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ABSTRACT

Purpose: To generate a predictive whole-liver radiomics scoring system for 
progression-free survival (PFS) and overall survival (OS) in patients undergoing 
transarterial radioembolization using Yttrium-90 (90Y-TARE) for unresectable 
hepatocellular carcinoma (uHCC).

Results: The generated pPET-RadScores were significantly correlated with 
survival for PFS (median of 11.4 mo [95% confidence interval CI: 6.3–16.5 mo] in 
low-risk group [PFS-pPET-RadScore < 0.09] vs. 4.0 mo [95% CI: 2.3–5.7 mo] in 
high-risk group [PFS-pPET-RadScore > 0.09]; P = 0.0004) and OS (median of 20.3 
mo [95% CI: 5.7–35 mo] in low-risk group [OS-pPET-RadScore < 0.11] vs. 7.7 mo 
[95% CI: 6.0–9.5 mo] in high-risk group [OS-pPET-RadScore > 0.11]; P = 0.007). 
The multivariate analysis confirmed PFS-pPET-RadScore (P = 0.006) and OS-pPET-
RadScore (P = 0.001) as independent negative predictors. 

Conclusion: Pretreatment 18F-FDG PET whole-liver radiomics signature appears 
as an independent negative predictor for PFS and OS in patients undergoing 90Y-TARE 
for uHCC.

Methods: Pretreatment 18F-FDG PET of 47 consecutive patients undergoing 
90Y-TARE for uHCC (31 resin spheres, 16 glass spheres) were retrospectively analyzed. 
For each patient, based on PET radiomics signature from whole-liver semi-automatic 
segmentation, PFS and OS predictive PET-radiomics scores (pPET-RadScores) were 
obtained using LASSO Cox regression. Using X-tile software, the optimal score to 
predict PFS (PFS-pPET-RadScore) and OS (OS-pPET-RadScore) served as cutoff to 
separate high and low-risk patients. Survival curves were estimated using the Kaplan-
Meier method. The prognostic value of PFS and OS-pPET-RadScore, Barcelona-Clinic 
Liver Cancer staging system and serum alpha-fetoprotein level was analyzed to 
predict PFS and OS in multivariate analysis.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is responsible for 
significant morbidity and mortality. It is the most common 
primary liver cancer and represents the 2nd most common 
cause of cancer mortality worldwide [1]. The identification 
of accurate predictive factors to guide therapy was subject 
of numerous studies and several robust predictors of 
death as portal vein invasion (PVI), tumor size, serum 
alpha-fetoprotein (AFP) level, Child-Pugh class [2], 
the tumor-node-metastasis (TNM), the Okuda [3] and 
Barcelona-Clinic Liver Cancer (BCLC) systems [4] or 
the Cancer of the Liver Italian Program (CLIP) score [5] 
have been described. In many of these factors, imaging 
is essential and therefore plays an important role in the 
management. Multiple studies have shown a correlation 
between standardized uptake value (SUV) of HCC on 
18F-fluorodeoxyglucose positron emission tomography 
(18F-FDG PET) and outcomes following different systemic 
and locoregional treatments [6–16], including more 
recently transarterial radioembolization with Yttrium-90 
(90Y-TARE) [17–19].

Recently, radiomics has been introduced in the field 
of oncology [20]. Radiomics is a fast evolving medical 
field consisting in the extraction of high-throughput 
quantitative imaging features that may quantify in vivo and 
noninvasively intra and inter- tissue textural heterogeneity 
[21]. Indeed, radiomics allows virtual biopsies [20] that 
captures the inner organization processes of an entire 
volume with the surrounding tissue without being 
limited to the sampling site contrary to conventional 
biopsies. Additionally, virtual biopsies are noninvasive, 
instantaneous, can be repeated over the time and permit 
the monitoring of the host tumor relationships and of the 
treatment sequence. Radiomics does not have a consensual 
definition but its aim is to provide a characterization of 
images phenotypes [22] using extracted parameters from 
medical images (often more than 200+ features [21]) 
which can be used as biomarkers. They may include first 
order statistic (intensity, histogram analysis), shape (such 
as sphericity), textural features (sometimes intensity 
features or shape are confounded with textural features) 
or wavelets decompositions. The emerging field of 
radiomics have sparked large interest the past few years 
for different imaging modalities (computed tomography 
[CT], magnetic resonance imaging [MRI], PET) and many 
cancers such as esophagus, non-small cell lung cancer 
[21–23] or breast cancer [24]. 

For the HCC, interest of radiomics has already been 
reported. Using an integrated imaging-genomic approach 
with semiquantitative CT features relative to the poorly 
defined tumor margin, Kuo et al. were able to identify 
HCC imaging phenotypes at CT that correlate with a 
doxorubicin drug response gene expression program 
[25]. In another study Segal et al. [26] demonstrated that 
combinations of 28 imaging phenotypes can reconstruct 

78% of the global gene expression programs of primary 
human liver cancer.

Despite the growing evidence for radiomics, no 
predictive studies in HCC using this technique exist. The 
aim of the current study was to generate a predictive PET 
radiomics scoring system for progression-free survival (PFS-
pPET-RadScore) and overall survival (OS-pPET-RadScore) 
in patients undergoing 90Y-TARE for unresectable HCC 
(uHCC) using a pretreatment 18F-FDG PET whole-liver 
radiomics signature. When compared to the previous studies 
listed above, we used intensity and texture analyses of the 
entire liver volume, providing an advanced signature of 
the metabolic heterogeneity and morphology for the subtle 
distinction of HCC and liver cirrhosis.

