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Abstract: Cancer continues to be a major public health problem despite the efforts that 

have been made in the search for novel drugs and treatments. The current sources sought 

for the discovery of new molecules are plants, animals and minerals. During the past 

decade, the search for anticancer agents of marine origin to fight chemo-resistance has 

increased greatly. Each year, several novel anticancer molecules are isolated from marine 

organisms and represent a renewed hope for cancer therapy. The study of structure-

function relationships has allowed synthesis of analogues with increased efficacy and less 

toxicity. In this report, we aim to review 42 compounds of marine origin and their 

derivatives that were published in 2011 as promising anticancer compounds. 
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Abbreviations 

Cell Line Abbreviation 

A549: Lung carcinoma cell line; A2780 and OVCAR-3: Ovarian cancer cells; ACHN: 

Human kidney adenocarcinoma cell; AGS: Human stomach adenocarcinoma cell line; 

CEM: leukemia cell; DLD1: Human colorectal carcinoma; Daoy: medulloblastoma cells; 
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H1395 and H2122: Lung cancer cell; HCC44 and HCC366: non-small lung cancer cells; 

HCT116: Human colon carcinoma cell line; HEp-2: Human epithelial cells; Hep3B: 

Human hepatoma cells; HepG2: Human hepatocellular liver carcinoma cell line; Hel: 

Human erythroleukemia cells; HL-60: Human promyelocytic leukemia cell line; HT29: 

Human colon adenocarcinoma grade II cell line; HT1080: Fibrosarcoma cell line;  

IOSE-144: Non-tumorigenic human Ovarian surface epithelial cells; JB6 Cl 41: Mouse 

epidermal cell line; Jurkat: Human T-cell leukemia cell line; K562: Human chronic 

myeloid leukemia cell line; KB: human nasopharynx carcinoma cell line; MDR-KBv200: 

Multidrug resistant form of KB; LoVo: Colon cancer cell line; MCF-7: Breast 

adenocarcinoma cell line; MDA-MB231: Mammary carcinoma cell line; MiaPaCa2: 

Human pancreatic carcinoma cell line; PC-3: Prostate cancer cell line; RAW264.7: Mouse 

macrophage cell line; RPMI8226: Human multiple myeloma cell line;  

S180: Murine sarcoma cell line; U2OS: Human osteosarcoma cell line; U937-GTB: 

Histiocytic lymphoma cell line; WiDr: Colorectal adenocarcinoma cell line. 

Others 

1403P-3: Adriamycin analogue; AglRhz: Aglycon of Rhizochalin; AMPK: 5' adenosine 

monophosphate-activated protein kinase; AP-1: Activator protein 1; Bcl-2: B-cell 

lymphoma 2; Bax: Bcl-2-associated X protein; BF65 and BF78: Hemiasterlin derivatives; 

BRCA1: Breast cancer 1; CDK4: Cyclin-dependent kinase 4; FBA-TPQ: Makaluvamine 

analog; GADD45α: Growth arrest and DNA damage gene; IGF: Insulin-like growth 

factor; iNOS: Inducible nitric oxide synthase; MMP-9: Matrix metalloproteinase; MDR: 

Multidrug resistance; MESP: Methyl spongoate; NF-κB: Nuclear factor-kappa B; PARP: 

Poly (ADP-ribose) polymerase; P-gp: P-glycoprotein; PI3 kinase/Akt: Phosphoinositol-3-

kinase; RAD51 and RAD54: DNA repair protein; ROS: Reactive oxygen species; S4-1e: 

Apratoxin analog; STAT3: Signal transducer and activator of transcription 3; TNFα: 

Tumor necrosis factor α; TRPM7: Transient receptor potential melastatin 7 channels;  

VEGF: Vascular endothelial growth factor; XIAP: X-linked inhibitor of apoptosis protein. 

1. Introduction 

Despite significant advances in biomedical research during the last few decades, cancer remains a 

major cause of morbidity and mortality worldwide, with a likelihood of increasing prevalence [1,2]. 

The World Bank income groups estimated that the incidence of 12.7 million new cases in 2008 [3] will 

rise to 21.4 million by 2030 [2]. Therefore, it is imperative to find novel drugs and treatments to 

overcome this predicted situation. Because of the multiple side effects observed with chemotherapy, 

researchers are focusing more on drugs derived from natural products. From 1981 to 2010, natural 

products and their derivatives were the source of 41% of new drugs and 79.8% of all approved 

anticancer drugs [4]. Additionally, the percentage of drugs from natural products without derivatives 

was greatly increased from 20.8% in 2009 to 50% in 2010 [4]. Various molecules with anticancer 

properties were either isolated or derived from plants and terrestrial microorganisms, both of which 

have long-standing historical uses for the treatment of many diseases. This is not the case for marine 
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organisms, where the bioactive compounds were first isolated in the early 1950s. The focus on the 

discovery of molecules of marine origin only began in the mid-20th century, with several hundreds of 

novel compounds being discovered every year [5,6]. There is actually use of marine organisms in 

traditional medicine around the World. Benkendorff reported in 2010 that mollusks in particular are 

listed in the Traditional Chinese Materia Medica. They appear in traditional South African invertebrate 

medicine markets and are also used in Indian and Pacific Island remedies [7]. A significant number of 

anticancer molecules of marine origin have been isolated, but only a few of them are available on the 

market. According to the records of the Food and Drug Administration (FDA) and those of the 

European Agency for the Evaluation of Medicinal Products (EMA), from 1940 to 2010, 113 drugs 

(including natural compounds and their derivatives) were approved in cancer treatment, but only three 

of them (2.65%) are of marine origin. These compounds were introduced between 1993 and 2010 with 

the trade names of Starsaid® (cytarabine, introduced in 1993), Yondelis® (trabectedin, 2007) and 

Halaven® (eribulin, 2010) [4]. It was estimated that 118 marine anticancer molecules are presently in 

pre-clinical trials whereas 22 other molecules are undergoing clinical trials [8]. These data highlight 

the nascent stages of marine anticancer drug development. The marine environment contains a great 

diversity of organisms exhibiting a variety of molecules with unique structural features not found in 

terrestrial natural products. Because of the great interest in marine bioactive compounds, researchers 

isolated hundreds of compounds each year and evaluated them for their anticancer properties. In 2011, 

our team reported a selection of 13 groups of marine natural anticancer compounds and their 

associated analogues published in 2010 [9]. This review is a continuation of that report with the aim to 

review a selection of 42 marine compounds and their derivatives reported in 2011 as promising 

candidates for anticancer drug development. Among them, about 4.7% were already mentioned in our 

previous report; 45.2% are novel structures and 50% are described as anticancer agents for the  

first time in 2011. Their anticancer properties will be discussed and their structure–function 

relationships investigated. 

