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Abstract: The phytotherapeutic properties of Glycyrrhiza glabra (licorice) extract are mainly attributed
to glycyrrhizin (GR) and glycyrrhetinic acid (GA). Among their possible pharmacological actions,
the ability to act against viruses belonging to different families, including SARS coronavirus, is
particularly important. With the COVID-19 emergency and the urgent need for compounds to
counteract the pandemic, the antiviral properties of GR and GA, as pure substances or as components
of licorice extract, attracted attention in the last year and supported the launch of two clinical trials.
In silico docking studies reported that GR and GA may directly interact with the key players in
viral internalization and replication such as angiotensin-converting enzyme 2 (ACE2), spike protein,
the host transmembrane serine protease 2, and 3-chymotrypsin-like cysteine protease. In vitro data
indicated that GR can interfere with virus entry by directly interacting with ACE2 and spike, with
a nonspecific effect on cell and viral membranes. Additional anti-inflammatory and antioxidant
effects of GR cannot be excluded. These multiple activities of GR and licorice extract are critically
re-assessed in this review, and their possible role against the spread of the SARS-CoV-2 and the
features of COVID-19 disease is discussed.

Keywords: licorice; liquorice; glycyrrhizin; glycyrrhizic acid; glycyrrhetinic acid; enoxolone; virus;
SARS-CoV-2; COVID-19

1. Introduction

In ancient times, readily available plant extracts were the first sources of “drugs”.
The therapeutic use of Glycyrrhiza glabra (licorice) and its extracts dates back to the dawn
of time. Scholars of the history of medicine date the first information on its medicinal
use to over 4000 years ago [1]. Its use has spread thanks to the ease of agricultural
cultivation of its fourteen species in many warm and temperate countries. Therefore,
its therapeutic use has been proposed by many cultures and ethnic groups. The study
of its phytotherapeutic properties reflects the remarkable variety of products with some
therapeutic activity present above all in the roots of the plant [2–4]. The pathologies for
which these extracts have been used in the past are extremely varied and include disorders
of the respiratory, gastrointestinal, cardiovascular, and urinary systems. It was also widely
used to treat ocular exenteration and neurodegenerative diseases.

Even the toxic effects of these extracts have been duly recorded in tradition. Of interest
is the hypothesis on the death of the philosopher Heraclitus of Ephesus, who had decided
to eat only herbs and roots in the last part of his life. Diogenes Laertius describes his death
as due to hydropsy because of his vast consumption of licorice roots [5].

Only in the last decades, with the development of adequate analytical methods, has it
become possible to understand the nature of the molecules present in the extracts. This has
had decisive importance in defining the molecules’ therapeutic potential. The knowledge
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from the “ancient pharmacopeia” has made it possible to identify plants with potential
therapeutic activity and describe their properties in a modern, current context.

Among the compounds identified, glycyrrhizic acid or glycyrrhizin (GR) and its
metabolites, mainly glycyrrhetinic acid (GA) or enoxolone, are the most important [1].
Their possible pharmacological action includes the particularly important ability to act
against viruses belonging to different families, including the SARS coronavirus [6,7]. With
the COVID-19 emergency and the urgent need for compounds to ease the pandemic, the
antiviral properties of GR and GA, as pure substances or as components of licorice extract,
have attracted fresh attention over the last year.

This review critically reassesses these aspects, widely investigated over the last year,
and examines the possible utility of GR and GA against the spread of the SARS-CoV-2
virus. We have reviewed the antiviral properties of GR and GA, as pure substances or
as components of licorice, from the year 1947 to the date of the search, which involved
the following databases: Embase, Medline, and the Cochrane Library. Title, abstract, and
keyword searches were made using Boolean search operators by extract, on the basis
of a critical systematic analysis of the literature. To retrieve all the pertinent evidence,
the search was done on 28 February 2021 with global geographical coverage and time
limits on the ProQuest search engine: (“licorice” OR “liquorice” OR “glycyrrhiza glabra”
OR “glycyrrhizic acid” OR glycyrrhizin OR “glycyrrhetinic acid” OR “enoxolone”) AND
(antiviral OR virus OR hepatitis). A total of 508 studies were identified after adjusting
for duplicates, and then analyzed. After applying a pre-selected inclusion and exclusion
criteria based on the authors’ own experience, 84 original articles were deemed pertinent
for inclusion in this review.

