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 2 

ABSTRACT  34 

The severity of COVID-19 lung disease is higher in the elderly and people with pre-existing co-35 

morbidities. People who were born preterm may be at greater risk for COVID-19 because their early 36 

exposure to oxygen at birth increases their risk of being hospitalized when infected with RSV and 37 

other respiratory viruses. Our prior studies in mice showed how high levels of oxygen (hyperoxia) 38 

between postnatal days 0-4 increases the severity of influenza A virus infections by reducing the 39 

number of alveolar epithelial type 2 (AT2) cells. Because AT2 cells express the SARS-CoV-2 40 

receptors angiotensin converting enzyme (ACE2) and transmembrane protease/serine subfamily 41 

member 2 (TMPRSS2), we expected their expression would decline as AT2 cells were depleted by 42 

hyperoxia. Instead, we made the surprising discovery that expression of Ace2 and Tmprss2 mRNA 43 

increases as mice age and is accelerated by exposing mice to neonatal hyperoxia. ACE2 is primarily 44 

expressed at birth by airway Club cells and becomes detectable in AT2 cells by one year of life. 45 

Neonatal hyperoxia increases ACE2 expression in Club cells and makes it detectable in 2-month-old 46 

AT2 cells. This early and increased expression of SARS-CoV-2 receptors was not seen in adult mice 47 

who had been administered the mitochondrial superoxide scavenger mitoTEMPO during hyperoxia. 48 

Our finding that early life insults such as hyperoxia enhances the age-dependent expression of SARS-49 

CoV-2 receptors in the respiratory epithelium helps explain why COVID-19 lung disease is greater in 50 

the elderly and people with pre-existing co-morbidities. 51 

 52 
 53 
  54 
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 3 

INTRODUCTION 58 

COVID-19 is an infectious disease of the lung caused by the severe acute respiratory 59 

syndrome coronavirus (SARS-CoV-2). As of July 2020, the World Health Organization reported this 60 

virus has infected more than 10 million people worldwide and killed approximately 500,000 people 61 

(https://covid19.who.int). Common symptoms include fever, cough, fatigue, shortness of breath, and 62 

loss of olfactory or gustatory function. While the majority of cases are mild, some people progress into 63 

severe acute respiratory distress syndrome, multi-organ failure, thrombosis, and septic shock. The 64 

severity of disease and mortality is highest among the elderly and people who have pre-existing lung 65 

or heart disease. There is growing evidence that asymptomatic children and young adults with 66 

COVID-19 may be at risk for heart disease, inflammatory vascular disease, and stroke 1. People who 67 

were born preterm may be at great risk for COVID-19 because they are already at risk for 68 

hospitalization following infection with RSV, rhinovirus, human bocavirus, metapneumovirus, and 69 

parainfluenza viruses 2. They may also develop pulmonary vascular disease and heart failure 3,4, 70 

autism-like disorders 5,6, and retinopathy 7 that puts them at further risk for COVID-19. Identifying 71 

mechanisms that drive susceptibility to pandemic viral infections like SARS-CoV-2 is therefore of 72 

great concern to susceptible individuals and their families.   73 

The severity of COVID-19 is likely to be related to age-related changes in SARS-CoV-2 74 

receptors and how the immune system responds to infection 1. Emerging evidence indicates high- risk 75 

individuals with SARS-CoV-2 have high rates of alveolar epithelial type 2 (AT2) cell infection, 76 

suggesting disease severity may be related to higher alveolar expression of the SARS-CoV-2 receptor 77 

angiotensin converting enzyme (ACE2) and its co-receptor transmembrane protease/serine subfamily 78 

member 2 (TMPRSS2) 8,9. In fact, a recent meta-analysis of 700 people with predicted  79 