2. Promising Marine Anticancer Molecules Reported in 2011 

2.1. Alkaloids 

2.1.1. Agelasine analogs 2F and 2G 

Agelasines are 7,9-dialkylpurinium salts found in marine sponges and were first reported in 1984 by 

Nakamura et al. [10]. The primary chemical structure was modified by the introduction of either a 

dimethylamine group or its extended form at the purine 2-position, which resulted in the two cytotoxic 

analogs 2F and 2G (1, 2, Figure 1). These compounds showed high cytotoxicity against a panel of 

cancer cells (U937-GTB, RPMI8226, CEM, ACHN), with IC50 values ranging from 0.55 to 4.2 μM [11]. 

This chemical modification resulted in a two- and three-fold increase in the toxicity of these analogs 

against U-937 and ACHN cells, respectively. Thus, dimethylamine and its extended groups are 

relevant pharmacophores in the anticancer properties of agelasine analogs. These compounds need to 

be further investigated to elucidate their mechanisms of cytotoxicity and determine their toxicity to 

healthy cells because the parent compound showed significant cytotoxicity against both Vero and 

MRC-5 cells, with IC50 values of 2 and 1.4 μM, respectively. 
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Figure 1. Chemical structure of Agelasine 2F and 2G. 

 

For all chemical structures (compounds 1–42), the moieties responsible for their cytotoxicity are 

highlighted, as well as their ability to either enhance or reduce this effect. Moieties in red color are 

responsible for the cytotoxicity, those in blue enhance its effectiveness and those in green reduce its 

effectiveness. Each chemical structure was drawn using the software ChemBioDraw Ultra, version 

12.0.3.1216 (Cambridge Soft Corporation, Cambridge, MA, USA) and is in conformity with the 

original structures published in the literature. 

2.1.2. Fascaplysin 

Fascaplysin (3, Figure 2) is a red pigment that was isolated from the marine sponge 

Fascaplysinopsis bergquist sp. in 1988 [12–14]. Previous studies showed the effects of this molecule 

on pathways and proteins that can inhibit cancer such as cell cycle arrest, cyclin-dependent kinase 

(CDK4)-specific inhibition, inhibition of vascular endothelial growth factor (VEGF) expression, anti-

angiogenesis activity [15,16], DNA binding properties [17] and apoptotic effects through the activation 

of caspase-3, -8 and -9, bid truncation, release of cytochrome c and down-regulation of Bcl-2 [18]. 

Fascaplysin is cytotoxic toward a panel of 60 cancer cell lines [14]. In 2011, Yan et al., performed an 

in vivo study in a sarcoma mice model to confirm the effects of this molecule [12]. Their findings 

indicate that fascaplysin at tolerated doses in mice can inhibit the growth of S180 cell implanted 

tumors through apoptosis, anti-angiogenesis or cell cycle arrest, which confirms the in vitro results 

reported by many studies. Recently, Shafiq and co-workers confirmed the specific effect of this 

compound on CDK4, which is known to play a key role in the cell cycle and is a popular target for 

anticancer drugs [19]. 

Figure 2. Chemical structure of Fascaplycin. 

 
Fascaplycin (3) 

Agelasine 2F: X = NHCH
3
 (1) 

Agelasine 2G: X = NH(CH
3
)

2
 (2) 
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2.1.3. Makaluvamine Analog FBA-TPQ 

FBA-TPQ (4, Figure 3) is a synthetic analog of the natural makaluvamines, which are marine 

pyrroloiminoquinone alkaloids that have been isolated from sponges of the genera Zyzzya. Previous 

studies showed that FBA-TPQ is able to inhibit tumor growth by activating tumor suppressors and 

DNA damage response as well as inhibiting oncogene expression [20,21]. In 2011, Chen et al. reported 

the possible use of this compound in ovarian cancer therapy. It significantly inhibited A2780 and 

OVCAR-3 ovarian cancer cells, with IC50 values of 1.78 and 0.98 μM, respectively [22]. The cytotoxic 

effect is reduced against non-tumorigenic IOSE-144 cells, with an IC50 value of 10 μM. Moreover, 

FBA-TPQ induces apoptosis and cell cycle arrest at 2.5 μM in OVCAR-3 cells. In vivo, it significantly 

inhibited OVACAR-3 xenograft tumor growth [22]. Considering these preliminary data, FBA-TPQ 

could be a potential lead for the development of ovarian anticancer drugs. 

Figure 3. Chemical structure of Makaluvamine analog FBA-TPQ. 

 

2.1.4. Zalypsis (PM00104) 

Zalypsis (5, Figure 4) is a novel synthetic tetrahydroisoquinoline alkaloid of marine origin that 

demonstrated potent in vitro and in vivo inhibitory effects against both human solid and hematologic 

neoplasms [23,24]. In 2011, Colado et al. reported that Zalypsis exerts potent antileukemic activity in 

four cell lines (HEL, HL-60, MV4-11, KG1), with IC50 values below 1 nM after 24 h of treatment [25]. 

When combined with conventional drugs such as cytarabine, fludarabine and daunorubicin, Zalypsis 

increased the effects of these drugs against HEL and HL-60 cells as well as acute myeloid leukemia 

(AML). At a dose of 10 nM, it induced apoptosis in the two tested cell lines by both the intrinsic and 

extrinsic pathways through activation of caspases 3, 8, 7 and 9 and PARP cleavage between 12 to 24 h 

after treatment. This apoptosis was found to be the result of profound deregulation of several genes 

involved in cell survival (especially BRCA1) and in the recognition of double-stranded DNA breaks, 

with RAD51 and RAD54 specifically implicated in the repair of double-stranded DNA breaks [25].  

In a recent phase I clinical trial, Zalypsis showed good tolerance and preliminary evidence of its 

antitumor activities against several solid tumors, such as cervical carcinoma, colorectal adenocarcinoma, 

lachrymal adenoid carcinoma and bladder carcinoma [26–28]. This positive risk-benefit ratio has 

supported its continued evaluation in three ongoing phase II clinical trials. 

Makaluvamine analog FBA-TPQ (4) 
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Figure 4. Chemical structure of Zalypsis PM00104. 