RESULTS

Patients and subgroups characteristics

The characteristics of the whole-population and 
low-risk and high-risk groups are given in Table 1. Data of 
90Y-TARE and associated treatments are given in Table 2. 
The mean interval between 18F-FDG PET/CT and 90Y-TARE 
was 18 days (range, 1–85 days). Patients did not receive 
any treatment between 18F-FDG PET/CT and 90Y-TARE. 
Using the BCLC staging system, 3 patients (6.5%) were 
stage A, 18 (38.5%) stage B and 26 (55%) stage C. Three 
patients had normal livers, all others (94%) had cirrhotic 
liver disease including 36 patients Child-Pugh A and 8 
patients Child-Pugh B (≤ B7). Two patients have periportal 
lymphadenopathy. Among the 47 patients, 19 (40%) were 
treatment naïve and 28 (60%) had already received various 
procedures before 90Y-TARE including targeted therapy by 
Sorafenib or Everolimus with an association of 2 or more 
treatment modalities in 7 patients (15%). With regards to 
the comparison between low-risk and high-risk groups, 
the analysis revealed a significant higher tumor size in the 
high-risk group for OS-pPET-RadScore (P = 0.02). A trend 
for higher tumor size was seen for PFS-pPET-RadScore  
(P = 0.05). The hepatic control rate at 6 months of lesions 
treated by 90Y-TARE was better (but not statistically 
significant probably explained by the limited number of 
patients) in low-risk group compared to high-risk group for 
both PFS-pPET-Radscore (76 vs. 60%; P = 0.43) and OS-
pPET-Radscore (79 vs. 64; P = 0.29).

Construction of PFS and OS-pPET-RadScores

As shown in Figure 1, out of a total 108 radiomics 
features, 69 were highly correlated and were excluded 
from the analysis. On the 39 remaining features, a LASSO 
Cox regression analysis was performed to assess variables 
with non-zero coefficients. The contribution of the selected 
parameters with their regression coefficient for the radiomics 
signature construction is illustrated in Figure 2 by a histogram 
which shows the importance of each regression coefficients 
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used to generate PFS and OS-pPET-RadScores. PFS and 
OS-pPET-RadScores were calculated using regression 
coefficients from the LASSO regression as follow:

PFS PETRadScore = 0.1201883 * Strength
OS PETRadScore = 0.13444452 * Variance + 0.12018832 * Strength  

–  0.01887273 * Low Intensity Run Short Emphasis 
–  0.01046038 * Contrast 

Survival analysis

The median duration of follow-up was 11.1 mo 
(range, 2.2–53.7 mo). Hepatic relapse occurred in 30 

patients (64%) at a median of 6.9 mo (range, 0.7–31.1 mo) 
after 90Y-TARE and 33 (70%) patients died from tumor 
progression. As shown in Figure 3, the generated pPET-
RadScores were significantly correlated with survival for 
PFS (median of 11.4 mo [95% confidence interval CI: 6.3–
16.5 mo] in low-risk group [PFS-pPET-RadScore < 0.09] 
vs. 4.0 mo [95% CI: 2.3–5.7 mo] in high-risk group [PFS-
pPET-RadScore > 0.09]; P = 0.0004) and OS (median 
of 20.3 mo [95% CI: 5.7–35 mo] in low-risk group [OS-
pPET-RadScore < 0.11] vs. 7.7 mo [95% CI: 6.0–9.5 
mo] in high-risk group [OS-pPET-RadScore > 0.11]; P = 
0.007). The multivariate analysis confirmed PFS-pPET-

Table 1: Characteristics of the whole-population and low-risk and high-risk groups based on PFS and OS-pPET-
RadScores

Characteristics All patients
PFS-pPET-RadScore OS-pPET-RadScore

Low-risk 
group High-risk group P Low-risk 

group
High-risk 

group P

Subjects 47 42 5 33 14
Cutoff pPET-RadScore NA <0.09 >0.09 <0.11 >0.11
Age, years 68 (61–73) 68 (62–72) 73 (51–75) 0.64 69 (66–72) 63 (55–74) 0.31
Female 6 (12.8) 5 (11.9) 1 (20) 0.61 4 (12.1) 2 (14.3) 0.84
Comorbidities
    Hypertension 17 (36.2) 16 (38.1) 1 (20) 0.43 13 (39.4) 4 (28.6) 0.48
    Type 2 diabetes mellitus 15 (31.9) 15 (35.7) 0 (0) 0.11 13 (39.4) 2 (14.3) 0.09
    Coronary artery disease 6 (12.8) 6 (14.3) 0 (0) 0.37 5 (15.2) 1 (7.1) 0.45
HCC characteristics
    Tumor size, cm 6.0 (4.3–9.0) 5.5 (3.8–8.4) 8.9 (8.6–9.4) 0.05 4.8 (3.4–7) 8.8 (6.2–11) 0.02
        <5 cm 19 (40.4) 19 (45.2) 0 (0) 0.05 17 (51.5) 2 (14.3) 0.02
        ≥5 cm 28 (59.6) 23 (54.8) 5 (100) 0.05 16 (48.5) 12 (85.7) 0.02
    Uni-nodular 24 (51.1) 21 (50) 3 (60) 0.67 14 (42.4) 10 (71.4) 0.07
    Multi-nodular (2–5 nodules) 5 (10.6) 5 (11.9) 0 (0) 0.41 5 (15.2) 0 (0) 0.12
    Diffuse (> nodules) 18 (38.3) 16 (38.1) 2 (40) 0.93 14 (42.4) 4 (28.6) 0.37
    PVI 21 (44.7) 20 (47.6) 1 (20) 0.24 14 (42.4) 7 (50) 0.63
    Serum AFP level, kUI/l 17 (6–192) 15 (6–124) 1507 (6–4430) 0.42 12.7 (5-81) 119 (6–3699) 0.37
BCLC staging system
        Stage A 3 (6.4) 3 (7.1) 0 (0) 0.54 3 (9.1) 0 (0) 0.24
        Stage B 18 (38.3) 17 (40.5) 1 (20) 0.37 14 (42.4) 4 (28.6) 0.37
        Stage C 26 (55.3) 22 (52.4) 4 (80) 0.24 16 (48.5) 10 (71.4) 0.15
        Ascites 7 (14.9) 7 (16.7) 0 (0) 0.32 5 (15.2) 2 (14.3) 0.94
Cirrhosis 44 (93.6) 40 (95.2) 4 (80) 0.19 32 (97) 12 (85.7) 0.15
    Child-Pugh score A 36 (76.6) 33 (78.6) 3 (60) 0.35 27 (81.8) 9 (64.3) 0.19
    Child-Pugh score B (≤B7) 8 (17) 7 (16.7) 1 (20) 0.85 5 (15.2) 3 (21.4) 0.60
    Chronic alcoholism 24 (51.1) 22 (52.4) 2 (40) 0.60 17 (51.5) 7 (50) 0.92
    Viral infection type B, C 17 (36.2) 16 (38.1) 1 (20) 0.43 12 (36.4) 5 (35.7) 0.97
    Hemochromatosis 2 (4.3) 2 (4.8) 0 (0) 0.62 2 (6.1) 0 (0) 0.35
    NASH 5 (10.6) 5 (11.9) 0 (0) 0.41 5 (15.2) 0 (0) 0.12