COVID-19 co-morbidities found that their lungs expressed high levels Ace2 mRNA 10. ACE2 is a zinc 80 

containing metalloprotease present at the surface of cells in the lung, heart, intestines, kidneys, and 81 

brain. It lowers blood pressure by catalyzing the hydrolysis of the vasoconstrictive molecule 82 

angiotensin II to angiotensin (1-7). ACE2 co-precipitates with transmembrane protease/serine 83 

subfamily member 2 (TMPRSS2) which hydrolyzes the S protein on coronaviruses, thus enabling viral 84 
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entry into infected cells 9,11. Higher expression of these proteins in AT2 cells would theoretically lead 85 

to higher rates of infection in the distal lung. Infected AT2 cells produce inflammatory mediators that 86 

could contribute to a lethal cytokine storm 12,13. They may also die. Loss of AT2 cells below a critical 87 

threshold could compromise alveolar homeostasis because they produce surfactant and serve as 88 

adult stem cells for the alveolar epithelium 14. In fact, high rates of AT2 infection have been seen in 89 

people who have succumbed to H5N1, a highly pathogenic avian strain of influenza A virus 15-17. But 90 

whether aging or pre-existing lung co-morbidities like preterm birth enhance the severity of respiratory 91 

viral infections via changing expression of viral receptors is not yet known.  92 

Since preterm infants are exposed too soon to oxygen, we have been using mice to 93 

understand how high levels of oxygen at birth increases the severity of influenza A virus infection in 94 

adults. We previously reported how adult mice exposed to hyperoxia (100% oxygen) between 95 

postnatal days 0-4 develop persistent inflammation and fibrotic lung disease when infected with 96 

influenza A viruses HKx31 (H3N2) or PR8 (H1N1) 18,19. Neonatal hyperoxia does not enhance primary 97 

infection 20 or clearance 21 of the virus. Instead, it reduced the number of adult AT2 cells by ~50%, 98 

thus lowering the number available to maintain alveolar homeostasis and epithelial regeneration after 99 

infection 22. Because neonatal hyperoxia reduces the number of AT2 cells, we predicted it would 100 

reduce the alveolar expression of ACE2 and TMPRSS2 in the lung. Instead, we made the surprising 101 

discovery that expression of ACE2 and TMPRSS2 increases as mice age and this age-dependent 102 

expression can be enhanced by early exposure to hyperoxia. Our findings in mice suggest temporal 103 

and spatial changes in expression of SARS-CoV-2 receptors may contribute to the increased severity 104 

of COVID-19 seen in the elderly and people with pre-existing co-morbidities, including those born 105 

preterm.   106 

107 
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RESULTS 108 

ACE2 is initially expressed by Club cells and then by AT2 cells as mice age. The localization 109 

of ACE2 was examined in the lungs of mice between PND4 and 2 years of age by 110 

immunohistochemistry so as to better understand the temporal spatial pattern of its expression. ACE2 111 

was primarily detected in airway epithelial cells with minimal staining seen in the alveolar space 112 

(Figure 1a). The intensity of ACE2 staining increased steadily in the airway epithelium throughout the 113 

life of the mouse. A rare ACE2-positive alveolar cells (arrows) was first observed on PND7 and then 114 

steadily increased in number between 6 and 24 months of age. Western blotting for ACE2 confirmed 115 

that the abundance of ACE2 protein became progressively enriched in the whole lungs of 12- and 24-116 

month-old mice relative to those of mice harvested at 2 months of age (Figure 1b). ACE2 mRNA 117 

levels were similarly increased in the whole lungs of 24-month-old mice than in those of mice 118 

harvested at 2 months of age (Figure 1c).   119 

Co-staining with antibodies for ACE2 and the Club cell marker secreteglobin1a1 (Scgb1a1) 120 

showed extensive co-localization along the airways at both 2 and 12 months of age (Figure 2a), but 121 

the intensity of ACE2 staining was significantly higher at 12 months of age than at 2 months of age 122 

(Figure 2b). Co-staining for ACE2 and the AT2 cell marker proSP-C revealed that the vast majority of 123 

ACE2+ cells in the alveoli were AT2 cells (Figure 2c). Approximately 20% of proSP-C+ AT2 cells 124 

expressed ACE2 at 2 months while 80% of proSP-C+ AT2 cells expressed it at 12 months (Figure 125 

2d). These findings reveal that ACE2 is primarily expressed by the airway Club cells of young adult 126 

mice but becomes increasingly expressed by AT2 cells as mice age. 127 

 128 

Neonatal hyperoxia enhances the age-dependent changes in ACE2 expression.  We 129 

previously showed that adult mice exposed to 100% oxygen between PND0-4 (Figure 3a) have fewer 130 