 

2.2. Anthraquinones 

2.2.1. Doxorubicin Analogue 1403P-3 

Doxorubicin analogue 1403P-3 (6, Figure 5) was isolated from the mangrove endophytic fungus 

No. 1403 from the South China Sea and reported for the first time in 2000 [29]. 1403P-3 is an 

anthracenedione derivative with potent anticancer activities. In 2007, Zhang et al. reported a 

significant cytotoxic effect of this compound on both KB and MDR-KBv200, with an IC50 value of 

approximately 19 μM [30]. This toxicity acts through apoptosis by the loss of the mitochondrial 

membrane potential, release of cytochrome c, cleavage of Bid and activation of caspases 2, 3, 7, 8 and 

9. DNA fragmentation and PARP cleavage were also observed. In 2011, Yuan et al. reported a high 

cytotoxic effect of 1403P-3 on MCF-7 and MDA-MB-435 cells, with IC50 values of 9.5 and 7.6 μM, 

respectively [31]. These cell lines are more sensitive to 1403P-3 than KB cells [30,31]. As expected, 

the toxicity of this compound on MCF-7 and MDA-MB-435 cells is triggered through apoptosis by the 

activation of caspases 8 and 9 and cleavage of PARP. Akt activation was blocked in the cells treated 

with 1403P-3, and the level of ROS was significantly decreased in these cells. Akt is a  

well-characterized apoptosis-related signaling molecule involved in sustaining survival against 

apoptosis in cancer cells [31,32]. Upregulation of Akt in cancer cells is a common event, and the 

activation of the PI3K/Akt pathway leads to chemo-resistance [33–35]. The fact that 1403P-3 can 

block Akt activation by reducing the amount of phosphorylation is an important attribute for cancer 

therapy [36]. Regarding the chemical structure of 1403P-3, the presence of phenolic hydroxyl groups 

in the primary backbone of the molecule is responsible for its antioxidant activity [30], as observed by 

the decrease in the amount of ROS in KB cells, whereas the quinone moiety has been implicated in its 

cytotoxic effects.  

Zalypsis PM00104 (5)
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Figure 5. Chemical structure of Doxorubicin analog 1403P-3. 

 

2.2.2. Bostrycin  

Bostrycin (7, Figure 6) is a novel anthracene analog (hydroxymethoxytetrahydro-5-

methylanthracenedione) that was isolated from marine fungi in the South China Sea and reported in 

2008 by Lin and coworkers [37]. It was previously shown to be a potent inhibitor of cell growth and 

promoter of apoptosis in prostate and gastric cancer cells. In 2011, Chen et al. demonstrated its 

significant inhibitory effect on A549 lung cancer cell proliferation in a dose and time dependent 

manner, with an IC50 value of less than 10 μM after 72 h of treatment [37]. The chemical structure of 

this compound contains a quinone moiety that is responsible for its cytotoxicity. Additionally, the 

phenolic hydroxyl groups enhance its effect through the reduction of ROS levels [30]. This compound 

causes cell cycle arrest in the G0/G1 phase and induces apoptosis through up-regulation of  

microRNA-638 and -923 as well as down-regulation of PI3K/AKT pathway proteins [37]. These 

findings suggest that bostrycin may lead to the development of a PI3K/AKT targeting drug in the 

treatment of lung cancer. 

Figure 6. Chemical structure of Bostrycin. 

 

2.3. Benzothiazoles 

Erythrazole B (8, Figure 7) is a benzothiazole that was isolated as a light yellow crystal from the 

marine bacterium Erythrobacter sp. It contains a tetrasubstituted benzothiazole, an appended diterpene 

side and a glucine unit. Erythrazole B was found to be highly toxic against H1395, H2122 and 

HCC366 cell lines, with IC50 values of 1.5, 2.5 and 6.8 μM, respectively [38]. The double bond 

between C3-C4 appears to be crucial for the cytotoxicity of this compound because its removal 

increases the IC50 value to 20 μM. As benzothiazoles are relatively rare as natural products, this 

compound requires further investigation to determine its possible uses in cancer therapy. 

Bostrycin: average of two tautomers (7) 

Doxorubicin analog 1403P-3 (6) 
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Figure 7. Chemical structure of Erythrazole B. 

 

2.4. Macrolides 

2.4.1. Apratoxin Analog S4-1e 

Apratoxins are produced by marine cyanobacteria and are potent toxins that are known to prevent 

cotranslational translocation early in the secretory pathway, which can be exploited in cancer therapy [39]. 

The aberrant pro-growth signaling in cancer cells is due to increased ligand binding to their receptor 

tyrosine kinases (RTKs). These enzymes are implicated in the regulation of multiple cellular processes 

that contribute to tumor development and progression [40]. Thus, the inhibition of the binding of these 

enzymes to their ligands is a target in cancer therapy. This interaction can be blocked by targeting both 

ligands and receptors. This “one-two punch” emerges as an effective alternative to combination 

therapy, especially in cancers (e.g., colorectal cancer) where secreted growth factors play a major role. 

Chen et al. reported the use of the apratoxin analog S4-1e (9, Figure 8) in this one-two punch therapy [39]. 

This molecule was obtained through hybridization of parent compounds apratoxin A and E. S4-1e is 

five times more cytotoxic than apratoxin A and 161 times more than apratoxin E. This compound also 

inhibits VEGF-A secretion, an angiogenic drug target [41], 5-fold more than apratoxin A and 29 fold 

more than apratoxin E. S4-1e also exhibits a better tolerance in vivo compared to apratoxin A. This 

compound has emerged as the first relevant candidate of the apratoxin family because of its selectivity 

and efficacy in colorectal cancer [39]. Several studies of the structure-function relationship of the 

apratoxin family showed that modification on the configuration at C-2 and C-37 is crucial for potent 

cytotoxicity whereas modifications at the C33-C43 and C28-C31 chains can reduce the effectiveness 

of this compound [42–44]. The complex chemical structure of S4-1e is one example of many 

pharmacophores that has a justifiable one-two punch in cancer therapy. 

2.4.2. Aspergillide A Analog 

Aspergillides are macrolides that were isolated from a strain of marine-derived fungus Aspergeillus 

ostianus and have unusual features. Aspergillide A (10, Figure 8) was described to exert moderate 

toxicity against murine lymphoma (L1210) cells [45]. A chemical modification of aspergillide A led to 

its Z stereoisomer that induces high toxicity against a panel of cancer cells (HL-60, MDA-MB-231,  

HT-1080, HT-29, U2OS) [46]. Its toxicity was found to be 34 and 45 times higher than the parent 

compound in breast cancer and leukemia cell lines, respectively. The highest cytotoxicity of the 

aspergillide A Z stereoisomer was observed in leukemia cells, with an IC50 value of 1.8 μg/mL, which 

Erythrazole B (8)
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is comparable to that of the clinical drug fludarabine. The configuration of the C-2 and the “H” in C-3 

as well as the double bond in C7-C8 enhance the cytotoxicity of “Z”-aspergillide A. The selectivity of 

its cytotoxicity need to be proved on PBMC cells before considering this compound as lead to the 

development of anti-leukemia drugs in preclinical and clinical trials. 