Values are median (25th; 75th interquartile range) or n (%). AFP, alpha-fetoprotein; HCC, hepatocellular carcinoma; 
BCLC, barcelona-clinic liver cancer; PVI, portal vein invasion; NASH, non-alcooholic steatohepatitis; TARE, transarterial 
radioembolization
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RadScore (hazard ratio [HR]: 120, 95% CI: 3.98–3625; 
P = 0.006) and OS-pPET-RadScore (HR: 16.1, 95% CI: 
2.94–88.3; P = 0.001) as independent negative predictors. 
The prognostic value of generated PFS and OS-pPET-
RadScores did not differ when stratified by BCLC staging 
system or tumor size (Table 3). 

DISCUSSION

The aim of the current study was to generate a 
predictive radiomics scoring system based on the whole-
liver (tumor and non-tumoral liver) segmentation of 
18F-FDG PET in patients undergoing 90Y-TARE for 

uHCC. This study which describes whole-liver (tumor 
and non-tumoral) radiomics, might be an interesting 
concept to integrate liver function and tumor biology. 
This integrative model may be able to separate 
patients in low-risk and high-risk groups and to predict 
survival. This is of interest since 90Y-TARE is costly 
and sometimes associated with side effects in this 
vulnerable patient population. By introducing the whole-
liver and not isolated tumors in the radiomics model, 
we aim to integrate liver function and tumor biology, 
thus representing the liver biology in one system. This 
approach in our view might represent the fragile balance 
between HCC and liver cirrhosis.

Table 2: 90Y-TARE and treatment associated data

Characteristics All patients
PFS pPET-RadScore OS-pPET-RadScore

Low-risk 
group 

High-risk 
group P Low-risk 

group High-risk group P

Subjects, n 47 42 5 33 14
90Y-TARE data
     90Y-resin 31 (66) 27 (64.3) 4 (80) 0.48 19 (57.6) 12 (85.7) 0.06
     90Y-glass 16 (34) 15 (35.7) 1 (20) 0.48 14 (42.4) 2 (14.3) 0.06
     90Y-administered activity, GBq 1.6 (1.2–2.5) 1.5 (1.1–2.1) 2.4 (1.6–2.5) 0.26 1.5 (1.1–2.0) 1.9 (1.5–2.6) 0.22
     TV based on 99mTc-MAA 
SPECT/CT, cm3

170 (80–615) 157 (80–600) 430 (220–560) 0.65 150 (60–300) 435 (148–646) 0.15

     90Y-administered activity per 
unit of TV, MBq/cm3

7.3 (4.9–16.2) 7.9 (4.9–16.3) 6.4 (5.6–7.3) 0.81 9.8 (5.2–16.7) 6.0 (3.9–8.4) 0.31

     90Y-tumor liver absorbed dose, 
Gy

170 (115–281) 170 (114–286) 205 (155–230) 0.86 170 (115–290) 159 (119–224) 0.91

     90Y-normal liver absorbed 
dose, Gy

40 (22–63) 40 (21–64) 36 (30–54) 0.33 43 (24–70) 33 (23–50) 0.05

   Unilobar 26 (55.4) 24 (57.1) 2 (40) 0.47 20 (60.6) 6 (42.9) 0.26

   Bilobar 8 (17) 6 (14.3) 2 (40) 0.15 5 (15.2) 3 (21.4) 0.60

   Segmental 8 (17) 7 (16.7) 1 (20) 0.85 5 (15.2) 3 (21.4) 0.60

   Lobar and segmental 5 (10.6) 5 (11.9) 0 (0) 0.41 3 (9.1) 2 (14.3) 0.60

Treatments pre-90Y-TARE

   Targeted therapy (Sorafenib) 4 (8.5) 3 (7.1) 1 (20) 0.45 3 (9.1) 1 (7.1) 0.55

   Embolization 3 (6.4) 3 (7.1) 0 (0) 0.54 3 (9.1) 0 (0) 0.24

   TACE 11 (23.4) 10 (23.8) 1 (20) 0.85 9 (27.3) 2 (14.3) 0.34

   Radiofrequency ablation 6 (12.8) 6 (14.3) 0 (0) 0.37 5 (15.2) 1 (7.1) 0.45

   Ethanol ablation 3 (6.4) 3 (7.1) 0 (0) 0.54 2 (6.1) 1 (7.1) 0.24
     90Y-TARE 1 (2.1) 1 (2.4) 0 (0) 0.73 1 (3) 0 (0) 0.51