2. From Traditional to Medicinal Use of Licorice Extract

The passage from empirical and anecdotal “pharmacology and therapy” to the identi-
fication of each component of the mixture has enabled us to re-evaluate licorice extracts
in modern terms and give each component potential pharmacological dignity. The identi-
fication in the extracts of licorice roots of molecules with interesting biological activities
contributed to its re-evaluation (Table 1). The diversity of molecules described in these
extracts makes it challenging to distinguish information on their biological or pharmaco-
logical activity from anecdotal indications and scientifically proven ones [2–4].

Table 1. Chemical structures of compounds in licorice root extracts with their most widely used names and CAS registry
number. Data retrieved from PubChem.

Glycyrrhizin
(Glycyrrhizic acid)

CAS: 1405-86-3
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CAS: 60008-03-9

Biomolecules 2021, 11, x FOR PEER REVIEW 5 of 20 
 

 

Glabridin 
CAS: 59870-68-7 

 

Glabrene 
CAS: 60008-03-9 

 

Kanzonol R 
CAS: 156250-73-6 

Licopyranocoumarin 
CAS: 117038-80-9 

 

Licoarylcoumarin 
CAS: 125709-31-1 

 

Licocoumarin A 

 

Kanzonol R
CAS: 156250-73-6

Biomolecules 2021, 11, x FOR PEER REVIEW 5 of 20 
 

 

Glabridin 
CAS: 59870-68-7 

 

Glabrene 
CAS: 60008-03-9 

 

Kanzonol R 
CAS: 156250-73-6 

Licopyranocoumarin 
CAS: 117038-80-9 

 

Licoarylcoumarin 
CAS: 125709-31-1 

 

Licocoumarin A 

 

Licopyranocoumarin
CAS: 117038-80-9

Biomolecules 2021, 11, x FOR PEER REVIEW 5 of 20 
 

 

Glabridin 
CAS: 59870-68-7 

 

Glabrene 
CAS: 60008-03-9 

 

Kanzonol R 
CAS: 156250-73-6 

Licopyranocoumarin 
CAS: 117038-80-9 

 

Licoarylcoumarin 
CAS: 125709-31-1 

 

Licocoumarin A 

 

Licoarylcoumarin
CAS: 125709-31-1

Biomolecules 2021, 11, x FOR PEER REVIEW 5 of 20 
 

 

Glabridin 
CAS: 59870-68-7 

 

Glabrene 
CAS: 60008-03-9 

 

Kanzonol R 
CAS: 156250-73-6 

Licopyranocoumarin 
CAS: 117038-80-9 

 

Licoarylcoumarin 
CAS: 125709-31-1 

 

Licocoumarin A 

 

Licocoumarin A

Biomolecules 2021, 11, x FOR PEER REVIEW 5 of 20 
 

 

Glabridin 
CAS: 59870-68-7 

 

Glabrene 
CAS: 60008-03-9 

 

Kanzonol R 
CAS: 156250-73-6 

Licopyranocoumarin 
CAS: 117038-80-9 

 

Licoarylcoumarin 
CAS: 125709-31-1 

 

Licocoumarin A 

 

Tetramethyl
pyrazine-2,3,5,6-tetracarboxylate

CAS: 35042-21-8

Biomolecules 2021, 11, x FOR PEER REVIEW 6 of 20 
 

 

Tetramethyl 
pyrazine-2,3,5,6-tetracarboxylate 

CAS: 35042-21-8 

 

Alpha-terpineol 
CAS: 98-55-5 

 

Furfural 
CAS: 98-01-1 

 

2,3-Butanediol 
CAS: 513-85-9 

We analyzed most of the data in the literature and generated a network of 21 poten-
tially active compounds and 28 biological or pharmacological activities (Figure 1). Many 
molecules (center of the network) share the same or similar potential activities. Particu-
larly interesting is that the antibacterial activity is one of the primary nodes on which 
many licorice molecules converge. The most frequent activities are antibacterial (10 con-
nections), neuroprotective (7 connections), antioxidant (6 connections), anti-inflammatory 
(6 connections), analgesic (5 connections), anticancer (5 connections). The observation that 
GR or its metabolites have antiviral activity is related to their antioxidant and anti-inflam-
matory effects, and includes the inhibition of viral internalization, downregulation of pro-
inflammatory cytokines, inhibition of the accumulation of intracellular reactive oxygen 
species (ROS), inhibition of thrombin, inhibition of the hyperproduction of airway exu-
dates, and induction of endogenous interferon (IFN). 
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We analyzed most of the data in the literature and generated a network of 21 poten-
tially active compounds and 28 biological or pharmacological activities (Figure 1). Many
molecules (center of the network) share the same or similar potential activities. Particularly
interesting is that the antibacterial activity is one of the primary nodes on which many
licorice molecules converge. The most frequent activities are antibacterial (10 connec-
tions), neuroprotective (7 connections), antioxidant (6 connections), anti-inflammatory
(6 connections), analgesic (5 connections), anticancer (5 connections). The observation
that GR or its metabolites have antiviral activity is related to their antioxidant and anti-
inflammatory effects, and includes the inhibition of viral internalization, downregulation
of pro-inflammatory cytokines, inhibition of the accumulation of intracellular reactive
oxygen species (ROS), inhibition of thrombin, inhibition of the hyperproduction of airway
exudates, and induction of endogenous interferon (IFN).