AT2 cells than mice exposed to room air 23and thus expected ACE2 expression to be lower in the 131 

lungs of mice exposed to neonatal hyperoxia than in those of controls. It was therefore surprising to 132 

find that the levels of ACE2 protein were higher in the lungs of 2-month-old mice that were exposed to 133 

neonatal hyperoxia than in age-matched control lungs (Figure 3b). The levels of Ace2 mRNA were 134 

.CC-BY-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 22, 2020. . https://doi.org/10.1101/2020.07.22.215962doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.22.215962
http://creativecommons.org/licenses/by-nd/4.0/


 6 

also increased in the lungs of neonatal hyperoxia-exposed mice at 2 months of age and remained 135 

higher than in the lungs of age-matched controls at 6 and 12 months of age (Figure 3c). To determine 136 

the amount of oxygen needed to stimulate the expression of Ace2, the lungs of 2-month- old mice 137 

exposed to 0, 40, 60 or 80% oxygen from PND0-4 were examined by qRT-PCR (Figure 3d). While 138 

40% oxygen was not sufficient to induce Ace2 mRNA, the levels of Ace2 expression was significantly 139 

higher in mice exposed to 60% and 80% oxygen relative to controls. Exposing mice to a low chronic 140 

dose of oxygen (40% for 8 days) that does not alter alveolar development 24 also failed to increase 141 

Ace2 levels relative to controls (data not shown). Because 40% oxygen for 8 days is higher 142 

cumulative dose of oxygen than 60% for 4 days, these findings suggest that oxygen alone may not be 143 

stimulating Ace2 expression.   144 

Immunohistochemistry was used to further understand how hyperoxia affected ACE2 145 

expression in the adult lung. While neonatal hyperoxia increased intensity of ACE2 staining in the 146 

airway, it most obviously increased the number of alveolar cells with detectable ACE2 (Figure 4a). 147 

When quantified, neonatal hyperoxia increased the number of alveolar cells expressing ACE2 by 148 

approximately 50% at 2, 6 and 12 months of age (Figure 4b). The increased alveolar expression 149 

seen at 2 months of age was primarily attributed to increased expression by proSP-C+ AT2 cells; 150 

however, this difference resolved at 6 and 12 months of age as more AT2 cells in control lungs began 151 

to express ACE2 (Figure 4c).   152 

 153 

Anti-oxidants block oxygen-dependent changes in ACE2 expression. Prior studies by us and other 154 

investigators showed that administering the mitochondrial superoxide scavenger mitoTEMPO to mice 155 

during exposure to hyperoxia (Figure 5a) prevents the alveolar simplification and cardiovascular 156 

disease observed when these mice reach adulthood 25-27. qRT-PCR revealed administering 157 

mitoTEMPO during hyperoxia blunted the oxygen-dependent increase in Ace2 mRNA seen in 2- 158 

month-old mice (Figure 5a, b). Immunohistochemistry confirmed mitoTEMPO reduced the number of 159 

AT2 cells with detectable levels of ACE2 protein (Figure 5c, d). It also reduced the intensity of ACE2 160 

staining in airway Club cells (Figure 5e,  f). Interestingly, while mitoTEMPO did not affect ACE2 161 
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staining in control mice, it reduced the numbers of alveolar ACE2+ cells  in the lungs of hyperoxia-162 

exposed mice lower than controls. 163 

 164 

Neonatal hyperoxia stimulates age-dependent changes in TMPRSS2.  TMPRSS2 is an 165 

endoprotease expressed by respiratory epithelial cells that facilitates viral entry of coronaviruses into 166 

epithelial cells 9. The levels of Tmprss2 mRNA and protein were examined in the lungs of 2-, 12- and 167 

18-month-old mice that were exposed to neonatal hyperoxia and room air from PND0-4 by qRT-PCR 168 

and western blotting. Tmprss2 mRNA was readily detected in the lungs of 2-month-old mice, and  169 

increased ~5-fold at 12 months and ~8-fold at 18 months (Figure 6a). Neonatal hyperoxia further 170 

increased Tmprss2 expression by ~50% at each time-point examined. Western blotting similarly 171 

showed that the levels of TMPRSS2 protein were higher in the whole lung lysates of mice exposed to 172 

neonatal hyperoxia than in those of control mice (Figure 6b). As observed for Ace2 expression, 173 

exposure to ≥ 60% oxygen from PND4-0 was required to significantly increase the levels of Tmprss2 174 

mRNA in the lungs of mice at 2 months of age (Figure 6c). Exposure to 40% oxygen from PND0-8  175 

also failed to change Tmprss2 expression in adult mice (data not shown) while the administration of 176 

mitoTEMPO to mice during exposure blunted the effects of neonatal hyperoxia on Tmprss2 mRNA 177 