Figure 8. Chemical structure of Apratoxin analog S4 and Aspergellide A. 

 

2.4.3. Chromomycin SA2 

Chromomycin SA2 (11, Figure 9) is a glycosylated polyketide that was recently isolated from the 

marine-derived Streptomyces sp. This novel molecule exhibits high cytotoxicity against two non-small 

cell lung cancer A549 and HCC44 cells, with IC50 values of 1.5 and 0.78 μM, respectively [47]. The 

carboxylic acid moiety in its chemical structure was found to be deleterious to the cytotoxicity of this 

compound. In general, chromomycin family members, including chromomycin A2, A3 and SA, are 

effective against many types of human cancers [47,48]. The recently discovered chromomycin SA2 

requires further investigation to better understand its cytotoxic effects on cancer cells and its possible 

use in therapies. 

Figure 9. Chemical structure of Chromomycin SA2. 

 Chromomycin SA2 (11)

Apratoxin analog S4 (9)  

Aspergellide A “Z” stereoisomer (10) 
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2.4.4. Lobophorin C and D 

Lobophorin C and D (12, 13, Figure 10) are novel kijanimicin derivatives that were isolated from 

the marine sponge-associated actinomycetal strain AZS17. These compounds have a similar chemical 

structure except for one difference in the radical of the sugar moiety at position 17. Interestingly, they 

display a selective cytotoxicity against breast cancer cells (MDA-MB-435) and human liver cancer 

cells (Bel-7402). Lobophorin C exhibits strong toxicity against 7402 hepatoma cells (IC50 of 0.6 μg/mL) 

but is inactive in MDA-MB-435 cells, whereas lobophorin D exerts its toxicity toward MDA-MB-435 

cells (IC50 of 7.5 μM) but is inactive against Bel-7402 [49]. This biological difference is linked to their 

difference in the radical of a sugar moiety in position 17 of each compound. These two compounds 

require further investigation as a combinatory regimen to determine if there is a possible synergetic effect.  

Figure 10. Chemical structure of Lobophorin C and D. 

 

2.4.5. (+)-Spongistatin 1 

(+)-Spongistatin (14, Figure 11) is a natural marine compound with a high molecular weight and 

complex chemical structure [50,51]. It was recognized as the most cytotoxic compound within the 

spongistatin family against a wide variety of cancer cells, with a minimal effect on quiescent human 

fibroblasts [52,53]. Several studies revealed its effects on inhibiting microtubule activity and metastasis 

as well as promoting apoptosis [54–56]. In 2001, Xu et al., reported a confirmation of its extreme 

cytotoxicity against a panel of 13 cancer cells at sub-nanomolar levels, with IC50 values ranging 

between 0.037 and 0.5 nM [57]. Interestingly, it was found to be 10,000-fold less toxic to IMR-90 

Lobophorin C: R=NO
2
 (12) 

Lobophorin D: R=NH
2
 (13) 
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quiescent fibroblasts. This compound caused mitotic arrest in human prostate cancer (DU145) cells 

and a significant inhibitory effect on tumor growth in vivo in a human melanoma xenograft model. The 

various properties of this molecule are likely related to the complexity of its chemical structure, 

especially the presence of the full C44-C51 side-chain, which was found to be crucial in its bioactivity [53]. 

Figure 11. Chemical structure of (+)-Spongistatin 1. 

 

2.5. Peptides 

2.5.1. Acetylapoaranotin  

Acetylapoaranotin (15, Figure 12) is a diketopiperazine disulfide that was isolated from marine 

Aspergillus sp. KMD 901. In 2011, Choi and co-workers reported the benefit of this compound for 

cancer therapy [58]. Indeed, acetylapoaranotin is cytotoxic to HCT116, AGS, A549 and MCF-7 cells at 

IC50 values of 13.8, 12, 2 and 10 μM, respectively. Specifically, it induces apoptosis in human colon 

cancer cells (HCT116) as demonstrated by DNA fragmentation, annexin-V/PI staining and PARP, and 

caspase-3, -8, -9, Bcl-2, Bcl-xL and Bax cleavage. This compound also significantly inhibits tumor 

growth in mice in vivo [58]. The chemical structure of acetylapoaranotin contains disulfide bridges, 

which are able to generate reactive oxygen species and are responsible for the molecule’s cytotoxicity [59]. 

The O-acetyl group in 8’ position appears to enhance the cytotoxicity of this molecule because 

deoxyapoaranotin (16, Figure 12), its analog without the O-acetyl group is less toxic. Nevertheless, 

further studies are necessary to better understand the mechanism of action of this compound. 

2.5.2. Hemiasterlin Derivatives BF65 and BF78  

Hemiasterlin compounds are cytotoxic tri-peptides isolated from marine sponges. They are known 

tubulin inhibitors, and some of them, including hemiasterlin HTI-286 and E7974, are in early-phase 

clinical trials [60–62]. The novel hemiasterlin derivatives BF65 (17, Figure 12) and BF78 (18, Figure 12) 

(+)-Spongistatin 1 (14) 
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showed high toxicity at nanomolar levels toward a panel of cancer cell lines, including A549, H1299, 

UCI-101, MDA-MB231, SNU-423, MiaPaca2 and HCT116 [63]. These two compounds have a similar 

chemical backbone with a small difference due to an additional methyl group in BF65, which enhances 

its cytotoxicity. This compound induces cell cycle arrest at G2/M phase; this finding confirms this 

compound’s inhibitory effects on tubulin. The two compounds induce apoptosis in the same manner as 

vincristine, which was used as a positive control. Bcl-2 phosphorylation and caspase-3 activation were 

observed after 16 hours. Moreover, these compounds were able to block tubulin polymerization at a 

low dose (5 μM). Finally, the analog BF65, which is the more active compound than BF78, suppresses 

tumor growth in the mouse xenograft model. The beneficial effects of these compounds are enhanced 

by combinatorial treatment with stilbene 5c [63]; this synergistic effect could be highly useful in 

combinatory therapies.  