Today licorice is widely used as a food ingredient, flavoring agent, and dietary supple-
ment. Licorice and its derivatives are considered “Generally Recognized as Safe” (GRAS)
by the U.S. Food and Drug Administration (FDA) [8] and are also approved for use in some
over-the-counter drugs [9]. Different limits for licorice consumption have been established
by regulatory authorities around the world, based on the GR content. The Joint FAO/WHO
Expert Committee on Food Additives (JECFA) indicated that 100 mg/day GR would be
unlikely to cause adverse effects in the majority of adults [10]. The Council of Europe
and the UK Food Additive and Contaminants Committee established a limit of 50 mg/kg
GR [11].

Licorice extracts, GR and GA, have been widely put to medicinal uses and some
licorice-containing products are on the market. In Germany, on the basis of traditional use,
aqueous licorice extracts alone or in combination with other plant-derived compounds
are commercialized to support gastric function and to favor the fluidification of airway
mucous [11]. Two aqueous licorice extracts containing 4.64 and 3.92 mg/mL GR have been
authorized for more than 70 years as expectorants in Denmark [11].
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Figure 1. Network of potentially active compounds and their activities in licorice root extracts. The figure illustrates the
active compounds (green circles) linked to their pharmacological activities (blue circles). The network is drawn using
PyGraphViz and the “fdp” layout. In this representation, the most connected nodes are close together in the center of the
network. GA and GR are the compounds with the most activities, and other compounds are on the sides of the network.
GA and GR share many activities with other compounds. TPT is tetramethyl pyrazine-2,3,5,6-tetracarboxylate.
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Importantly, GR is well tolerated. The expected unwanted effects of high doses,
including hypertension and hypokalemia, must, however, be monitored. Oral doses up to
1500 mg of GR and 240 mg for intravenous injection have been employed [12,13].

The metabolism of GR from licorice extract has been investigated. Its processing starts
in the oral cavity where it is partly broken down by glucuronidase, an enzyme in saliva, into
glucuronic acid plus GA. In the intestine, GR is processed by bacteria-mediated hydrolysis
and is mainly absorbed as GA and taken up into the liver where it is metabolized into
glucuronide and sulfate conjugates. These conjugates are transported into the bile and
released into the duodenum where they are again hydrolyzed to GA and subsequently
reabsorbed, causing a pronounced delay in terminal plasma clearance. The intestinal
metabolism means that the plasma concentration after oral GR is under the detection limit
in rats and humans [14,15]. The pharmacokinetic profile of GR after intravenous injection
shows a rapid distribution phase in different animal species [13]. In humans, the volume
of distribution is 60 to 80 mL/kg [12,15], and the maximal plasma concentration after
200 mg GR is 80 µg/mL, corresponding to 100 µM, with a terminal half-life range of 3.5 to
9 h [12,15].

After an oral dose of 500 to 1500 mg GA in humans, Cmax in plasma was reached
after about 4 to 6 h, ranging from 3.5 to 7 µg/mL (4 to 9 µM) [13]. Elimination was biphasic
at doses above 500 mg [13] with a dose-dependent second elimination phase, respectively,
11.5 and 38.7 h after 1000 and 1500 mg [13]. The slow elimination of GA in humans
likely reflects tissue binding. Individual plasma profiles in humans were compatible with
enterohepatic cycling [13]. GA is eliminated as glucuronide or sulfate by the bile while
urinary elimination is negligible, and the latter has an anti-inflammatory action [13,16].

3. Antiviral Effects

The antiviral effects of a component of Glycyrrhyza glabra were first described more
than 40 years ago by Pompei and collaborators, who observed that GR inhibited the growth
and cytopathology of several unrelated DNA and RNA viruses [17]. Since then, numerous
studies have reported that GR and GA can act against viruses belonging to different
families [18].