(Figure 6d).  Together, these findings suggest age and neonatal hyperoxia have similar effects on 178 

increasing TMPRSS2 as they do for ACE2. 179 

180 
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DISCUSSION 181 

 The COVID-19 outbreak was first detected in the Chinese city of Wuhan in 2019 and has since 182 

expanded rapidly to become one of the worst pandemics to ever challenge the modern world. While 183 

people of all ages are susceptible to infection, the severity of disease is worse in people who are 184 

elderly or who have pre-existing health conditions including COPD, diabetes, hypertension, and 185 

cancer 28. Those with multiple co-morbidities have a higher rate of mortality. People born preterm may 186 

also be at great risk for COVID-19 because they often suffer from multiple co-morbidities due, in part, 187 

to their lungs being exposed to oxygen too soon or to super-physiological concentrations used to 188 

maintain appropriate blood oxygen saturations. It is unclear whether co-morbidities increase disease 189 

by changing spatial and temporal expression of SARS-CoV-2 receptors or the immune response that 190 

leads to a lethal cytokine storm 1. In this study, we present evidence that expression of the SARS-191 

CoV-2 co-receptors ACE2 and TMPRSS2 increase in the respiratory epithelium of mice as they age 192 

and this can be stimulated or accelerated by early exposure to hyperoxia. Expression of ACE2 in 193 

distal AT2 cells was of particular interest because infection of these cells with other viruses has been 194 

associated with higher mortality in humans 15-17. When infected such as by influenza A virus, AT2 cells 195 

may contribute to lung disease by producing inflammatory molecules that contribute to a lethal 196 

cytokine storm 12. They may also die and therefore reduce the number of surviving AT2 cells required 197 

to serve as stem cells for alveolar regeneration 22,29,30. Our findings support the idea that age and co-198 

morbidities like preterm birth may increase the severity of COVID-19 by changing temporal and spatial 199 

patterns of SARS-CoV-2 receptors.    200 

 We found that ACE2 was primarily expressed by airway Club cells during early postnatal life. 201 

The intensity of ACE2 staining increased in the airways of mice with age and became detectable in 202 

the alveoli of young adult mice. Co-localization with proSP-C revealed that most, but not all alveolar 203 

cells expressing ACE2 were AT2 cells. Our findings are consistent with an earlier study showing that 204 

ACE2 is expressed in the adult mouse lung by Clara cells (now called Club cells), AT2 cells, and to 205 

some extent by endothelial cells around small and medium sized vessels 31. While that study showed 206 

how ACE2 levels rise during fetal development, our findings extend it by showing that ACE2 207 
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expression continues to increase as mice age. We also found that Tmprss2 mRNA expression 208 

increases as mice age and this expression was similarly enhanced by neonatal hyperoxia. While AT2 209 

cells have previously been shown to express TMPRSS2 11, we were not able to detect it in the mouse 210 

lung using commercially available antibodies. However, we did find that the abundance of Tmprss2 211 

mRNA and protein abundance increased with age and neonatal hyperoxia, and was reduced by 212 

mitoTEMPO similar to that of Ace2. The higher expression of these genes as mice age is in 213 

agreement with recent review that discussed two unpublished studies deposited in bioRxiv showing 214 

how expression of Ace2 and Tmprss2 mRNA increases with age in human respiratory epithelium 1. 215 

Those findings in humans and ours in mice suggest the age-dependent increase in SARS2-CoV-2 216 

receptors may be responsible for increasing the severity of COVID-19 lung disease in elderly people.     217 

It is important to recognize the normal functions of ACE2 and TMPRSS2 because that may 218 

help explain why their expression steadily increases with age 32. ACE2 is perhaps best known for its 219 

role in controlling blood pressure in the renin-angiotensin system 33. ACE1 converts the 10-amino acid 220 

angiotensin I to an 8-amino acid vasoconstrictive peptide called angiotensin II. ACE2 accumulates in 221 

people with pulmonary hypertension and hydrolyzes Angiotensin II to Ang(1-7), which has 222 

vasodilation properties. Over-expressing ACE2 also protects against right ventricular hypertrophy 34. 223 