Figure 12. Chemical structure of Apoaranotin analogs and Hemiasterlin derivatives. 

 

 

2.5.3. Jasplakinolide V 

Jasplakinolide V (19, Figure 13) is one of the cyclodepsipeptide jasplakinolide congeners isolated 

from the marine sponge Jaspis splendens. This novel compound exerts a high cytotoxicity at the 

nanomolar level against a panel of cancer cells including HCT-116 (GI50 of 0.07 μM), MDA-MB-231 

(IC50 of 0.09 μM), IGROV-1 (IC50 of 0.03 μM), A498 (IC50 of 0.01 μM), LOX-IMVI (IC50 of 0.007 μM), 

U25-1 (IC50 of 0.04 μM), NCI-H522 (IC50 of 0.06 μM) and DU-145 (IC50 of 0.08 μM). Jasplakinolide 

V induces total loss of the microfilament network at 0.5 μM in HCT-116 cells [64]. This activity is due 

to the geometry of the Ala-N-Me-2BrTrp-β-Tyr segment in its chemical skeleton, which allows for 

binding to the actin site. The key components of this active binding involve the Trp ring system of the 

molecule interacting with the aromatic amino acids of filamentous actin and the contact of the Tyr-OH 

functional group with an actin threonine residue [65]. This cytotoxic compound with its interesting 

stabilization property on filamentous actin is a promising anticancer agent and requires more 

investigation to determine its mechanism of action. 

Hemiasterlin BF78 (18)
Hemiasterlin derivative BF65 (17)

Deoxyapoaranotin (16) Acetylapoaranotin (15) 
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Figure 13. Chemical structure of Jasplakinolide V. 

 

2.5.4. Lagunamide C 

Lagunamide C (20, Figure 14) is a cytotoxic cyclodepsipeptide that was isolated from Lyngbya 

majuscula, a marine cyanobacterium that produces structurally diverse bioactive compounds [66]. This 

compound exhibits potent cytotoxic effects at the nanomolar level toward a panel of cancer cells, 

including P388 (IC50 of 24.4 nM), A549 (IC50 of 2.4 nM), PC3 (IC50 of 2.6 nM), HCT8 (IC50 of 2.1 nM) 

and SK-OV (IC50 of 4.5 nM) [67]. Lagunamide C is also potent against Plasmodium falciparum, with 

an IC50 value of 0.29 μM, confirming the fact that antimalarial compounds can also possess anticancer 

activity [68]. The particular features of the chemical structure of this compound and its high toxicity 

against several cancer cell lines are a basis for further biological investigations to determine the 

possible applications of lagunamide C in cancer therapies. 

Figure 14. Chemical structure of Lagunamide C. 

 
Lagunamide C (20) 

Jasplakinolide V (19) 
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2.5.5. Largazole 

Largazole (21, Figure 15) is a macrocyclic depsipeptide that was isolated from the marine 

cyanobacterium Symploca sp. Its core structure is similar to the chemical structure of romidepsin, 

which is a natural depsipeptide formulated as Istodax that was recently approved for the treatment of 

cutaneous T-cell lymphoma [69]. Largazole is a highly potent histone deacetylase (HDAC) inhibitor at 

picomolar concentrations [70–73]. HDAC inhibitors block the proliferation of tumor cells by inducing 

cell differentiation, cell cycle arrest, and/or apoptosis [74]. As expected, largazole inhibited the growth 

of HCT-116 and MCF-7 cells, with IC50 values of 10 and 5 nM, respectively [72,73]. 

Figure 15. Chemical structure of Largazole and Nocardioazine A. 

 

2.5.6. Nocardioazine A 

Nocardioazine A (22, Figure 15) is a novel marine diketopiperazine that was isolated from the 

bacterium Nocardiopsis sp. (CMB-M0232). This molecule does not affect the viability of cancer cells 

but instead inhibits the expression of P-gp at 20 μM with a similar efficacy as 10 μM of the reference 

drug verapamil. This property appears to be linked to the novel bridged scaffold in its chemical 

structure. Additionally, it is able to reverse doxorubicin resistance in SW620Ad300n colon cancer  

cells [75]. Thus, nocardioazine A appears to be a promising noncytotoxic P-gp inhibitor that could be 

used in a combinatory therapy to overcome the MDR phenomena. 

2.5.7. Pardaxin 

Pardaxin is a polypeptide with 33 amino acids that was isolated from the secretions of the Red Sea 

Moses sole (a small fish). Pardaxin is known to possess antibacterial, antiviral and neurotoxic 

activities. In 2011, Hsu et al. and Huang et al. demonstrated its cytotoxic effect against Hela and  

HT-1080 cells, respectively [76,77]. Its toxicity is low against normal fibroblast WS-1 cells at  

15 μg/mL after 24 h of exposure. Pardaxin induces apoptosis in HT-1080 cells via depolarization of 

the mitochondrial membrane potential (MMP) and release of cytochrome c. It also increases ROS 

production and triggers the activation of caspases 3 and 7, which lead to mitochondrial-dependent 

apoptosis [76]. 

Nocardioazine A (22) Largazole (21) 
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2.6. Sphingolipids 

Rhizochalin is a two-headed sphingolipid-like molecule that was isolated from the marine sponge 

Rhizochalina incrustata [78,79]. Several analogs of this compound were either isolated or synthetized 

since its discovery in 1989 [78]. One of them is its aglycon, which is rhizochalin without its sugar 

moiety (23, Figure 16). Since 2009, the aglycon of rhizochalin (AglRhz) was found to be cytotoxic to 

many cancer cell lines, such as uterine, cervical and colon cancers as well as leukemia [80,81]. Its 

mechanism of action was elucidated in 2011 through the work of Khanal et al., who demonstrated that 

AglRhz induces AMPK, caspase-3 and PARP activation as well as DNA fragmentation in HT-29  

cells [79]. All of these effects result in apoptosis and suppression of the tumorigenicity of HT-29 cells. 

Moreover, AglRhz inhibits insulin-like growth factor (IGF)-1-induced AP-1 activity and cellular 

transformation in JB6 Cl 41 cells [79]. It is known that AMPK has a role in metabolism and cell 

growth regulation and thus has become a target in cancer therapy. AP-1 activation, through the 

elevation of circulating IGF-I levels, plays a pivotal role in tumorigenesis and mediates an  

anti-apoptotic response to both chemotherapy and radiotherapy in cancer cells [82,83]. AMPK 

phosphorylation by AglRhz results in the inhibition of AP-1 via a cascade of biochemical reactions. 

