feature, and no feature when MTV40% and MTV50% were
used. Figure 4 shows the distribution values of the 4 features that
had the discriminatory power with MTV2.5.
In the tumor stage analysis, this study used the feature values of

the primary tumor volume and compared with the T stage results
to look for the features that had significant differences between
early stages (T stage=1 or 2) and late stages (T stage=3 or 4).
There were 29 features that had significant differences.
Additionally, ROC curves were applied to determine the
discriminatory power. The area under curve (AUC) was used
to quantitatively judge the power, with less than 0.6 being poor,
between 0.6 and 0.75 being moderate, greater than 0.75 being
tiation groups in MTV2.5. (A) Coefficient of variance (B) Sum average (C) Small
MD=moderately differentiated, PD=poorly differentiated.

http://www.md-journal.com


Table 3

Features that had moderate or high discrimination power for tumor stages (early or late).

Features MTV2.5 MTV3.0 MTV40% MTV50%

Intensity-based features
Surface area 0.76 0.71 0.76 0.77
Surface to volume ratio 0.75 0.67 0.76 0.74
Compactness 0.76 0.69 0.76 0.75
Spherical disproportion 0.69 0.69 0.67 0.72
TGV 0.79 0.71 0.78 0.79
Energy 0.77 0.69 0.77 0.77
Contrast 0.74 0.69 0.74 0.74

Co-occurrence features
Contrast 0.77 0.72 0.76 0.79
Local homogeneity 0.67 0.72 0.69 0.73
Dissimilarity 0.77 0.73 0.75 0.80
Variance 0.78 0.68 0.76 0.76
Inverse variance 0.76 0.71 0.76 0.76
Inverse difference moment 0.77 0.73 0.76 0.79
Inverse difference 0.76 0.73 0.75 0.79

Run-length-based features
RLNU 0.77 0.70 0.77 0.77
RPC 0.77 0.68 0.76 0.77

RLNU= run length non-uniformity, RPC= run percentage, TGV= total grey value.
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high. Table 3 lists the features with moderate or high
discriminatory power, 16 in total.
To avoid the effects of different medicine treatments and degree

of seriousness of the lesion on the treatment response, those
treated with Cisplatin chemotherapy combined with radiothera-
py, and having an SUV value higher than 7 in the primary tumor
were selected from the 80 cases, for a total of 48 cases. Except
for MTV3.0, a few features were found to have significant
differences between groups of complete response and partial
response in MTV2.5, MTV40%, and MTV50%. Table 4 lists
those features with the AUC values in the ROC analysis.
In the recurrence analysis, there were 26 features that can be

used to predict the recurrence risk with MTV2.5. With MTV3.0
and MTV40%, only 1 feature each was found, which were
inverse variance (AUC=0.70) and V10-V90 (AUC=0.74),
respectively. Two features, V10-V90 (AUC=0.73) and coarseness,
could be used to predict recurrence risk when MTV50% was
used. Inverse variance was also in the features with MTV2.5
(AUC=0.71). Figure 5 shows inverse variance and V10-V90 in
ROC analysis for recurrence.
In the prognosis analysis, Kaplan–Meier survival analysis

shows a common feature, histogram entropy, which has OS
prediction power whenMTV2.5 or MTV40%was used. The OS
Table 4

Features that predict treatment response.

Features MTV2.5 MTV40% MTV50%

Intensity-based features
Histogram entropy 0.72 0.66 0.76
Uniformity 0.71 0.68 0.81

Co-occurrence features
Variance 0.74 0.63 0.80
Max probability 0.73 0.67 0.79

Gray-level size-zone-based features
SZV 0.71 0.68 0.81

SZV= size zone variability.