Treatments after 90Y-TARE

   Targeted therapy (Sorafenib) 4 (8.5) 3 (7.1) 1 (20) 0.33 3 (9.1) 1 (7.1) 0.83

   Embolization 1 (2.1) 1 (2.4) 0 (0) 0.73 1 (3) 0 (0) 0.51

   TACE 10 (21.3) 10 (23.8) 0 (0) 0.22 9 (27.3) 1 (7.1) 0.12

   Radiofrequency ablation 7 (14.9) 7 (16.7) 0 (0) 0.32 6 (18.2) 1 (7.1) 0.33

   Ethanol ablation 1 (2.1) 1 (2.4) 0 (0) 0.73 1 (3) 0 (0) 0.51

   Hepatectomy 1 (2.1) 1 (2.4) 0 (0) 0.73 1 (3) 0 (0) 0.51
     90Y-TARE 1 (2.1) 1 (2.4) 0 (0) 0.73 1 (3) 0 (0) 0.51

Values are median (25th; 75th interquartile range) or n (%).
TV, tumor volume; TARE, transarterial radioembolization; TACE, transarterial chemoembolization; SPECT/CT, single-photon emission 
computed tomography 99mTC-MAA, technetium-macroaggregated albumin.
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Two predictive radiomics scores were generated 
to predict survival. These radiomics scores successfully 
classified patients between low-risk and high-risk in either 
PFS and OS and remains statistically significant in the 
multivariate analysis independently of the BCLC staging 
system which includes variables related to tumor stage, 
liver functional status, performance status, and cancer-
related symptoms [4]. Our score furthermore remained 
an independent factor against the tumor size and the AFP 
level in our patient population. 

Comparison between low-risk and high-risk revealed 
that a higher tumor size was seen in the high-risk group 
for the PFS-pPET-RadScore and OS-pPET-RadScore. 

Indeed, the tumor size is a well-known factor associated 
with outcome. Interestingly, our approach replaces the 
tumor size and functional parameters of the BCLC 
classification as performance status, PVI and Child-Pugh 
score with a whole-liver radiomics approach taking into 
account the lesion size as well as the metabolic activity 
of the non-tumoral but cirrhotic liver. The generated 
radiomics score of this study remained significant in the 
multivariate analysis, mandating an independent value 
of our mathematical model. Furthermore, a whole-liver 
radiomics model is more less prone to failure due to lesion 
interpretation by the radiologist/nuclear physician and can 
capture much more complex patterns than reported by the 

Figure 1: Steps of radiomics process.

Figure 2: Histogram of the LASSO regression coefficients used to generate PFS and OS-pPET-RadScores.
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BCLC scoring system. The mandated segmentation can 
be performed easily on the CT scan and then translated 
on the 18F-FDG PET images. Furthermore, in the future, 
this process of segmentation will be even more fast, 
reproducible and user-friendly with fully automated 
liver segmentation integrated into clinical routine [27]. 
Finally, the segmentation of the whole-liver metabolism 
could have an additional potential clinical significance 
if a predictive model of toxicity were identified in future 
studies. 

The main textural features in our predictive 
radiomics scoring system were Strength and Variance. 
The presence of the Strength in both PFS and OS models 
confirmed the relevant predictive value of this parameter. 
Strength is a textural feature based on the neighborhood 
gray-tone difference matrix that is first described in 
1989 by Amadasun et al. [28] and means if a pattern is 
perceivable within the texture and if it can be recognized. 
Variance is a textural feature derived from texture 
feature coding method and describes a deviation from 
the mean of textural feature numbers (a transformation 
of the image voxels that represent a certain type of local 
texture). Variance is one of the textural feature that 
was initially used by Horng et al. to classify ultrasonic 
liver images into 3 liver states (normal liver, hepatitis 
and cirrhosis) with a correct classification rate of 86.7% 
and a false-negative rate of 4.4% [29]. We believe that 

this publication strengthens our integrative whole-liver 
approach using radiomics and emphasizes once more the 
importance to include not only tumor lesions to predict 
outcome but also have to a tool to assess the non-tumoral 
liver. Our current analysis also has shortcomings, whereas 
the most important is the lack of an external cohort to 
verify our findings. This criticism is certainly justified, 
however we see the current work rather as a generation 
of hypothesis that the reading of imaging especially in 
the fragile context of liver function versus tumor control 
could be performed on a much more complex level than 
for example the BCLC staging. A further shortcoming is 
that some patients received prior treatment as Sorafenib™ 
(Bayer, Leverkusen, Germany) which might influence 
the outcome of PFS. The preceding treatments are 
summarized in Table 2 and reflect a standard population 
receiving radioembolization where this treatment is used 
rather in later therapy lines. However, prospective studies 
showed the feasibility and tolerability of anti-angiogenic 
treatment as Sorafenib followed by radioembolization 
[30]. This presented analysis is to our knowledge the 
first whole-liver radiomics approach, representing the 
fragile balance between liver function and tumor burden, 
which is the clinical reality in these patients. However, 
our results have to be verified in future prospective  
studies. 