Hence, higher levels of ACE2 seen as the lung ages may reflect an adaptive response designed to 224 

protect against the development of cardiovascular disease. Interestingly, ACE2 levels decline in 225 

bleomycin-induced lung fibrosis and humans with interstitial pulmonary fibrosis while angiotensin II 226 

levels rise 35,36. Angiotensin II can promote fibrosis by stimulating AT2 cell apoptosis downstream of 227 

TGF-b signaling 37. ACE2 serves as an anti-fibrotic molecule by stimulating the hydrolysis of 228 

angiotensin II to Ang(1-7), which in turn signals through the Mas oncogene to block AT2 cell apoptosis 229 

by suppressing JNK activation 38. The slow and steady increase in ACE2 expression as the lung ages 230 

may also serve to preserve AT2 cells and thus reduce or prevent the development of idiopathic 231 

pulmonary fibrosis. In contrast to ACE2, the normal role of TMPRSS2 in the lung is poorly understood. 232 

TMPRSS2 is a serine protease that is localized to the apical surface of secretory cells such as Club 233 

and AT2 cells of the lung 39. Its expression is highly regulated by androgens in the prostate gland and 234 
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may be similarly responsive to androgens in the lung, suggesting it may play a role in sex-dependent 235 

differences in the lung.    236 

Our study also found that neonatal hyperoxia increased or accelerated expression of Ace2 237 

mRNA, ACE2 protein, and Tmprss2 mRNA as mice age. Significant changes were seen with 60% or 238 

more FiO2 at 8 weeks (2 months) of age and persisted as mice age. How hyperoxia regulates 239 

expression of these proteins is conflicting and remains to be better understood. One study using 240 

human fetal IMR-90 fibroblasts found that hyperoxia does not change expression of ACE2 40. 241 

However, ACE2 was depleted when cells returned to room air presumably because it was being 242 

proteolyzed and shed into the media. In contrast, another study found higher levels of ACE2 in 243 

newborn rats exposed to 95% oxygen for the first week of life and then recovered in 60% oxygen for 244 

the next two weeks 41. In our hands, changes in Ace2 or Tmprss2 mRNA were first detected in 8-245 

week-old mice exposed to hyperoxia between PND0-4. We did not detect changes at the end of 246 

oxygen exposure (PND4). In fact, we recently deposited an RNA-seq analysis of AT2 cells isolated 247 

from PND4 mice exposed to room air versus hyperoxia that shows hyperoxia modestly inhibits Ace2 248 

and increases Tmprss2 mRNA abundance (Gene Expression Omnibus of the National Center for 249 

Biotechnology Information under the accession number GSE140915). This suggests neonatal 250 

hyperoxia may not affect expression until after the mice are returned to room air. Because ACE2 and 251 

TMPRSS2 were only affected by doses of oxygen that cause long-term changes in lung function (i.e., 252 

60% for 4 days but not 40% for 4 or 8 days), we speculate that they occur as an adaptive response to 253 

the alveolar simplification and cardiovascular disease as mice exposed to neonatal oxygen age. The 254 

elevated expression of ACE2 and perhaps TMPRSS2 may serve to prevent the loss of AT2 cells 255 

damaged by early oxygen and promote vasodilation as the pulmonary capillary bed undergoes 256 

rarefaction 23,42. But higher levels of these proteins may become a maladaptive response when they 257 

render the lung more susceptible to coronavirus infections.  258 

While it remains to be determined how age or oxygen regulate expression of ACE2 and 259 

TMPRSS2, our studies with mitoTEMPO suggest their expression may be influenced by oxidative 260 

stress. Administering mitoTEMPO, a scavenger of mitochondrial superoxide during hyperoxia blunted 261 
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the oxygen-dependent increase in these genes detected in 2-month-old mice. Because hyperoxia 262 

progressively increases mitochondrial oxidation, it has historically been used to model aging-related 263 

oxidative stress 43. This implies mitochondrial oxidation that accumulates as the lung ages steadily 264 

increases expression of ACE2 and TMPRSS2, which in turn may then attempt to defend against the 265 

pathological changes attributed to the aging process. Anti-oxidant therapies may therefore prove 266 

useful for suppressing expression of SARS-CoV-2 receptors and reducing the severity of COVID-19 267 

related lung disease, especially in people with pre-existing co-morbidities. 268 

Increased expression of ACE2 and TMPRSS2 may not be the only way these proteins 269 

enhance the severity of COVID-19-related lung disease. For example, TMPRSS2 facilitates viral 270 

activation and entry by cleaving hemagglutinin on influenza A virus and the spike protein on the 271 