6

difference between the groups of greater/lower than the cut value
of the feature was significant. Variance was the common feature
for MTV2.5 MTV50%. When the variance value was higher
than the cut point, the OS rate was lower than the group with
the variance value lower than the cut point. Features SZV and
V10-V90 were also common for MTV40% andMTV50% for OS
prediction. Figure 6 shows the OS curves for features histogram
entropy and variance.
In the PRFS counterpart, feature histogram entropy demon-

strated significant differences for all 4 MTVs, while feature
variance showed differences for 3 of the 4 MTVs (MTV2.5,
MTV3.0, and MTV50%). Feature SZV was significant for 2 of
the 4 MTVs (MTV2.5 and MTV3.0), and V10-V90 for another 2
MTVs (MTV40% and MTV50%). Figure 7 shows the PRFS
curves with feature histogram entropy for different MTVs.

5. Discussion

In this study, to statistically select proper image features as image
biomarkers that correlate well with tumor differentiation, tumor
stage, and prognosis for oropharyngeal and hypopharyngeal
cancer, radiomics features in 6 categories were extracted via
image processing techniques. As demonstrated by the results,
there were no common features that correlated well with the
tumor differentiation over all the different definitions MTV.
However, as shown in Figure 4, the features that showed
significant differences between theWD and PD groups were those
heterogeneity descriptors. The heterogeneity inside ROI should
be highly correlated to the degree of tumor differentiation, with
higher heterogeneity for poorly differentiated tumors and lower
for well differentiated.
In the correlation analysis between tumor T stage and image

feature, 16 features were found that were able to distinguish
between early (T1 and T2) and late (T3 and T4) stages. However,
no feature was found to further distinguish individual stages. The
possible reason for this is that image features are more on the
intensity variation pattern side while the traditional T staging is



Figure 5. ROC curves in recurrence analysis. (A) Inverse variance and (B) V10-V90. ROC = receiver operating characteristic.
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just based on the tumor size. Some of the features that had good
correlation to T stage, such as surface area, which is the tumor
total surface area, surface to volume ratio, which gives the ratio of
surface area to volume, and compactness, which describes the
tumor shape, are indirectly related to the tumor size. Some other
features, such as entropy, local homogeneity, and dissimilarity,
fundamentally describe the intensity variations and are not
closely related to the tumor size. The correlation between those
features to tumor size should not be strong enough to distinguish
the individual stages in detail. Using a support vector machine
(SVM) with a radial basis function kernel combines and maps the
features into a nonlinear high dimensional function. This in turn
achieves a higher AUC of 0.81 for tumor stage analysis using
leave-one-out cross-validation (LOOCV). The best features
picked for the classification task were dissimilarity and Run
Percentage under MTV2.5 combined with contrast and variance
under MTV40%. The SVM model fitted with the original data
using all features was tested with 10 new patient data, and the
resulting AUC was 0.75.
Figure 6. Overall survival curves. (A) H

7

In the prognosis prediction analysis, image features were found
to have prediction power in all MTV definitions except for
MTV3.0. This was especially the case for MTV50% in which all
5 features had discriminatory powers over 0.75 (Table 4), while
only moderate discrimination power was obtained for MTV2.5
and MTV40%. In the recurrence analysis, no common feature
that correlated in all 4 MTV definitions was found, while a
common feature, inverse variance, was found between MTV2.5
and MTV3.0 and another common feature, V10-V90, between
MTV40% andMTV50% (Fig. 5). Using SVM, the features could
be used individually or combined to reach an AUC of 1.0 using
LOOCV. Using the model created by SVM fitting on all the
features and the original data, testing a new set of 5 patients out
of the 10 that fit the criteria of SUV greater than 7 and underwent
cisplatin chemotherapy combined with radiotherapy, an AUC
of 0.875 was achieved, with only 1 new patient incorrectly
classified.
In the OS and PRFS analysis, a common feature was found

to correlate with OS for MTV2.5 and MTV40% and
istogram entropy and (V) variance.