This finding was confirmed by the significant inhibition of IGF-I-induced neoplastic cell 

transformation of JB6 Cl 41 cells [79]. The chemical structure of AglRhz shows the presence of a 

ketone moiety in the middle of the backbone and amine and hydroxyl moieties at each head (23). 

Theses moieties are responsible for the pharmacological properties of AglRhz. Additionally, aglycon is 

less polar than the parent compound and can easily cross the lipid bilayer of cell membranes. 

Figure 16. Chemical structure of Aglycon of Rhizochalin. 

 

2.7. Steroids 

Methyl spongoate (MESP) (24, Figure 17) is a novel marine steroid that was isolated from the 

Sanya soft coral Spongodes sp., with a unique chemical feature due to the presence of a 21-oic-acid 

methyl ester moiety with 20R configuration [84]. MESP displays potent toxicity against six 

hepatocellular carcinoma (HCC) cell lines, with IC50 values ranging from 1.7 to 9 μM. It is known that 

advanced hepatocellular carcinomas are generally resistant to anticancer drugs because of the 

multidrug resistant (MDR) phenomena such as P-gp overexpression [85,86]. Interestingly, MESP is 

cytotoxic toward the MDR-positive tumor cells, including MCF-7/ADR and KB/VCR, without 

modulating the function of drug transporters. Additionally, this molecule does not affect steroid 

hormone-dependent cancer signaling, cell cycle signaling, microtubule function or the activities of 

topoisomerase and tyrosine kinase. The cytotoxicity mechanism of MESP was observed to act through 

the apoptotic pathway by inhibiting STAT3 and activating caspase-3, -8 and -9. The transcription 

Aglycon of Rhizochalin (AlgRhz) (23) 
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factor STAT3 is known to play critical roles in human cancer formation and progression by regulating 

cell proliferation and antagonizing apoptosis [87,88]. MESP is able to regulate the balance between the 

anti-apoptotic and pro-apoptotic signals in cancer cells by relieving the former (effect on XIAP) and 

enhancing the latter (effect on Bax) [84]. All of these findings suggest that MESP has a singular 

cytotoxic mechanism against HCC cells.  

Figure 17. Chemical structure of Methyl Spongoate. 

 

2.8. Tannins 

Dieckol (25, Figure 18) is a phloroglucinol (family of tannins) that was isolated from the marine 

brown alga Ecklonia cava. This compound is non-toxic to human fibrosarcoma cells (HT1080) below 

doses of 200 μM after 48 h of treatment. It inhibits the expression of the matrix metalloproteinase 

family (MMP-2 and MMP-9) in a dose-dependent manner and suppresses HT1080 cell invasion. The 

cytomorphology changes of these cells in a 3D culture system is also suppressed at non-toxic doses of 

dieckol (10 to 100 μM) [89]. It is known that both MMP-2 and MMP-9 play a crucial role in the 

establishment of metastasis; thus, these inhibitors have an obvious benefit in cancer therapy [90–92]. 

Recently, Park and Jeon demonstrated that dieckol inhibits HT1080 cell migration and invasion via 

ROS scavenging [93]. Additionally, dieckol inhibits the NF-κB pathway without effecting either the 

activator protein-1 (AP-1) pathway or tissue inhibitor of metalloproteinases (TIMPs) [89]. This type of 

mechanism of action could be due to the structural features that are specific to dieckol [94]. It contains 

11 hydroxyl groups, which play an important role in its pharmacological effects. The three ether 

linkages in the skeleton provide more free anions for the attraction of receptors implicated in the 

therapeutic effects to cancer [89].  

2.9. Terpenes/Terpenoids 

2.9.1. Astaxanthin 

Astaxanthin (26, Figure 19) is a red-orange colored carotenoid from marine origin that is already 

well known for its powerful antioxidant, anti-inflammatory and anticancer properties [95–100]. In 

2011, Yasui et al. demonstrated the in vivo inhibition effect of this compound on the expression of 

tumor necrosis factor (TNFα), nuclear factor kappa B (NF-κB) and interleukin 1β (IL-1β), as well as 

some inflammatory cytokines that play an important role in tumor promotion [101]. Astaxanthin (AX) 

inhibited cell proliferation and induced apoptosis in colon cancer [101]. When AX is given to mice at 

200 ppm in their diet, the protein expression of NF-κB and the mRNA expression levels of IL-1β, IL-6 

Methyl Spengoate MESP (24)
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and cyclo-oxygenase-2 (COX-2) were decreased. It is known that NF-κB regulates the expression of 

several genes, such as COX-2, the matrix metalloproteinase MMP-9, iNOS, TNFα, IL-8, and other 

anti-apoptotic proteins, involved in tumor initiation, promotion and metastasis [102,103]. 

Figure 18. Chemical structure of Dieckol. 

 

Figure 19. Chemical structure of Astaxanthin. 

 

2.9.2. Culobophylin A  

Culobophylin A (27, Figure 20) is a novel cembranoid from diterpenoid families isolated from the 

cultured soft coral Lobophytum crassum. This compound exhibits high cytotoxicity against HL-60 and 

DLD-1 cells, with IC50 values of 3 and 4.6 μg/mL, respectively. No effect was observed on the 

expression of COX-2 and iNOS proteins in RAW264.7 macrophages implying a probable absence of  

anti-inflammatory activity [104]. This compound has unusual features in its chemical structure, which 

could be an asset for its pharmacological properties. The structure-function relationship studies show 

that the acetaldehyde moiety at C-15 is crucial for its cytotoxicity. Culobophylin A requires further 

investigation to elucidate its mechanism of action and to determine its possibilities for cancer therapy. 

Astaxanthin (26) 

Dieckol (25) 
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Figure 20. Chemical structure of Culobophylin A. 

 

2.9.3. Hippolide A  

Hippolide A (28, Figure 21) is an acyclic manoalide derivative that was isolated from the marine 

sponge Hippospongia lachne. Acyclic manoalides are sesterterpenoids that possess a terminal geranyl 

group instead of the cyclohexene ring commonly found in manoalide derivatives [105]. Hippolide is 

cytotoxic against a panel of cancer cell lines, including A549 (IC50 of 52.2 nM), HeLa (IC50 of 48 nM) 

and HCT-116 (IC50 of 9.78 μM). The cytotoxicity of this compound is linked to the C-24 acetal group 

in its chemical structure [106]. This novel compound could be considered for further biological 

investigations to determine its possible uses in cancer therapy. 

Figure 21. Chemical structure of Hippolide A. 

