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Identification of genes related to intramuscular fat content of pigs 
using genome-wide association study

Sohyoung Won1, Jaehoon Jung1, Eungwoo Park2, and Heebal Kim1,3,*

Objective: The aim of this study is to identify single nucleotide polymorphisms (SNPs) and 
genes related to pig IMF and estimate the heritability of intramuscular fat content (IMF).
Methods: Genome-wide association study (GWAS) on 704 inbred Berkshires was performed for 
IMF. To consider the inbreeding among samples, associations of the SNPs with IMF were tested 
as random effects in a mixed linear model using the genetic relationship matrix by GEMMA. 
Significant genes were compared with reported pig IMF quantitative trait loci (QTL) regions and 
functional classification of the identified genes were also performed. Heritability of IMF was 
estimated by GCTA tool.
Results: Total 365 SNPs were found to be significant from a cutoff of p-value <0.01 and the 365 
significant SNPs were annotated across 120 genes. Twenty five genes were on pig IMF QTL 
regions. Bone morphogenetic protein-binding endothelial cell precursor-derived regulator, fork
head box protein O1, ectodysplasin A receptor, ring finger protein 149, cluster of differentiation, 
tyrosine-protein phosphatase non-receptor type 1, SRY (sex determining region Y)-box 9 (SOX9), 
MYC proto-oncogene, and macrophage migration inhibitory factor were related to mitogen-
activated protein kinase pathway, which regulates the differentiation to adipocytes. These genes 
and the genes mapped on QTLs could be the candidate genes affecting IMF. Heritability of 
IMF was estimated as 0.52, which was relatively high, suggesting that a considerable portion 
of the total variance of IMF is explained by the SNP information.
Conclusion: Our results can contribute to breeding pigs with better IMF and therefore, producing 
pork with better sensory qualities.
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INTRODUCTION

Intramuscular fat content (IMF), which stands for the amount of fat located throughout skeletal 
muscles, is a major quality trait of meat affecting sensory attributes such as flavor and texture. IMF 
is decided by the number and size of intramuscular adipocytes, and is directly related to the juici-
ness and tenderness of meat [1]. Pork with higher IMF tends to have better flavor, juiciness and 
tenderness, resulting in higher overall acceptability [2]. Therefore, breeding pigs to have higher 
IMF can produce pork that is more palatable. 
  Genome-wide association study (GWAS) enables determining the impact of genetic variants 
on various traits of animals affecting productivity. GWAS and genotyped single nucleotide poly-
morphism (SNP) data can identify genes associated to a certain economic trait of animals. Previous 
GWAS studies about IMF of pigs have found that heart-type fatty acid binding protein and long-
chain-fatty-acid-CoA ligase 4 polymorphisms have an association with IMF of different pig 
populations [3]. Also, splicing factor, arginine/serine-rich 18 gene is reported to be related to the 
regulation of intramuscular fat deposition in pigs [4]. Polymorphic microsatellite loci CSSM34 
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and ETH10 were associated with marbling scores, which show 
the IMF in the Angus, Shorthorn and Wagyu cattle [1].
  Many previous studies using GWAS to determine the associa-
tion of genomic data with meat quality traits such as IMF focused 
on finding quantitative trait loci (QTL) [5-7]. Out bred line-cross 
model analysis suggested QTLs on chromosomes 2, 4, and 6, and 
the half-sib model analysis suggested linkage for chromosomes 
4 and 7 [5]. The data of QTLs discovered from previous studies 
developed into a QTL database. The QTL database shows where 
QTL regions are located throughout chromosomes for each eco-
nomic trait and animal. Using the QTL database, we can check 
whether a gene associated with a specific trait is within the known 
QTL region of the trait or not. 
  In this study, we analyzed the SNP data and IMF of pigs using 
GWAS to identify SNPs associated with IMF. To adjust the effect 
of inbreeding, a genetic relationship matrix was constructed and 
used during GWAS. Significant SNPs were matched to the near-
est genes within 100 kb. We compared the identified genes with 
the QTL database of pig IMF and classified the function of the 
identified genes. We also estimated the heritability of IMF using 
the data. This study aims to search genes associated to IMF of 
pig and furthermore, to provide knowledge for breeding pigs 
having better IMF consequently, better sensory qualities.