Figure 3: Kaplan-Meier estimates of progression-free survival (PFS) and overall survival (OS) according to the risk 
profile based on PFS and OS-pPET-RadScores.
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MATERIALS AND METHODS 

Patient characteristics

All pretreatment 18F-FDG PET images of patients 
undergoing 90Y-TARE for uHCC between December 2010 
and December 2015 were retrospectively analyzed. The 
American Association for the Study of Liver Diseases 
(AASLD) guidelines [31] were used to diagnose HCC and 
the BCLC staging system have been used to stage HCC 
[4]. Patients included in the study had unresectable HCC 
because of a locally advanced tumor, multifocal disease 
or PVI. Also, inclusion criteria consisted of patients 
with a liver-dominant or liver-only disease, an adequate 
hematologic, renal and hepatic function, a good (ECOG 
PS) <2 and a life expectancy >3 months and a Child-Pugh 
score ≤ B7. Exclusion criteria were an inadequate liver 
reserve (bilirubin >34 µmol/L, ascites), a Child-Pugh score 
> B7, a poor ECOG PS ≥ 2, distant metastases, a higher 
lung shunt fraction > 20%, an estimated lung absorbed 
dose of >30 Gray per session and 50 Gray in total and 
an uncorrectable extrahepatic flow on the pretreatment 
99mtechnetium-macroaggregated albumin single-photon 
emission computed tomography (99mTc-MAA SPECT/CT). 
All patients underwent imaging procedures and 90Y-TARE 
as standard care. The local Ethics Research Committee 
of the State of Vaud took into account the retrospective 
analysis of our database, approved the protocol (Number 

2016–00640) and waived the need for patient informed 
consent for the study analysis.

18F-FDG PET 

All patients underwent 18F-FDG PET/CT on a 
Discovery D690 TOF (GE HealthCare, Waukesha, WI) 
50–70 minutes after a planned intravenous injection of 3.6 
± 0.4 MBq/kg of 18F-FDG. All patients fasted for at least 6 
hours and blood glucose levels were less than 140 mg/dL 
before administration of 18F-FDG. A low-dose helical CT 
(120kV, 80–200mA) was first performed for anatomical 
correlation and attenuation correction. Then, whole-body 
emission images were acquired using 7 to 9 overlapping 
bed positions of 2 min each (starting from the top of skull 
and ending at the mid-thigh). Images were reconstructed 
using iterative protocols with body weight-normalized 
SUV computation. 

Radiomics features segmentation and extraction

All CT livers were semi-automatically segmented 
using The Medical Imaging Interaction Toolkit (MITK) 
workbench software [32] to generate a three-dimensional 
mask that was further incorporated and translated to 
the 18F-FDG PET images. Three-dimensional texture 
analysis was applied to the pretreatment 18F-FDG PET 
study using an open-source software Chang Gung Image 

Table 3: Multivariable regression for PFS and OS

PFS OS
Characteristics HR (95% CI) P Characteristics HR (95% CI) P
PFS-pPET-RadScore 120 (3.98–3625) 0.006 OS-pPET-RadScore 16.1 (2.94–88.3) 0.001
BCLC staging system BCLC staging system
    Stages A vs. B 0.57 (0.07–4.65) 0.60     Stages A vs. B 1.31 (0.28–6.18) 0.73
    Stages A vs. C  0.72 (0.33–1.59) 0.42     Stages A vs. C  0.66 (0.31–1.42) 0.29
Serum AFP level 0.98 (0.68–1.40) 0.89 Serum AFP level 0.75 (0.45–1.26) 0.28
Size <5 vs. ≥5 cm 0.87 (0.37–2.02) 0.75 Size <5 vs. ≥5 cm 1.0 (0.45–2.26) 0.99
Stratified for BCLC staging system
PFS pPET-RadScore 92.2 (2.91–2916) 0.01 OS-pPET-RadScore 24.8 (3.78–162) 0.001
Serum AFP level 0.99 (0.69–1.40) 0.93 Serum AFP level 0.76 (0.45–1.28) 0.30
Size < 5 vs. ≥ 5 cm 0.86 (0.36–2.07) 0.73 Size < 5 vs. ≥ 5 cm 0.89 (0.39–2.04) 0.79
Stratified for tumor size
PFS-pPET-RadScore 146 (3.97–5333) 0.007 OS-pPET-RadScore 16.97 (2.90–99.3) 0.002
Serum AFP level 0.96 (0.67–1.38) 0.83 Serum AFP level 0.75 (0.45–1.26) 0.28
BCLC staging system BCLC staging system
    Stages A vs. B 0.64 (0.08–5.44) 0.68     Stages A vs. B 1.0 (0.21–4.72) 1.00
    Stages A vs. C  0.76 (0.34–1.70) 0.50     Stages A vs. C  0.57 (0.26–1.22) 0.15

AFP, alpha-fetoprotein; HR, hazard ratio; CI; confidence interval; PFS, progression-free survival; OS, overall survival; 
BCLC, barcelona-clinic liver cancer.
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Texture Analysis toolbox (CGITA) [33] implemented in 
Matlab 2015b (Mathworks Inc., Natick, MA). A total 
of 108 radiomics features from the three-dimensional 
segmented livers of 18F-FDG PET images were extracted 
according from following categories: SUV statistics, co-
occurrence matrix, voxel alignment matrix, neighborhood 
intensity difference matrix, intensity size zone matrix, 
normalized co-occurrence matrix, voxel statistics, texture 
spectrum, texture feature coding co-occurrence matrix 
and neighborhood gray level dependence. Steps of the 
radiomics process are illustrated in Figure 1.