In a range of concentrations from 0.025 mg/mL up to 6.7 mg/mL, GR and GA were
reported active in vitro against different Herpesviridae, a large family of enveloped, double-
stranded DNA viruses infecting animals and humans [17,19–24]. GR or aqueous licorice
extracts inhibited the growth and replication of Herpes simplex virus type 1 (HSV-1),
Epstein-Barr, Pseudorabies, and Varicella-zoster viruses (Table 2) [17,19,24]. Similar pro-
tective effects were observed in cells infected with the Paramixoviriade Newcastle or
human respiratory syncytial viruses [17,25], or with the Rhabdoviridae vesicular stomatitis
virus [17]. In these negative-strand RNA viruses, GR and aqueous licorice extract from
0.001 up to 6.7 mg/mL inhibited viral growth and increased IFN production. The growth
and replication of enveloped, positive-strand RNA Flaviviridae in Japanese encephalitis,
dengue, West Nile, and Yellow fever, were also reported to be inhibited by 0.1 to 2 mg/mL
GR or 0.01 up to 6.7 mg/mL GA (Table 2) [26,27].
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Table 2. Summary of the main studies on licorice extracts, GR and GA, against several unrelated DNA and RNA viruses.

Virus Family Virus Study Compound
Tested

Effective
Concentration Effects Ref

Hepadnaviridae

Hepatitis A

In vitro
PLC/PRF/5 cells GR 0.25–2 mg/mL Reduction of antigen expression and

virus infectivity [27–29]

Humans
Patients with acute autoimmune hepatitis SNMC 200 mg/day i.v. × 4 weeks Improvement of transaminases,

prevention of disease progression [30–32]

Hepatitis B

In vitro
Rat hepatocytes GR 0.08 mg/mL Suppression of transaminases [33]

PLC/PRF/5 cells GR Not known Suppression of surface antigen [33]

PLC/PRF/5 cells
GR 1–2.5 mg/mL

Suppression of surface antigen [32]
GA 0.5 mg/mL

In vivo
Guinea pigs GR 3 or 67 mg/kg b.w. i.v Suppression of surface antigen,

reduction of transaminases [34]

Humans
Patients with chronic hepatitis and liver cirrhosis SNMC 120–160 mg/day i.v. 3 times/week for

4–36 months
Normalization of transaminases

Reduction of viral load [35,36]

Patients with chronic hepatitis and acute
exacer-bation SNMC 200 mg/day i.v. × 5 days Improvement of transaminases [37]

Hepatitis C

Humans
Patients with chronic hepatitis SNMC 80 mg/day i.v. × 4 weeks Improvement of transaminases [38]

Patients with chronic hepatitis SNMC 15 mg/day p.o. × 90 days Improvement of liver function [33]

Patients with chronic hepatitis SNMC 200 mg/day i.v. × 8 weeks Improvement of transaminases and
liver pathological features [39]

Patients with chronic hepatitis and liver cirrhosis SNMC 120–160 mg/day i.v. 3 times/week for
4−36 months

Normalization of transaminases
Reduced viral load [40]

Retrospective study on patients with
chronic hepatitis SNMC 200 mg/day i.v. × 8 weeks then 2–7 times a

week × 2–16 years

Normalization of transaminases,
reduced risk of hepatocellular

carcinoma
[41]

Patients with chronic hepatitis SNMC 80 mg/day i.v. × 4 weeksor 200 mg/day i.v.
× 8 weeks

Normalization of transaminases,
reduced cirrhosis, reduced risk of

hepatocellular carcinoma
[42]

Phase I/II study in patients with chronic hepatitis SNMC
200 mg i.v. 6 times a week × 4 weeks

or
200 mg i.v. 6 times a week × 26 weeks

Improvement of biochemical and
histological parameters,

improvement quality
[43]

Retrospective study on patients with
chronic hepatitis SNMC 200 mg/day i.v. 3 times a week × 4.3 years

Normalization of transaminases,
reduced risk of

hepatocellular carcinoma
[43]
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Table 2. Cont.

Virus Family Virus Study Compound
Tested

Effective
Concentration Effects Ref

Herpesviridae

Herpes simplex (HSV-1)

In vitro
HEp2 cells GR 0.8–6.7 mg/mL Inhibition of virus growth [17]

Vero cells GR 0.75 mg/mL Inhibition of virus replication [20]

Vero cells

Aqueous
G. glabra

extract
2 mg/mL Inhibition of virus entry [21,22]

Aqueous
G. glabra

extract
Alkaline
extract

0.3–3 mg/mL Inhibition of virus growth [22]

Epstein-Barr Raji cells GR
GA 0.7–3 mg/mL Inhibition of virus growth [23]

Pseudorabies Vero cells
GR >0.3 mg/mL Inhibition of virus growth [19]
GA >3 mg/mL