MATERIALS AND METHODS

Ethics statement
The study protocol and the standard operating procedures (No. 
2009-077, C-grade) of Berkshire pigs were reviewed and approved 
by National Institute of Animal Science’s Institutional Animal 
Care and Use Committee.

Animals and phenotype records
An inbred Berkshire population was used for analysis, and IMF 
of the Berkshire sample was measured. Seven hundred and four 
samples were examined. Among them, 367 samples were male, 
204 samples were female and the sex of 133 samples was unknown. 
The IMF of each pig was measured by chemical fat extraction 
procedures.

Genotyping and quality control
The genomic DNAs of pigs were genotyped on the Illumina Por-
cine 60 K SNP Beadchip. A total of 62,163 SNPs were genotyped. 
We discarded the markers with low minor allele frequency (<0.05), 
significant deviation from Hardy-Weinberg equilibrium (p<10–3), 
and low genotype call rate (<95%). Among 62,163 SNPs, 40,191 
SNPs passed quality control. The Hardy-Weinberg test failed 3,651 
SNPs, 3,304 SNPs failed the genotype missingness test, and 19,829 
SNPs failed the minor allele frequency test. 

Genome-wide association analysis
The phenotype (IMF) was standardized to z-scores by subtract-

ing the mean and then dividing by the standard deviation, in 
each sex group (male, female, unknown) separately. Single trait, 
univariate linear mixed model was used for the analysis assum-
ing additive effect of SNPs. SNP effects were treated as random 
effects and sex was added as a covariate. Software GEMMA was 
used to calculate the genetic relationship matrix of individuals 
and to test the effects of SNPs by likelihood ratio test [8]. The cut-
off for statistical significance of genes was p<0.01.

Gene annotation and functional classification
Gene annotation of significant SNPs was based on the Ensembl 
Genes 89 database of Sus scrofa genes (Sscrofa 10.2). Significant 
SNPs were annotated to the nearest genes within a distance of 100 
kb. Functional classification of genes was performed on DAVID, 
an online functional annotation database. Sus scrofa was selected 
as both species and background option. The cutoff of gene ontol-
ogy was p<0.05. 

Heritability estimation
The GCTA tool [9] was used to calculate heritability for IMF. We 
calculated the genetic relationship matrix between all pairs of 
samples using all the autosomal SNPs. We then estimated the 
variance of genetic component by restricted maximum likeli-
hood analysis, and heritability by dividing the estimated genetic 
variance by the total variance measured.

RESULTS 

Identification of significant single nucleotide polymorphisms 
A total of 365 SNPs from all 19 chromosomes were identified as 
significant SNPs as the result of GWAS. Chromosome 14 con-
tained 53 significant SNPs which was the largest number among 
all chromosomes. There were 40 and 35 significant SNPs on chro-
mosome 7 and 11 respectively, which contained second and third 
number of significant SNPs. The statistical significance values of 
the association between each SNP and IMF calculated as -log10 
(p-value) across 18 autosomal chromosomes and chromosome 
X was plotted in the form of a Manhattan plot (Figure 1).
  The 365 significant SNPs found from GWAS were annotated 
to the nearest genes within 100 kb. Among the 365 significantly 
identified SNPs, 153 were annotated across 120 genes. There were 
some SNPs annotated to same genes and none of the significant 
SNPs on chromosome 8 and 15 had genes within 100 kb distance. 
Full information of significant SNPs, their chromosome number, 
position, closest gene, distance from the closest gene, raw p-value 
is on Supplementary Table S1. 