http://www.md-journal.com


Figure 7. PRFS curves with feature histogram entropy. (A) MTV2.5 (B) MTV3.0 (C) MTV40% (D) MTV50%. PRFS = primary relapse free survival.
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another feature for MTV2.5 and MTV50% (Fig. 6). A common
feature was found to correlate with PRFS for all the 4 MTV
definitions (Fig. 7). The feature histogram entropy was found to
correlate with both OS and PRFS. This feature describes the
complexity of the intensity variation inside ROI, with higher
value representing higher degree of complexity or higher degree
of heterogeneity. Based on the analysis, patients with higher
than the cut point of this feature had a lower OS or PRFS
than thosewith lower feature value. In this study, featureV10-V90

was found to correlate OS and PRFS for MTV50%, which
contradicts with the study by Naqa et al.[9] In their study, this
feature had a very low correlation with OS (Spearman’s rank
correlation = 0.087) and the AUC of the ROC was 0.5. This
difference could mostly be due the difference in patient
population distribution. Only 9 oropharyngeal and hypophar-
yngeal cases were studied by Naqa et al[9] while 48 cases were
studied in our analysis.
8

Additionally, the correlation between the 4 MTV definitions
and the primary tumor volume delineated by clinical physicians
was performed. The correlation between the delineated gross
tumor volume (GTV) and MTV2.5, MTV3.0, MTV40%,
MTV50% was 0.62, 0.54, 0.73, and 0.73, respectively,
(P< .001). Except MTV3.0, all other 3 MTV definitions had a
moderate and above correlation with GTV, which indicates that
the 3 MTV definitions are closely similar to the real GTV and the
extracted features can approximately represent those from the
GTV. Because of the lower correlation between MTV3.0 and
GTV, the image features from MTV3.0 cannot represent what
from the GTV. This could be the reason that significant
differences of feature values between the patient groups were
hard to find for MTV3.0. MTV40% and MTV50% showed
highest correlation to GTV, and features fromMTV50% showed
highest tumor stage and prognosis prediction power. Based on
Table 3, feature dissimilarity as a discriminator of tumor stage, its
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AUC was 0.80, higher than that of MTV2.5 (AUC=0.77). In
prognosis analysis, features uniformity, variance, and SZV from
MTV50% were obviously higher than those from MTV2.5
(Table 4). In the recurrence prediction, feature V10-V90 from
MTV50% and MTV40% had similar power, with AUC being
0.73 and 0.74, respectively. Clinically, it is thus recommended
that features dissimilarity, uniformity, variance, and SZV
based on MTV50% can be used as tumor stage and prognosis
predictors.
In this study, image features were extracted from PET images

of oropharyngeal and hypopharyngeal cancer cases. Features as
indicators in tumor differentiation, tumor stage and predictors in
treatment outcome, prognosis were selected. Feature value varies
with ROI, which makes it difficult to find common indicators and
predictors with different ROIs. Image features, representing
various characteristics of the ROI, such as heterogeneity, can be
obtained via noninvasive methods, which provide advantages in
clinical applications and the clinical application potential is high.
The disadvantage in this study is that the number of cases
recruited is still a little bit too small. With such a relatively small
sample size, the numbers of cases in the subgroups, such as stages
and differentiations, were very different. In the future, more cases
will be recruited to enhance the confidence of the study.

6. Conclusions

In this study, PET image features from oropharyngeal and
hypopharyngeal cancer cases were applied in correlation analysis
with clinical tumor characteristics and prognosis after radiother-
apy combined with chemotherapy. The results indicated that 16
image features demonstrated significant differences between early
and late stages in various MTV definitions; 5 and 2 features had
AUC in ROC greater than 0.7 for prediction of treatment
response and recurrence, respectively, indicating good predictors;
feature histogram entropy correlated with both OS and PRFS
well. Image features have clinical potential in tumor phenotypic
diagnosis, staging, prediction of treatment response, recurrence,
and OS and PRFS in oropharyngeal and hypopharyngeal cancer
prognosis.
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