Varicella-zoster Vero cells

Diammonium
glycyrrhizinate

0.025 mg/mL Inhibition of virus replication [24]
0.005 mg/mL

GR in licorice
powder extract

0.01–1.25 mg/mL Inhibition of virus growth and infectivity [19]

0.125 mg/mL Inhibition of virus growth [24]

Paramixoviridae

Newcastle disease In vitro
HEp2 cells

GR
0.8–6.7 mg/mL Inhibition of virus growth

[17]
0.01–0.3 mg/mL Inhibition of virus growth, increase in

IFN production

Human
respiratory syncytial

HEp-2 cells
A549 cells

Aqueous
G. uralensis

extract
GA

0.001–0.01 mg/mL Inhibition of virus growth [25]

Rhabdoviridae Vesicular stomatitis In vitro
HEp2 cells GA 0.8–6.7 mg/mL Inhibition of virus growth [17]
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Table 2. Cont.

Virus Family Virus Study Compound
Tested

Effective
Concentration Effects Ref

Flaviviridae

Japanese
encephalitis

In vitro
PS cells GA 1–2 mg/mL Inhibition of virus growth and replication

[26]
Vero cells GR 0.38 mg/mL Inhibition of virus replication

Dengue

In vitro
Vero cells GA 0.01–0.1 mg/mL Inhibition of virus replication

[44]
Vero cells GA 0.1–0.6 mg/mL Reduction of infection

West Nile In vitro
Vero cells GR 0.2 mg/mL Inhibition of virus replication [44]

Yellow fever In vitro
Vero cells GR 0.45 mg/mL Inhibition of virus replication [44]

Orthomyxoviridae Influenza A

In vitro
Hep2 cells GR 0.8–6.7 mg/mL Inhibition of virus growth [17,45,46]

MDCK cells GR 0.25–1 mg/mL Reduction of infectivity [47]

A549 cells
MDCK cells
HFL-1 cells

GR 0.4–0.8 mg/mL Inhibition of virus replication [48]

MDCK cells

GR conjugated
with aromatic
amino acids
methyl ester

0.2 mg/mL

Reduction of infectivity [47]
GR

conjugated
with

S-benzyl-
cysteine

0.2 mg/mL
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Table 2. Cont.

Virus Family Virus Study Compound
Tested

Effective
Concentration Effects Ref

In vivo
Mice: C3H, ddY, CDF-1, C57BL, BALB/c, and athymic nude mice GR

20 mg/kg b.w i.v Reduction of infectivity
[48]

50 mg/kg b.w. i.p. Increased IFN production

Influenza and
upper

respiratory tract
infection

Human
hospitalized

patients
GR 80 mg i.v

infusion

Reduced hospitalization, body
temperature lower 24 to 48 h after

admission
[49,50]

Coronaviridae
SARS

In vitro
Vero cells GR 0.3–4 mg/mL Inhibition of virus replication,

adsorption, and penetration
[6,7]

Vero cells
fRhK-4 cells GR 0.1 mg/mL > 0.4

mg/mL Inhibition of viral growth

Avian
infectious bronchitis

In vitro
Vero cells

GR
diammonium 0.08–0.6 mg/mL Inhibition viral growth [7,51]

Retroviridae HIV

In vitro
MT-2, MT-4 cells

GR 0.1–1 mg/mL
Reduction of cellular and viral

membrane fluidity; reduction of
infectivity; inhibition of cell-to-cell [45]

GR 0.01–1 mg/mL Inhibition of virus growth
GA 0.01 mg/mL

MT-4 cells

Aqueous G.
glabra extract 0.3–0.5 mg/mL Inhibition of virus growth

[52]
Alkaline
extract 0.2–0.05 mg/mL Inhibition of virus growth

MT-4 cells
GR 0.4 mg/mL Inhibition of virus growth

[22]
GA >0.5 mg/mL Inhibition of virus growth

Reoviridae Porcino
rotavirus

In vivo
colostrum-deprived piglets,

3 days of age

Methanol
G. uralensis

extract

400 mg/mL p.o.
4 times/day

Cure of diarrhea, improvement of
small intestinal lesions and fecal

virus shedding, reduction of
intestinalinflammation

[53]
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Table 2. Cont.