 

2.9.4. Irciformonin Analogs 

Irciformonin analogs are triterpenoid-derived metabolites that were isolated from the marine sponge 

Ircinia sp [107]. Their chemical structures are similar, and they exhibit high cytotoxicity against a 

panel of cancer cell lines, including K562, DLD-1, HepG2 and Hep3B cells. Four analogs, namely 

irciformonin B (29, Figure 22), F (30), 15-acetylirciformonin B (31) and 10-acetylirciformonin B (32) 

were observed to be cytotoxic toward K562, DLD-1, HepG2 and Hep3B cells, with IC50 values 

ranging from 0.03 to 10.2 μM [108]. Regarding the chemical structure of these compounds, it appears 

that the furan moiety is highly implicated in their cytotoxic effects. Recently, Su and co-workers 

reported that the DNA damage and apoptotic effects of 10-acetylirciformonin B in leukemia HL-60 

cells occurs through the activation of caspases 3, 8 and 9 as well as through PARP cleavage [109]. Due 

to their high toxicity, these terpenoids require further investigation. 

Hippolide A (28)

Culobophylin A (27)  
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Figure 22. Chemical structure of Irciformonin analogs. 

 

2.9.5. Diterpene Isonitriles 1, 2, 3 and 4 

Diterpene isonitriles are one of the most potent antiplasmodial compound groups characterized by 

an amphilectane skeleton [110]. It was known that several antimalarial molecules exert important 

anticancer properties [68]. The diterpene isonitriles 1–4 (33, 34, 35, 36, Figure 23) were isolated from 

the Caribbean sponge Pseudoaxinella flava, and their chemical structures differ only in the number and 

position of the isonitrile groups and double bonds. Each of these analogs exhibited significant inhibition 

of growth in human prostate cancer cells (PC3), with the IC50 values ranging from 1 to 7 μM [111]. 

The most active analog is diterpene isonitrile 3, with IC50 of 1 ± 1 μM. This compound displays an 

important antiproliferative effect against LoVo colon cancer cells (IC50 of 3 ± 1 μM) and SKMEL-28 

melanoma cells (IC50 of 6 ± 1 μM), whereas compound 4 is cytotoxic to U373 glioblastoma (IC50 of  

10 ± 1 μM), Hs683 oligodendroglioma (IC50 of 4 ± 1 μM), and LoVo cells (IC50 of 3 ± 1 μM) [111]. 

Based on these results, the cytotoxic effects appear to be linked to the number and position of the 

isonitrile groups in the chemical skeleton of the compounds. The preliminary data suggest that 

diterpene isonitriles 1–4 are interesting analogs to be investigated in anticancer drug development. 

2.9.6. Sarcocrassocolide I  

Sarcocrassocolide I (37, Figure 23) is a novel diterpenoid that was isolated from a soft coral 

Sarcophyton crassocaule and reported by Lin and coworkers in 2011 [112]. Its chemical structure is 

similar to that of culobophylin. This compound showed high cytotoxicity toward Daoy, Hep-2, MCF-7 

and WiDr cells, with IC50 values ranging between 5 and 8 μM. Moreover, this compound displays 

significant anti-inflammatory activities through the inhibition of iNOS protein expression and a 

reduction of COX-2 protein levels [112]. The structure-function relationship studies showed that the 

acetoxy group at C13 is crucial for its cytotoxicity.  

2.9.7. Sarcophine Analogs No 10 and No 13 

Sarcophine is a cembranoid diterpene that was isolated from the Red Sea soft coral Sarcophyton 

glaucum. The study of its structure-function relationship led to its semisynthetic analogs, which 

display an interesting anti-migratory property. Sarcophine analog No 10 (38, Figure 24) was found to 

possess significant anti-migratory activity against highly metastatic MDA-MB-231 breast cancer cells, 

Irciformonin B: 1 (29) 
15-acetylirciformonin B: 3 (31) 
10-acetylirciformonin B: 4 (32) 
Irciformonin F: 5 (30) 
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with an IC50 value of 4.83 μM, whereas the analog No 13 (39, Figure 24) exerted its anti-migratory 

effect against PC-3 prostate cancer cells with an IC50 value of 15.53 μM. Interestingly, 5 and 30 μM 

doses of No 10 and No 13, respectively, induced anti-migratory effects comparable to those of a 200 

μM dose of the reference drug 4-hydroxyphenylmethylene hydantoin (PMH) without affecting cell shape or 

viability [113]. These two compounds may be relevant in combination therapies and require further 

investigation. 

Figure 23. Chemical structure of Diterpene isonitriles and Sarcocrassocolide I. 

 

 

Figure 24. Chemical structure of Sarcophine analogs. 

 

2.9.8. Siphonaxanthin 

Siphonaxanthin (40, Figure 25) is a marine keto-carotenoid that was isolated from the siphonaceous 

green algae Codium fragile. It exhibits significant cytotoxicity against HL-60 human leukemia cells, 

with IC50 values between 5 and 10 μM. It also induces apoptosis in HL-60 cells through caspase-3 

activation, which has been associated with the enhancement of GADD45α and DR5 expression levels 

as well as the suppression of Bcl-2 expression [114]. GADD45α is an important apoptosis regulator 

that induces cell cycle arrest, and DR5 is a death receptor. This compound was previously reported to 

possess anti-angiogenic properties in human umbilical vein endothelial (HUVEC) cells at a dose of  

10 μM [115]. Recently, cancer chemoprevention and chemotherapy using nutraceuticals have been 

Sarcophine analog N°10 (38) 

Diterpene isonitrile 1 (33) 

Sarcophine analog N°13 (39) 

Sarcocrassocolide I (37) 
Diterpene isonitrile 4 (36) 

Diterpene isonitrile 3 (35) 
Diterpene isonitrile 2 (34) 
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considered to be interesting approaches to reduce cancer incidence; thus, the carotenoid like 

siphonaxanthin and astaxanthin could be potential chemopreventive or chemotherapeutic agents. 

Figure 25. Chemical structure of Siphonaxanthin. 

 

2.9.9. Smenospongine 

Smenospongine (41, Figure 26) is a sesquiterpene aminoquinone that was isolated from the 

Indonesian marine sponge Dactylospongia elegans. Previous studies showed that this sesquiterpene 

induces cell cycle arrest at G1 phase in chronic myelogenous leukemia (CML) cells as well as 

apoptosis in acute myelogenous leukemia (AML) and lymphocytic leukemia cells [116,117]. In 2011, 

Kong and co-workers reported that smenospongine exhibits significant inhibition of proliferation in 

human umbilical vein endothelial (HUVEC) cells in a dose-dependent manner, with an IC50 value of  

4.9 μM [118]. It blocks both HUVEC migration and inhibits tube formation in a dose-dependent 

manner, which suggests that this sesquiterpene could be a promising antiangiogenic agent. 