Mapping on quantitative trait loci database
Identified genes were compared with IMF QTL regions base on 
the Pig QTLdb. Total 25 genes from the 120 significant genes, 
which is 20.8%, were included in reported pig IMF QTL regions. 
Seven genes on chromosome 9, 6 genes on both chromosome 2 
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and 6, and 2 genes on chromosome 4, 7, and 17 each were mapped 
on QTLs (Figure 2). This suggests a considerable proportion of 
the genes identified from this study was consistent with the pre-
vious QTL studies, and those genes can be considered as genes 
that are located on the section of the genome having high cor-
relation with IMF of pigs.

Functional classification 
Identified genes were classified by their biological function and 
ontology. Regulation of mitogen-activated protein kinase (MAPK) 
cascade was the most significant gene ontologies from GOTERM_
BP_5. The full result of functionally annotated genes are listed on 
Supplementary Table S2. Especially, bone morphogenetic protein 
(BMP)-binding endothelial cell precursor-derived regulator 
(BMPER), forkhead box protein O1 (FOXO1), ectodysplasin A 

receptor, ring finger protein 149 (RNF149), cluster of differentia-
tion (CD40), tyrosine-protein phosphatase non-receptor type 1 
(PTPN1), SRY (sex determining region Y)-box 9 (SOX9), MYC 
proto-oncogene (MYC), and macrophage migration inhibitory 
factor were categorized as genes related to both MAPK cascade 
and the regulation of MAPK cascade. In addition, growth/differ-
entiation factor 9 and BMP6 were related to the regulation of 
MAPK pathway. FOXO1, RNF149, PTPN1, MYC were addition-
ally annotated to negative regulation of MAPK cascade and 
regulation of stress-activated MAPK cascade.

Estimated heritability
Heritability of IMF was estimated by GCTA. The total variance 
of the sample was 1.020818 and the genetic variance was 0.526911. 
The genetic variance was estimated by the variance of genome-

Figure 1. The statistical significance values of the association of single nucleotide polymorphisms (SNPs) across 18 autosomal chromosomes and the X chromosome with 
intramuscular fat content (IMF) plotted as –log10 p values. The horizontal dotted line indicates the cutoff p = 0.01.

Figure 2. Location of significant genes mapped on quantitative trait loci (QTLs). The light gray areas indicate where genes are located and the dark gray areas indicate QTL regions.
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wide SNPs. The estimated heritability was 0.516166, approximately 
0.52, and the standard deviation of the estimated heritability was 
0.061655. 
  In previous studies, heritability of IMF was estimated at 0.39 
[10], 0.44 [11], 0.52 [12], 0.65 [13]. Estimted heritability of IMF 
in the referred studies had values between 0.39 and 0.65. The 
heritability estimated from the SNP and phenotype data in this 
study, 0.52, was in the range of reported estimations and was 
according with the previous studies.

DISCUSSION

Genes related to MAPK cascade and adipocyte differentiation
MAPK cascade was the most significant gene ontology (GO) term 
from the functional annotation results of significant genes and 
other GO terms related to MAPK cascade appeared multiple times 
as well. MAPK pathway regulates various cell functions such as 
proliferation, differentiation and mitosis [14]. Moreover, MAPK 
pathway is closely related to the differentiation of preadipocytes 
to adipocytes [15,16]. Some of the proteins involved in MAPK 
pathway also regulate adipocyte differentiation. For example, 
MAPK phosphatase-1 (MKP-1) downregulates the expression 
of p42/p44 MAPK and plays an important role in adipocyte dif-
ferentiation [15]. In addition, inhibition of p38MAPK decreases 
adipocyte differentiation in humans and therefore p38MAPK 
activation can be seen as a requirement for primary human adi-
pocyte differentiation [16]. Since IMF is determined by the amount 
of adipocytes, genes related to MAPK pathway could affect IMF 
by regulating the amount of adipocyte differentiation.
  Some of the significant genes related to MAPK cascade or the 
regulation of MAPK cascade (BMPER, FOXO1, SOX9, PTPN1, 
CD40) are previously reported to have influence on adipocyte 
differentiation. BMPER directly interacts with BMPs [17]. Some 
BMPs activate p38MAPK pathway through the MAPK kinase 
(MAPKKK) cascade [18] and BMPER could be needed for adi-
pocyte differentiation to activate p38MAPK. Furthermore, BMP4 
has an effect on lipid accumulation as well as expression of adi-
pocyte markers [19]. Furthermore, BMP2 and BMP7 induces 
adipocyte differentiation at low concentrate in C3H10T1/2 cell 
line [20]. FOXO1 is expressed in the early stages of adipocyte dif-
ferentiation and acts as a preadipocyte differentiation preventing 
substituent [21]. Epidermal growth factor (EGF) repeat con-
taining transmembrane protein (pref1) activates MAPK and 
upregulates SOX9 resulting in inhibition of adipocyte differen-
tiation [22]. CD40 is related to the activation of MAPK [23] and 
PTPN1 is a negative regulator of CD40 [24]. PTPN1 polymor-
phisms are reported to be associated with adipocyte related 
measures such as body fat percentage [25].