Virus Family Virus Study Compound
Tested

Effective
Concentration Effects Ref

Arteriviridaein

Porcine
reproductive

and
respiratory
syndrome

In vitro
MARC-145 cells GR 0.5–0.7 mg/mL Reduction of virus penetration

and proliferation [54]

Birnaviridae Infectious
bursal disease

In vivo
chicken: 24-days old brown chicks

Glycyrrhizinate
dipotassium 20–80 mg/kg b.w. p.o. × 5 days

Increased immunological
responses, increased IFN levels,

inhibition of
infection

[55]

SNMC = Stronger Neo-Minophagen C; HIV = human immunodeficiency virus; SARS = severe acute respiratory syndrome; IFN = interferon; G. glabra = glycyrrhiza glabra; G. uralensis = glycyrrhiza uralensis.
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Studies have also investigated the effects of GR on Orthomyxoviridae, negative-sense
RNA viruses causing influenza in animals and humans. In cells infected with influenza
virus A, a pathogen causing influenza in humans, GR from 0.2 to 0.8 mg/mL reduced infec-
tivity and inhibited viral replication [45,47]. In infected mice, intravenous GR, 20 mg/kg
b.w., or intraperitoneal injection of 50 mg/kg b.w., lengthened survival and increased
IFN-γ production [48]. In hospitalized patients with influenza and upper respiratory tract
infection, the intravenous infusion of 80 mg GR reduced both the hospitalization stay and
body temperature 24 h and 48 h after admission [49,50].

GR was reported to be effective in vitro from 0.08 to 4 mg/mL in inhibiting the
replication, adsorption, and penetration of two SARS-coronaviruses (human SARS and
the avian infectious bronchitis virus) [7,51]. In cells infected with human immunodefi-
ciency virus type 1 (HIV-1) GR and aqueous licorice extracts were reported to inhibit viral
growth [22,45,52].

GR’s action was partially ascribed to its ability to act as a saponin, reducing cellular
and viral membrane fluidity. GR has a molecular structure similar to that of cholesterol,
so it may easily diffuse across the lipid bilayer, disorganizing cholesterol-containing lipid
rafts, which are important in the surface attachment of the virus to the cellular plasma
membrane, thus suppressing cell-to-cell fusion induced by HIV [45].

Oral administration of a methanol-licorice extract to colostrum-deprived piglets in-
fected with rotavirus cured diarrhea, reduced intestinal inflammation, and improved
intestinal lesions [53]. GR from 0.5 to 0.7 mg/mL reduced virus penetration and pro-
liferation in cells infected with porcine reproductive and respiratory syndrome virus, a
positive-strand RNA Arteriviridae [54]. Oral treatment with 20 to 80 mg/kg b.w. gly-
cyrrhizinate dipotassium to chicken with the viral infectious bursal disease was recently
reported to stimulate immunological responses, raise IFN levels, and reduce viral load [55].

The main antiviral activity of GR investigated and described is against hepatitis
viruses A, B, and C [27–33]. This stems from the observation in Japan, where licorice-
derived compounds were traditionally used as antiallergic agents, that GR infused into
patients suffering from allergic hepatitis had positive effects on transaminase levels [56]. GR
and GA were then employed in clinical practice to treat liver diseases, notably chronic viral
hepatitis. A pharmacological formulation called Stronger Neo-Minophagen C (SNMC),
containing 0.2% (4 mg) GA as the main active constituent, 2% (40 mg) glycine, and 0.1%
(2 mg) cysteine in 20 mL ampules, was developed and has been widely used in Japan and
throughout East Asia over the past 30 years to treat chronic hepatitis B or C and cirrhosis
(Table 2) [33–35,42]. Its use in the rest of the world is more restricted [33]. Clinical studies
in patients with chronic hepatitis indicated that short- or long-term usage of SNMC is
effective in reducing viral load, improving the liver histopathological features, and reducing
transaminases, with no noteworthy side effects (Table 2) [28,33–43]. These properties result
in a reduced risk of cirrhosis and hepatocellular carcinoma [43].