90Y-TARE procedure

The 90Y-TARE planning and procedure was made as 
previously described [34]. Briefly, before 90Y-TARE, all 
patients underwent a pretherapy SPECT/CT with intra-
arterial administration of 120–180 MBq of 99mTc-MAA. 
The required 90Y administered activity was calculated 
from partition model dosimetry as reported by Gnesin 
et al. [35]. 90Y-resin (SIR-Spheres™; SIRTex Medical, 
Sydney, Australia) or 90Y-glass (TheraSphere™; BTG 
Biocompatibles Ltd, Farnham, UK) microspheres were 
injected by a nuclear physician into a percutaneous 
catheter inserted into the femoral artery and directed to 
the selected hepatic artery. Patients with small-tumor 
volumes were preferentially addressed to 90Y-glass 
microspheres due to their higher specific 90Y activity 
and lower particle number aiming at avoiding lesion 
saturation and consecutive reflux to non-target volumes. 
A post-90Y-TARE SPECT/CT was performed to confirm 
the distribution of 90Y microspheres.

Study endpoints 

Study endpoints were PFS and OS. PFS was defined 
as time from the date of the 90Y-TARE until the date of 
the first occurrence of hepatic tumor progression based 
on imaging data with contrast-enhanced CT or MRI using 
Response Evaluation Criteria in Solid Tumors, distant 
recurrence, death or last known consultation (censored). 
OS was defined as time from the date of the 90Y-TARE until 
death from any cause or last known consultation (censored). 

Statistical analysis 

The statistical analysis was performed with R 
software (The R Project for Statistical Computing, www.r-
project.org, version 3.3.2) [32]. The packages in R used 
in the present study were “glmnet“ [36], “Survival“ [37], 
“ggplot2“ [38], “caret“ [39], “matcor“ [40]. All continuous 
variables were checked for normality and described with 
conventional statistics. All continuous numeric data were 
centered and scaled from the mean and standard deviation. 
According to the Harrell guideline as the number of events 
should exceed the number of included covariates by at 

least 10 times in a multivariate analysis [41], an initial 
reduction of variables was necessary. To address this 
issue, highly correlated variables were removed (which 
were defined as a Spearman’s correlation > 0.9). On the 
remaining variables, the least absolute shrinkage and 
selection operator (LASSO) Cox regression model [42, 43] 
which is suitable for the regression of high-dimensional 
data, was used to select the most useful prognostic features 
in the data set. The selected imaging features were then 
combined into a radiomics signature. For each patient, PFS 
and OS predictive scores based on 18F-FDG PET radiomics 
signature (pPET-RadScore) were computed through a 
linear combination of selected features weighted by their 
respective coefficients. Using X-tile software version 3.6.1 
(Yale University School of Medicine, New Haven, Conn) 
[44], the optimal pPET-RadScore value to predict PFS and 
OS served as cutoff to separate high- and low-risk patients. 
Survival curves of the high-risk and low-risk groups were 
estimated using the Kaplan-Meier method and differences 
between subgroups were compared with the log-rank test. 
Using SPSS software (version 23, SPSS Inc., Chicago, 
IL, USA), the differences in demographic, clinical, 
pathological and treatment data between these two groups 
were compared by using χ2 test with Pearson’s correction 
for discrete variables and t test or Mann-Whitney test for 
continuous variables. The influence of PFS and OS-pPET-
RadScores, BCLC staging system and serum AFP level 
was investigated using a Cox proportional hazards model. 
Stratified analyses were performed to explore the potential 
association of the radiomics signature with the PFS and 
OS using subgroups within clinical-pathologic risk factors 
from the whole data set. For all statistical analyses, P 
values < 0.05 were considered statistically significant.

Abbreviations

AASLD: American Association for the Study 
of Liver Diseases; AFP: Alpha-fetoprotein; BCLC: 
Barcelona-Clinic Liver Cancer; CGITA: Chang Gung 
Image Texture Analysis; CLIP: Cancer of the Liver 
Italian Program; CT: Computed tomography; FDG: 
Fluorodeoxyglucose; LASSO: Least absolute shrinkage 
and selection operator; MAA: Macroaggregated albumin; 
MITK: Medical Imaging Interaction Toolkit; MRI: 
Magnetic resonance imaging; OS: Overall survival; PET: 
Positron emission tomography; PFS: Progression-free 
survival overall survival; PVI: Portal vein invasion; Rad: 
Radiomics; SPECT: Single-photon emission computed 
tomography; SUV: Standardized uptake value; T/L: 
Tumor-to-liver; TARE: Transarterial radioembolization; 
TNM: Tumor-node-metastasis; uHCC: Unresectabble 
hepatocellular carcinoma.



Oncotarget4557www.impactjournals.com/oncotarget

Author contributions

PBD: acquisition of data, analysis and interpretation 
of data, drafting of the manuscript; AVDG: interpretation 
of data, drafting of the manuscript; NS: study concept and 
design, interpretation of data, drafting of the manuscript, 
critical revision of the manuscript for important 
intellectual content; MJ, MNL, AD, JP: interpretation 
of data, critical revision of the manuscript for important 
intellectual content.

CONFLICTS OF INTEREST

The authors have no potential conflicts of interest 
to report.

FUNDING 

This work was partly supported by the Swiss 
National Science Foundation with grant agreement 
PZ00P2_154891 (AD). 

REFERENCES

 1.  Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, 
Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 
2015; 65:87–108.

  2.  Tandon P, Garcia-Tsao G. Prognostic indicators in 
hepatocellular carcinoma: a systematic review of 72 studies. 
Liver Int. 2009; 29:502–510.  

 3.  Okuda K, Obata H, Nakajima Y, Ohtsuki T, Okazaki N, 
Ohnishi K. Prognosis of primary hepatocellular carcinoma. 
Hepatol Baltim Md. 1984; 4:3S–6S. 

 4.  Llovet JM, Brú C, Bruix J. Prognosis of hepatocellular 
carcinoma: the BCLC staging classification. Semin Liver 
Dis. 1999; 19:329–338. 