Additionally, smenospongine is highly cytotoxic to both colorectal and lung cancer cells [118]. The 

presence of quinone and phenol hydroxyl moieties could explain the observed properties of this compound.  

Figure 26. Chemical structure of Smenospongine and Waixenicin. 

 

2.9.10. Waixenicin A 

Waixenicin A (42, Figure 26) is a diterpenoid that was isolated from marine soft coral Sarcothelia 

edmondsoni [119]. It is found to significantly inhibit growth and proliferation of human Jurkat T-cells 

and rat basophilic leukemia (RBL1) cells at 300 nM with low cytotoxicity. Zierler and co-workers [120] 

demonstrated that waixenicin A is a potent and relatively specific inhibitor of transient receptor 

Smenospongine (41) 

Siphonaxanthin (40)

Waixenicin A (42) 
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potential melastatin 7 (TRPM7) channels. TRPM7 is overexpressed in a variety of human cancer cells 

such as gastric adenocarcinoma, breast cancer and human head and neck carcinoma cells [121–124]. 

This protein contains an ion channel and a functional α-kinase domain, both of which are implicated in 

Mg2+ homeostasis [125–128]. It is known that Mg2+ is involved in cell proliferation, and cancerous cell 

growth represents the most detrimental effect of deregulated proliferation [129–132]. Moreover, 

TRPM7 regulates the migration of human nasopharyngeal carcinoma cells, suggesting its implication 

in metastasis [133]; thus, TRPM7 inhibitors could be beneficial in cancer treatment. Waixenicin A 

significantly inhibits both overexpressed and native TRPM7 channels in human embryonic kidney 

(HEK293) cells at micromolar levels in a dose-dependent manner. Its effect is potentiated by 

intracellular free magnesium (Mg2+). The inhibitory effect of waixenicin A was considered to be 

relatively specific to TRPM7 [120], justifying the high interest of this compound and its analogs in 

cancer treatment. 

3. Discussion 

According to our survey, the effort of many research groups to develop anticancer agents led to the 

publication of 42 molecules in 2011 which seem to be promising anticancer drugs. These compounds 

are regrouped into 9 classes of chemicals including alkaloids, anthraquinones, benzothiazoles, 

macrolides, peptides, sphingolipids, steroids, tannins, terpenes and terpenoids. The most representative 

are terpenes and terpenoids (40.48%) following by peptides (19.05%), macrolides 14.29%), and 

alkaloids (11.9%) (Figure 27). Among them, 50% are described for the first time as anticancer agents. 

The majority of these compounds are chemotherapeutic agents (92.7%) and only 7.3% are 

chemopreventives, which are known as nutraceutics available in fruits and vegetables. Many studies 

demonstrated the involvement of these nutraceuticals in cancer prevention or treatment [134–136]. The 

biological mechanisms involved in the anticancer properties of the investigated compounds are mainly 

cell cycle arrest through tubulin inhibitory effect; apoptosis through caspases 3, 8, 7, 9 activation, 

MMP depolarization, bib truncation, Bcl-xL, Bax and PARP cleavages, cytochrome c release, Bcl-2 

and Akt down-regulation; anti-migratory effect through specific inhibitory effect against TRPM7 

channels, anti-angiogenic property by inhibition of VEGF-A secretion; anti-inflammatory effect 

through the inhibition of COX-2 and iNOS expression. Surprisingly, the nuclear factor kappa-B (NF-κB) 

and the multi-drug resistant protein (P-gp), which are two important pharmacological targets seem to 

be less impacted by the investigated compounds. Indeed, only 4.76% and 2.38% of the 42 compounds 

inhibit NF-κB pathway and the expression of P-gp, respectively. Regarding the level of study of these 

compounds, only 2.38% are in clinical trial; 14.29% are tested in vivo. Among the 83.34% tested  

in vitro, the biological mechanism of action remains unknown for more than half of them (45.24%) 

(Figure 27). Beside the financial raisons, which could justify that situation, it is worth noting the fact 

that many compounds that showed interesting activities in vitro lose these properties when tested  

in vivo. This can be justified by the interactions between the compound and tested organism through 

many parameters including adsorption, distribution, metabolism and excretion [137]. Accordingly the 

physico-chemical properties like solubility and permeability of these compounds are mainly involved 

in their ability to modify the functional pathways in vivo. According to Lipinski et al., 4 parameters are 

globally associated with solubility and permeability, namely molecular weight, Log P, the number of 
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H-bond donors and the number of H-bond acceptors, leading to the “rule of 5”. It states that poor 

absorption or permeability can be observed in compounds that contains more than 5 H-bond donors 

and 10 H-bond acceptors, with molecular weight over than 500 and Log P over than 5. In general, if 

two parameters are out of this range, the concerned compound is more likely to lose its 

pharmacological properties when tested in vivo [138]. Among the 42 promising marine anticancer 

discussed in this review, 6 of them (14.28%) are out of the Lipinski rule of 5 considering only the 

number of H-bond donors or acceptors and the molecular weight. These compounds are chromomycin 

SA2, lobophorin C and D, jasplakinolide, (+)-spongiostatin1 and dieckol. The risk of therapeutic 

failure seems to be high for these compounds although some compounds do not necessarily respect the 

rule of 5. For these 6 compounds, the structure-activity relationship studies may lead to some chemical 

modifications in order to reduce the molecular weight and the number of H-bond donors or acceptors 

without affecting the pharmacological properties. 

Figure 27. Anticancer compounds from marine origin regrouped per family and level of study. 
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4. Conclusion 

This review provides an overview of 42 marine compounds that could be promising anticancer 

drugs. These compounds are characterized by their complex and/or unique chemical structure as well 

as their display of a large variety of biological activities, including antiproliferative, cytotoxic and 

antimetastatic properties. This diversity of structure and function highlights the great richness of 

marine organisms as an important source of new anticancer drugs. Thus far, structure-function studies 

appear to be a good approach for finding analogs with a high positive risk-benefit ratio. Each year, 

several new anticancer molecules were either isolated or synthetized; however, the majority of these 

molecules remain in preclinical investigation stages while patients are waiting for an alternative 

treatment option without the disadvantages or severe side effects of chemotherapy.  
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