The mechanisms involved in the ability of GR to improve liver biochemistry and histol-
ogy are not fully understood. Pharmacokinetic investigations indicate that the bioavailabil-
ity of intravenous GR correlates with the functional capacity of the liver. In fact, the half-life
and the total body clearance of GR were greater in patients with hepatitis than in healthy
subjects [12]. GR dose-dependently inhibited the expression of hepatitis A virus antigen
and reduced infectivity in the human hepatoma cell line PLC/PRF/5 without causing
cytotoxicity [27] (Figure 2). GR also inhibited the entry of the virus into the cells, which
occurs through receptor-mediated endocytosis [27]. This effect was ascribed to GR’s ability
to interact with cell membranes, reducing both the fluidity and the negative surface charge
(Figure 2). Experiments on isolated rat hepatocytes indicated that GR lowers the release of
the enzyme aspartate aminotransferase and inhibits the activation of phospholipase A2,
both involved in the cell membrane lysis [28].
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In addition to the anti-viral and cytoprotective effects, GR and GA were found to
display marked anti-inflammatory and immunomodulatory activities mediated by multiple
mechanisms. Bacterial and viral infections activate the toll-like receptor 4 (TLR4) signaling
pathway, leading to an increased production of pro-inflammatory cytokines, such as nuclear
factor-κB, tumor necrosis factor, interleukin (IL)-1, and IL-6 [57]. GR and GA can interfere
with the TLR4 activation and inhibit inflammation by different mechanisms. They may
directly reduce the expression/activation of the TLR4 receptor thus suppressing cytokine
production and inflammatory mediators. In addition, GR and GA may bind to proteins
named high-mobility group box 1, directly activated by the TLR4 pathway to mediate the
production and release of cytokines and chemokines [57]. Finally, GR and GA are also
reported to increase the secretion of IFN, helping the prevention of viral attachment [58].
All these activities resulted in the improvement of the immunological status of patients
with hepatitis B and the increase in the antigen’s immunogenicity [31] (Figure 2). Based on
the findings in mice infected with influenza A virus [48], it was hypothesized that GR may
protect against the damage caused by hepatitis viruses by inducing the production of IFN,
causing cytokines secreted by infected cells of the immune system to respond to infectious
agents. All these findings supported the potential use of GR in patients with hepatitis who
do not respond to IFN therapy.

4. Effects on COVID-19 Infection

The antiviral activities of GR in general and specifically for SARS-CoV, suggest its
potential use in treating COVID-19. In 2003, Cinatl et al. showed that GR hinders the
internalization of the SARS-CoV-1 virus in a concentration-dependent manner, with an
IC50 of 300 µM [6]. Though the mechanism of action is not clear, it seems that GR is a
multi-targeting compound, interacting with various viral and cellular processes important
for viral internalization and replication [57,59].

The internalization of the SARS-CoV-2 virus to the host cell starts with the viral
spike protein binding to the cellular receptor angiotensin-converting enzyme 2 (ACE2)

BioRender.com
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(Figure 3) [60]. Once bound to the cell surface of the host, via ACE2, the spike protein
is then cleaved by the host transmembrane serine protease 2 (TMPRSS2) into the S1/S2
domain. The S1 domain contains the receptor-binding domain (RBD) which binds directly
to ACE2. After cleavage of the spike protein, the virus is internalized by the cell by viral
and cellular membrane fusion.
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This step is followed by the expression and replication of the viral genomic RNA
which are incorporated into newly produced viral particles. Replication is mediated by
several proteases, and 3-chymotrypsin-like cysteine protease (3CLpro or MPro) enzyme
is one of the key players sustaining the viral life cycle [60]. The newly formed virions are
then transported to the cell surface and released by exocytosis into the extracellular space
(Figure 3).

Several in silico docking studies suggested a direct interaction of GR and GA to
these key players in virus internalization and replication: ACE2 [61–63], spike protein and
its RBD [63–66], and 3CLPro [63,65,67–74]. Only a few in silico analyses were negative
(3CLpro [68,75], Spike [76]).

The main protease 3CLpro contains several canonical binding pockets, denoted P1-P4,
in its active site [77]. In silico studies suggest the binding of GR to these pockets [63,67–74].
However, when tested on enzyme activity, the results were contradictory. GR was not
present among the active compounds in a large-scale high-throughput in vitro study (i.e.,
it did not inhibit the enzyme activity by 60% at a concentration of 50 µM) [77], though a
recent study showed a 70% inhibition of the enzyme activity with 30 µM GR [78]. The same
authors showed that the IC50 of GR in a Vero E6 cell infection assay was around 500 µM,
possibly suggesting limited internalization of GR.

Mahdian et al. suggested different potential binding pockets for GR, both on the spike
protein (on RBD and in another domain close to the S1/S2 cleavage site), and on ACE2
(in a domain close to the interface where RBD binds) [63]. GR binding to RBD and to the
S1 spike subdomain was also suggested by Yu et al. based on in silico data [64]. These
authors, however, provided experimental support too, although not so definite. They
employed surface plasmon resonance (SPR), a technique widely used to study interactions
between unlabeled molecules and determine their binding constants [79]. SPR indicated
relatively high-affinity binding of GR to the S1 domain (Kd 0.87 µM) [64], while a binding
inhibition assay based on nanobeads showed more than 20 times lower affinity (IC50
22 µM). Another study investigated the GR binding to the S2 domain and ACE2, in silico
with positive docking results, and experimentally by SPR [80]. In this case, however, the
affinity estimated by SPR was very low (Kd more than 2 mM) suggesting a nonspecific
interaction.
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The interaction of GR with ACE2 was also investigated [62]. SPR studies indicated a
Kd of 4.4 µM, but the enzymatic activity of ACE2 was not affected, suggesting that it does
not bind to the catalytic domain [62]. The docking results did indicate that GR binds to a
domain of ACE2 close to the binding site responsible for the interaction with RBD, thus
suggesting that it might interfere with the spike protein-mediated interaction of the virus
with the host cells. However, this has not been demonstrated experimentally: Xu et al. did
not observe any effect of GR, up to 100 µM, on viral internalization in HEK293T cells [81],
in line with the results shown by Sand et al. in Vero E6 cells (IC50 500 µM) [78].