 5.  Daniele B, Annunziata M, Barletta E, Tinessa V, Di Maio 
M. Cancer of the Liver Italian Program (CLIP) score for 
staging hepatocellular carcinoma. Hepatol Res. 2007; 
37:S206–209.

  6.  Lee JW, Yun M, Cho A, Han KH, Kim DY, Lee SM, Lee 
JD. The predictive value of metabolic tumor volume on 
FDG PET/CT for transarterial chemoembolization and 
transarterial chemotherapy infusion in hepatocellular 
carcinoma patients without extrahepatic metastasis. Ann 
Nucl Med. 2015; 29:400–408. 

 7.  Parikh U, Marcus C, Sarangi R, Taghipour M, Subramaniam 
RM. FDG PET/CT in Pancreatic and Hepatobiliary 
Carcinomas: Value to Patient Management and Patient 
Outcomes. PET Clin. 2015; 10:327–343. 

 8.  Song HJ, Cheng JY, Hu SL, Zhang GY, Fu Y, Zhang YJ. 
Value of 18F-FDG PET/CT in detecting viable tumour 
and predicting prognosis of hepatocellular carcinoma after 
TACE. Clin Radiol. 2015; 70:128–137. 

 9.  Asman Y, Evenson AR, Even-Sapir E, Shibolet O. [18F]
fludeoxyglucose positron emission tomography and 
computed tomography as a prognostic tool before liver 
transplantation, resection, and loco-ablative therapies 
for hepatocellular carcinoma. Liver Transplant. 2015; 
21:572–580. 

10.  Cho E, Jun CH, Kim BS, Son DJ, Choi WS, Choi SK. 
18F-FDG PET CT as a prognostic factor in hepatocellular 
carcinoma. Turk J Gastroenterol. 2015; 26:344–350. 

11.  Pant V, Sen IB, Soin AS. Role of 18F-FDG PET CT as 
an independent prognostic indicator in patients with 
hepatocellular carcinoma. Nucl Med Commun. 2013; 
34:749–757. 

12.  Kim MJ, Kim YS, Cho YH, Jang HY, Song JY, Lee SH, 
Jeong SW, Kim SG, Jang JY, Kim HS, Kim BS, Lee WH, 
Park JM, et al. Use of 18F-FDG PET to predict tumor 
progression and survival in patients with intermediate 
hepatocellular carcinoma treated by transarterial 
chemoembolization. Korean J Intern Med. 2015; 30:308–315. 

13.  Lee JH, Park JY, Kim DY, Ahn SH, Han KH, Seo HJ, 
Lee JD, Choi HJ. Prognostic value of 18F-FDG PET for 
hepatocellular carcinoma patients treated with sorafenib. 
Liver Int. 2011; 31:1144–1149. 

14.  Kornberg A, Küpper B, Tannapfel A, Büchler P, Krause B, 
Witt U, Gottschild D, Friess H. Patients with non-[18 F]
fludeoxyglucose-avid advanced hepatocellular carcinoma 
on clinical staging may achieve long-term recurrence-free 
survival after liver transplantation. Liver Transplant. 2012; 
18:53–61. 

15.  Lee JW, Paeng JC, Kang KW, Kwon HW, Suh KS, 
Chung JK, Lee MC, Lee DS. Prediction of tumor recurrence 
by 18F-FDG PET in liver transplantation for hepatocellular 
carcinoma. J Nucl Med. 2009; 50:682–687. 

16.  Kim YI, Paeng JC, Cheon GJ, Suh KS, Lee DS, Chung JK, 
Kang KW. Prediction of Posttransplantation Recurrence 
of Hepatocellular Carcinoma Using Metabolic and 
Volumetric Indices of 18F-FDG PET/CT. J Nucl Med. 
2016; 57:1045–1051. 

17.  Abuodeh Y, Naghavi AO, Ahmed KA, Venkat PS, Kim 
Y, Kis B, Choi J, Biebel B, Sweeney J, Anaya DA, Kim 
R, Malafa M, Frakes JM, et al. Prognostic value of pre-
treatment F-18-FDG PET-CT in patients with hepatocellular 
carcinoma undergoing radioembolization. World J 
Gastroenterol. 2016; 22:10406–10414. 

18.  Jreige M, Mitsakis P, Van Der Gucht A, Pomoni A, Silva-
Monteiro M, Gnesin S, Boubaker A, Nicod-Lalonde M, 
Duran R, Prior JO, Denys A, Schaefer N. (18)F-FDG 
PET/CT predicts survival after (90)Y transarterial 
radioembolization in unresectable hepatocellular carcinoma. 
Eur J Nucl Med Mol Imaging. 2017; 44:1215–1222. 

19.  Van Der Gucht A, Jreige M, Denys A, Blanc-Durand P, 
Boubaker A, Pomoni A, Mitsakis P, Silva-Monteiro M, 
Gnesin S, Nicod-Lalonde M, Duran R, Prior JO, Schaefer 
N. Resin versus Glass Microspheres for Yttrium-90 
Transarterial Radioembolization: Comparing Survival in 



Oncotarget4558www.impactjournals.com/oncotarget

Unresectable Hepatocellular Carcinoma using Pretreatment 
Partition Model Dosimetry. J Nucl Med Off Publ Soc Nucl 
Med. 2017; 44:1215–1222. 

20.  Aerts HJ, Velazquez ER, Leijenaar RTH, Parmar C, 
Grossmann P, Carvalho S, Bussink J, Monshouwer 
R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen 
MM, Leemans R, et al. Decoding tumour phenotype 
by noninvasive imaging using a quantitative radiomics 
approach. Nat Commun. 2014; 5:4006. 