SARS-CoV-2 virus 11. The spike protein accesses the cell when it binds the glucose regulated protein 272 

78 (Grp78, BiP) found on the cell surface 44. Grp78 is a master regulator of the unfolded protein 273 

response (UPR) 45. It is normally localized to the endoplasmic reticulum (ER) where it inhibits the UPR 274 

by binding Activating Transcription Factor 6 (ATF6), Protein kinase RNA-like Endoplasmic Reticulum 275 

Kinase (PERK), and Inositol-requiring Enzyme 1 (IRE1). Grp78 is released from these proteins when 276 

oxidation and other stressful conditions cause an accumulation of unfolded proteins. It can then 277 

escape the ER and traffic to the cell surface where it becomes available to bind the coronavirus S 278 

protein and facilitate viral entry. This information should raise great concern for people with familial 279 

forms of IPF caused by mutations in SFTPC and other genes that activate the UPR in AT2 cells 46. 280 

Genetic studies in mice suggest mutant forms of SP-C that activate the UPR are not sufficient by 281 

themselves to cause fibrotic lung disease. However, they can predispose the lung to fibrotic disease 282 

following viral infections 47. Familial forms of IPF that activate the UPR in AT2 cells may therefore 283 

accelerate the age-dependent susceptibility of AT2 cells to SARS-CoV-2 infections. 284 

In summary, we found that neonatal hyperoxia increases or accelerates the age-dependent 285 

expression of ACE2 and TMPRSS2 in the airway and alveolar epithelium of mice. Understanding how 286 

expression of these proteins changes with age and in response to early life insults such as neonatal 287 
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hyperoxia may provide new opportunities for reducing the severity of COVID-19 and other types of 288 

lung disease.  289 
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MATERIALS AND METHODS 290 

Mice.  C57BL/6J mice were purchased from the Jackson Laboratories and maintained as an 291 

inbred colony. Mice were exposed to room air (21% oxygen) as control or hyperoxia (100% oxygen 292 

unless otherwise stated) between birth and postnatal day (PND) 4 and then returned to room air 19. 293 

Dams were cycled every 24 hours to ensure that hyperoxia did not compromise their health. Some 294 

mice exposed to room air or hyperoxia were injected intraperitoneally with 0.7µg/g mitoTEMPO (Enzo 295 

Life Sciences, Farmingdale, NY) or vehicle (phosphate-buffered saline) on PND0, PND1, and PND2. 296 

All mice used in this study were of mixed sex and housed in a pathogen-free environment according 297 

to a protocol (UCAR2007-121E) approved by the University Committee on Animal Resources at the 298 

University of Rochester. 299 

 300 

Immunohistochemistry. Lungs were inflation fixed overnight in 10% neutral buffered formalin, 301 

embedded in paraffin and 4 µm sections prepared 23,48. Sections were stained with antibodies against 302 

ACE2 (Invitrogen, PA5-47488, Waltham, MA), Scgb1a1 (Sigma, 07-063, St. Louis, MO) and proSP-C 303 

(Seven Hills Bioreagents, Cincinnati, OH). Immune complexes were detected with fluorescently 304 

labeled secondary antibody (Jackson Immune Research, West Grove, PA). Sections were then 305 

stained with 4', 6-diamidino-2-phenylindole (DAPI) (Life Technologies, Carlsbad, CA) before viewing 306 

with Nikon E800 Fluorescence microscope (Microvideo Instruments, Avon, MA) and a SPOT-RT 307 

digital camera (Diagnostic Instruments, Sterling Heights, MI).   308 

 309 

Quantitative RT-PCR. Total RNA was isolated from the lung using Trizol reagent 310 

(ThermoFisher Scientific) and reverse transcribed to cDNA using the iScript cDNA synthesis kit (Bio-311 