On the basis of the findings by these different authors, indicating that GR activity
varied by some orders of magnitude, one can hypothesize that the molecule has to penetrate
the cell to reach a reasonably high concentration to be effective.

Another mechanism by which a compound might hinder viral internalization is
the reduction of ACE2 on the cell surface. GR inhibits the expression of ACE2 due to a
reduction in the signaling activity of the high mobility group box 1 complex in a dose- and
time-dependent manner [62]. GR may also reduce SARS-CoV-2 infectivity by inhibiting the
lipid-dependent attachment of the virus to host cells, as for other viruses [57]. However, no
experimental data are available to support this hypothesis.

Recent evidence suggests that TLR4 can strongly interact with the spike protein of
SARS-CoV-2 and induce an inflammatory signaling pathway which results in an increased
expression of ACE2 [82]. It cannot be excluded that GR and GA may prevent viral infection
by blocking TLR4 and thus ACE2 expression [82].

Even though many in silico studies suggest that GR interacts with proteins involved
in SARS-CoV-2 virus infection and reproduction, supporting in vivo and in vitro data are
scarce, even more so for GA, the main GR metabolite. There is only one in silico study
suggesting GA binding to the protease 3CLPro [69].

GR and GA are also included in the ReFRAME library [83], a library of 12,000 com-
pounds used for drug repositioning screening. When these compounds were tested at a
concentration of 5 µM for inhibition of viral infection in Vero E6 cells, GR and GA were not
among those active [84,85].

The interest in licorice extract to prevent or treat COVID-19 is also justified by its
anti-inflammatory and antiallergic actions [57,82,86], which have been attributed to the
corticosteroid-like activity of GR and GA [11]. Licorice has been employed to treat dry
cough and chronic obstructive lung diseases due to GR’s ability to reduce tracheal spasm
induced by histamine, and to its antitussive and expectorant properties [11].

Based on these findings and the known ability of GR and GA to boost IFN secretion,
with anti-inflammatory effects, two clinical trials have been launched on the effects of
licorice extracts on clinical symptoms in COVID-19 patients. One is a pilot, single-center,
non-randomized trial, registered on ClinicalTrial.gov (NCT04487964), testing the effects
of licorice extracts administered together with Boswellia serrata gum as complementary
medicine in Egyptian patients with COVID-19. In addition to conventional therapy, patients
receive one capsule twice daily containing 250 mg of standardized licorice extract, corre-
sponding to 62.5 mg GR, for 10 days, and 2 g four times daily for 15 days of Boswellia gum
resin. The other is a single-center, open-label, randomized clinical trial with parallel-group
design, registered in the Iranian Registry of Clinical trials (IRCT20200506047323N2) which
will look at the effects of licorice root extracts in moderately ill patients with pneumonia
from COVID-19 [87]. In addition to the standard treatment, D-REGLIS tablets containing
380 mg of standardized dry extract of licorice with less than 3% GR at a dose of 760 mg
were given three times a day for 14 days. No results have been published yet.
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GR Glycyrrhizin
GA Glycyrrhetinic acid
G. glabra Glycyrrhiza glabra
G. uralensis Glycyrrhiza uralensis
HIV Human immunodeficiency virus
HIV-1 Human immunodeficiency type-1 virus
SARS Severe acute respiratory syndrome
SNMC Stronger Neo-Minophagen C
HSV-1 Herpes simplex virus type 1
IFN Interferon
ACE2 Angiotensin-converting enzyme 2
TLR4 Toll-like receptor 4
IL Interleukin
TMPRSS2 Transmembrane serine protease 2
RBD Receptor binding domain
3CLpro 3-chymotrypsin-like cysteine protease
SPR Surface Plasmon Resonance
GRAS Generally Recognized as Safe
FDA U.S. Food and Drug Administration
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