21.  Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van 
Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard 
R, Dekker A, Aerts HJ. Radiomics: extracting more 
information from medical images using advanced feature 
analysis. Eur J Cancer. 2012; 48:441–446. 

22.  Aerts HJ. The Potential of Radiomic-Based Phenotyping 
in Precision Medicine: A Review. JAMA Oncol. 2016; 
2:1636–1642. 

23.  Huang Y, Liu Z, He L, Chen X, Pan D, Ma Z, Liang C, 
Tiang J, Liang C. Radiomics Signature: A Potential 
Biomarker for the Prediction of Disease-Free Survival 
in Early-Stage (I or II) Non-Small Cell Lung Cancer. 
Radiology. 2016; 281:947–957. 

24.  Soussan M, Orlhac F, Boubaya M, Zelek L, Ziol M, Eder 
V, Buvat I. Relationship between tumor heterogeneity 
measured on FDG-PET/CT and pathological prognostic 
factors in invasive breast cancer. PloS One. 2014; 9:e94017. 

25.  Kuo MD, Gollub J, Sirlin CB, Ooi C, Chen X. 
Radiogenomic Analysis to Identify Imaging Phenotypes 
Associated with Drug Response Gene Expression Programs 
in Hepatocellular Carcinoma. J Vasc Interv Radiol. 2007; 
18:821–830. 

26.  Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, 
Chan BK, Matcuk GR, Barry CT, Chang HY, Kuo MD. 
Decoding global gene expression programs in liver 
cancer by noninvasive imaging. Nat Biotechnol. 2007; 
25:675–680. 

27.  Wang X, Li C, Eberl S, Fulham M, Feng D. Automated liver 
segmentation for whole-body low-contrast CT images from 
PET-CT scanners. Conf Proc Annu Int Conf IEEE Eng Med 
Biol Soc. 2009; 2009:3565–8. 

28.  Amadasun M, King R. Textural features corresponding to 
textural properties. IEEE Trans Syst Man Cybern. 1989; 
19:1264–1274. 

29.  Horng MH, Sun YN, Lin XZ. Texture feature coding 
method for classification of liver sonography. Comput Med 
Imaging Graph. 2002; 26:33–42. 

30.  Salman A, Simoneau E, Hassanain M, Chaudhury P, 
Boucher LM, Valenti D, Cabrera T, Nudo C, Metrakos P. 
Combined sorafenib and yttrium-90 radioembolization for 
the treatment of advanced hepatocellular carcinoma. Curr 
Oncol. 23:e472–e480. 

31.  Murray KF, Carithers RL, AASLD. AASLD practice 
guidelines: Evaluation of the patient for liver 
transplantation. Hepatol Baltim Md. 2005; 41:1407–1432. 

32.  The Medical Imaging Interaction Toolkit (MITK). Available 
from: http://mitk.org/wiki/MITK.

33.  Fang YH, Lin CY, Shih MJ, Wang HM, Ho TY, Liao CT, Yen 
TC. Development and evaluation of an open-source software 
package “CGITA” for quantifying tumor heterogeneity with 
molecular images. BioMed Res Int. 2014; 2014:248505. 

34.  Van Der Gucht A, Jreige M, Denys A, Blanc-Durand P, 
Boubaker A, Pomoni A, Mitsakis P, Silva-Monteiro M, 
Gnesin S, Nicod-Lalonde M, Duran R, Prior JO, Schaefer N. 
Resin versus Glass Microspheres for Yttrium-90 Transarterial 
Radioembolization: Comparing Survival in Unresectable 
Hepatocellular Carcinoma using Pretreatment Partition 
Model Dosimetry. J Nucl Med. 2017; 58:1334–1340.

35.  Gnesin S, Canetti L, Adib S, Cherbuin N, Silva-Monteiro M, 
Bize P, Denys A, Prior JO, Baechler S, Boubaker A. 
Partition model based 99mTc-MAA SPECT/CT predictive 
dosimetry compared to 90Y TOF PET/CT post-treatment 
dosimetry in radioembolisation of hepatocellular carcinoma: 
a quantitative agreement comparison. J Nucl Me. 2016; 
57:1672–1678.

36.  Friedman J, Hastie T, Tibshirani R. Regularization Paths for 
Generalized Linear Models via Coordinate Descent. J Stat 
Softw. 2010; 33:1–22.

37.  Therneau T. A Package for Survival Analysis in S. version 
2.38. https://CRAN.R-project.org/package=survival/.

38.  Wickham H. ggplot2 - Elegant Graphics for Data Analysis. 
Springer-Verlag New York. 2009. 

39.  Kuhn M. Building Predictive Models in R Using the caret. 
http://www.jstatsoft.org/article/view/v028i05/v28i05.pdf. 
Accessed December 15, 2008.

40.  Gonzalez I, Dejean S, Martin P, Baccini A. CCA: An R 
Package to Extend Canonical Correlation Analysis. J Stat 
Softw. 2008; 23:1–14. 

41.  Harrell F. Regression modeling strategies with applications 
to linear models, logistic and ordinal regression, and 
survival analysis. Springer-Verlag. New York, 2015. 

42.  Tibshirani R. The lasso method for variable selection in the 
Cox model. Stat Med. 1997; 16:385–395.

43.  Gui J, Li H. Penalized Cox regression analysis in the high-
dimensional and low-sample size settings, with applications 
to microarray gene expression data. Bioinforma Oxf Engl. 
2005; 21:3001–3008. 

44.  Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-
informatics tool for biomarker assessment and outcome-
based cut-point optimization. Clin Cancer Res. 2004; 
10:7252–7259. 