Rad Laboratories, Hercules, CA). The cDNA was then amplified with SYBR Green I dye on CFX96™ 312 

or CFX384™ Real-Time PCR detection system (Bio-Rad Laboratories, Hercules, CA). PCR products 313 

were amplified with sequence-specific primers for mouse Ace2 (sense 5’-314 

GGATACCTACCCTTCCTACATCAGC-3’ and antisense CTACCCCACATATCACCAAGCA-3’), 315 

Tmprss2 (sense 5’- TACTTGGAGCGGACGAGGAA-3’, and antisense 5’- 316 
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AGGAGGTCAGTATGGGGCTT-3’) or 18S rRNA (sense 5-CGGCTACCACATCCAAGGAA-3’, and 317 

antisense 5’- GCTGGAATTACCGCGGCT- 3’) used to normalize equal loading of the template 318 

cDNAs. Amplifications were conducted with iTaq Universal SYBR Green Master Mix (Bio-Rad 319 

Laboratories, Hercules, CA). Fold changes in gene expression were calculated by the DDCt method 320 

using the Ct values for the housekeeping 18S rRNA as a control for loading. 321 

  322 

Western blot analysis. The left lung lobe wsd homogenized in lysis buffer and insoluble 323 

material removed by centrifugation 23. Equal amounts of protein were separated on sodium dodecyl 324 

sulfate polyacrylamide gels and transferred to nylon membranes. The membranes were 325 

immunoblotted with primary antibodies to ACE2 (Invitrogen, PA5-47488, Waltham, MA), TMPRSS2 326 

(Abcam, ab92323, Cambridge, MA) or b-ACTIN (Sigma, A2066). The blots were then incubated in 327 

appropriate secondary antibody (Southern Biotech, Birmingham, AL). Immune complexes were 328 

detected by chemiluminescence and visualized with a ChemiDoc Imaging System (Bio-Rad 329 

Laboratories, Hercules, CA). 330 

 331 

Statistical Analysis. Data were evaluated using JMP14 software (SAS Institute, Cary, NC) and 332 

graphed as means ± SEM. An unpaired t-test and 2-way ANOVA were used to determine overall 333 

significance, followed by Tukey-Kramer HSD tests.  334 

335 
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FIGURE LEGENDS 481 

 482 

Figure 1.  ACE2 expression changes in lung as mice age. (a) Lungs harvested from mice of different 483 

ages were stained for ACE2 (red) and counterstained with DAPI (blue). ACE2 was detected in 484 

airways of all mice and alveolar regions (yellow arrows).  Bar = 100 µm. (b) Lungs homogenates 485 

prepared from 2-month, 12-month, and 24-month-old mice were immunoblotted for ACE2 and b-486 

ACTIN as a loading control. Each lane represents an individual mouse. Band intensity of ACE2 to b-487 

ACTIN was quantified and graphed as fold change relative to 2-month samples. Bars reflect mean ± 488 

SD graphed. (c) qRT-PCR was used to quantify Ace2 mRNA in total lung homogenates of 2-month 489 

and 24-month-old mice. Data is graphed as the fold change of Ace2 after normalizing to 18S RNA. 490 

Bars reflect mean ± SD graphed as fold change over 2-month values. Statistical significance is 491 

comparisons for all pairs using Tukey-Kramer HSD test, with *P≤0.05; **P≤0.01. 492 

 493 

Figure 2. Aging increases ACE2 expression in airway Club and alveolar type 2 cells. (a) Lungs from 494 

2-month and 12-month-old mice were immunostained for ACE2 (red), Scgb1a1 (green), and 495 

counterstained with DAPI (blue). Boxed sections are individual ACE2 and Scgb1a1 stains. (b) 496 

Quantitation of ACE2 Red staining intensity. All the cells were imaged using identical exposure time. 497 

Scale bar = 50 µm. (c) Lungs were stained for ACE2 (red), proSP-C (green), and counterstained with 498 

DAPI (blue). Boxed sections are enlarged below each figure. (d) The proportion of proSP-C+ cells 499 

expressing ACE2 was quantified and graphed. Statistical significance is comparisons for all pairs 500 

using Tukey-Kramer HSD test, with **P≤0.01; ***P≤0.001. Bar = 50 µm. 501 

 502 

Figure 3.  Neonatal hyperoxia stimulates expression of ACE2 in adult mice. (a) Cartoon showing the 503 

experimental approach of exposing newborn mice to hyperoxia. (b) Total lung homogenates were 504 

immunoblotted for ACE2 and b-ACTIN as a loading control. Data is graphed as mean ± SD fold 505 

change over room air values. (c) qRT-PCR was used to quantify Ace2 mRNA in total lung 506 
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homogenates of 2-, 12-, and 18-month-old mice exposed to room air or hyperoxia between PND0-4. 507 