Heritability of IMF and selection 
The estimated heritability of IMF, 0.52, was relatively high. This 
means that a substantial part of the total phenotypic variance of 

IMF is explained by the genetic variance. Here, the variance is 
that of the population, and thus high heritability suggests high 
genetic influence in the population on the whole [26]. Heritability 
is an important parameter for predicting the response to selec-
tion [27]. Since the Breeder’s equation is given as R = h2 S, where 
R is the response to selection, S is the selection differential and 
h is the heritability [28], higher heritability can result in stronger 
response of selection and effective selection. Therefore, the phe-
notype information of IMF can be useful information for selecting 
pigs to breed pigs having high level of IMF. 
  Pork containing more than 3% IMF tends to have higher sen-
sory qualities including juiciness, tenderness and taste [29]. As 
IMF of pork increased from a range of 2.01% to 3.0% to higher 
than 3%, juiciness, tenderness, and both the intensity and de-
sirability of taste increased. Since the current average of IMF 
measured from the Berkshire sample was 2.82%, if we increase 
IMF up to 3% by selection and breeding, we would be able to 
produce pork with improved juiciness, tenderness and taste. 

Limitations of results 
The tool used for association analysis in this study, GEMMA, 
adjusts the effect of sex by using sex as a covariate and uses genetic 
information from the X chromosome in the same way as those 
from autosomal chromosomes while computing the genetic re-
lationship matrix [8]. However, since females carry two copies of 
X chromosomes while males carry a single copy, different meth-
ods should be used to estimate the genetic relationship for female-
female pairs, male-male pairs and female-male pairs respectively 
in GWAS analyses [9]. Furthermore, among the 704 samples used 
in this study, the sex of 133, 19% of the sample, was unknown. 
Also, to balance the allele dosage between sexes, one of the female 
X chromosome is silenced by random X chromosome inactiva-
tion [30]. Therefore, additional information coding which allele 
was inactivated is needed to adjust GWAS analyses. In this study, 
information about which allele was inactivated was not provided, 
and this might together cause inaccuracy in the results from the 
X chromosome [31]. However, the proportion of significant SNPs 
on the X chromosome was 2.47% (9 out of 365) which was rela-
tively low. Thus, some part of inaccuracy in the results from the 
X chromosome may have not affect the overall results of the study.
  Owing to the small sample size of animals, the overall signifi-
cance of the study was low. Small sample size lowers the estimated 
effect size and consequently lowers the power of the study. The 
estimated power of the study was only 0.21 [32]. To detect signifi-
cantly associated SNPs in a study with low power, we had to use 
liberal statistics and a liberal cutoff (raw p-value and p<0.01). This 
might cause some significant SNPs to be false positives, but still 
the SNPs detected in this study can be suggested as candidates 
for SNPs related to IMF of pig. Besides, we could pick out some 
SNPs more likely to related to IMF of pig by comparing them with 
known QTLs or searching their biological pathways. The genes 
mapped on QTLs or related to MAPK cascade may be stronger 
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candidates for genes that are associated with IMF of pig than 
others.
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