Values were normalized to expression of 18S RNA and graphed as mean ± SD fold change of ACE2 508 

in 2-month-old room air mice. (d) qRT-PCR was used to quantify Ace2 mRNA in total lung 509 

homogenates of 2-month-old mice exposed to room air, 40%, 60%, or 80% oxygen between PND0-4. 510 

Values were normalized to expression of 18S RNA and graphed as fold change of ACE2 in 2 month 511 

room air mice. Statistical significance is comparisons for all pairs using Tukey-Kramer HSD test with  512 

*P≤0.05; **P≤0.01; ***P≤0.001.  513 

 514 

Figure 4. Neonatal hyperoxia stimulates expression of ACE2 in alveolar type 2 cells. (a) Lungs of 2-, 515 

6- and 12-month-old mice exposed to room air or hyperoxia between pnd0-4 were stained for ACE2 516 

(red), proSP-C (green), and DAPI. Upper rows reflect room air and lower rows reflect hyperoxia 517 

between PND0-4. Boxed regions are enlarged to the right of each image. (b) The proportion of ACE2-518 

positive to total DAPI cells was quantified and graphed. (C) The proportion of proSP-C+ cells that 519 

express ACE2 were quantified and graphed. Values in b, c represent mean ± SD of 4-5 lungs per 520 

group with stated P values in the graphs. Statistical significance is comparisons for all pairs using 521 

Tukey-Kramer HSD test  with*P≤0.05.   522 

 523 

Figure 5.  Anti-oxidants prevent hyperoxia from stimulating expression of ACE2. (a) Cartoon showing 524 

the experimental approach of exposing newborn mice to hyperoxia and treated with mitoTEMPO (d1-525 

d3). (b) qRT-PCR was used to measure Ace2 mRNA expression in 2-month-old mice exposed to 526 

room air or hyperoxia as vehicle or mitoTEMPO between PND0-4. Values reflect mean ± SD of 4-5 527 

mice per group and graphed as fold change over mice administered room air and vehicle control. 528 

Expression of Ace2 mRNA was normalized to 18S rRNA and mean ± SD values graphed relative to 529 

room air values. (c) Lung alveoli were stained for ACE2 (red), and counterstained with DAPI (blue).   530 

(d) Total % of ACE2 cells in lung alveoli.  (e) Lung airways were stained for ACE2 (red), and 531 

counterstained with DAPI (blue). (f) Quantitation of ACE2 Red staining intensity. All the cells were 532 

imaged using identical exposure time. Scale bar = 50 µm; Quantitation of ACE2 Red was derived from 533 
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images. Statistical significance is comparisons for all pairs using Tukey-Kramer HSD test with  534 

*P≤0.05; **P≤0.01; ***P≤0.001. 535 

 536 

 Figure 6. Neonatal hyperoxia stimulates age-dependent expression of Tmprss2 mRNA. (a) qRT-PCR 537 

was used to quantify Tmprss2 mRNA in total lung homogenates of 2-, 12-, and 18-month-old mice 538 

exposed to room air or hyperoxia between PND0-4. Values were normalized to expression of 18S 539 

RNA and graphed as fold change of ACE2 in 2-month-old room air mice. (b) Western blot-based 540 

quantification of TMPRSS2. Data in panels A-D reflect mean ± SD and graphed as fold change 541 

relative to control mice exposed to room air. (c) qRT-PCR was used to measure Tmprss2 mRNA in 542 

total lung homogenates of 2 month mice exposed to room air, 40%, 60%, or 80% oxygen between 543 

PND0-4. (d) qRT-PCR was used to measure Tmprss2 mRNA in control and 2-month-old mice 544 

exposed to room air or hyperoxia and vehicle or mitoTEMPO between PND0-4 N=4-5 mice per group. 545 

Statistical significance is comparisons for all pairs using Tukey-Kramer HSD test with  *P≤0.05; 546 

**P≤0.01. 547 
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Figure 4 
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Figure 5
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Figure 6 
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