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Abstract

Background: Replication origins fire at different times during S-phase. Such timing is determined by the chromosomal
context, which includes the activity of nearby genes, telomeric position effects and chromatin structure, such as the
acetylation state of the surrounding chromatin. Activation of replication origins involves the conversion of a pre-replicative
complex to a replicative complex. A pivotal step during this conversion is the binding of the replication factor Cdc45, which
associates with replication origins at approximately their time of activation in a manner partially controlled by histone
acetylation.

Methodology/Principal Findings: Here we identify histone H3 K36 methylation (H3 K36me) by Set2 as a novel regulator of
the time of Cdc45 association with replication origins. Deletion of SET2 abolishes all forms of H3 K36 methylation. This
causes a delay in Cdc45 binding to origins and renders the dynamics of this interaction insensitive to the state of histone
acetylation of the surrounding chromosomal region. Furthermore, a decrease in H3 K36me3 and a concomitant increase in
H3 K36me1 around the time of Cdc45 binding to replication origins suggests opposing functions for these two methylation
states. Indeed, we find K36me3 depleted from early firing origins when compared to late origins genomewide, supporting a
delaying effect of this histone modification for the association of replication factors with origins.

Conclusions/Significance: We propose a model in which K36me1 together with histone acetylation advance, while K36me3
and histone deacetylation delay, the time of Cdc45 association with replication origins. The involvement of the
transcriptionally induced H3 K36 methylation mark in regulating the timing of Cdc45 binding to replication origins provides
a novel means of how gene expression may affect origin dynamics during S-phase.
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Introduction

DNA replication of eukaryotic chromosomes starts at multiple

loci called replication origins. A prereplicative complex (preRC)

forms at these loci at the end of mitosis/early G1. This preRC

remains inactive until the beginning of S-phase, when cyclin- and

DBF4-dependent kinases (CDK and DDK, respectively) are

activated. Their signal leads to a hierarchical association of

replication factors at origins, and initiation of DNA synthesis [1].

One such replication factor, Cdc45, has been shown to associate

with origins approximately at their time of activation [2–5].

Only a subset of replication origins is activated at any given time

during S-phase, likely reflecting differences between replication

origins in their efficiency of activation [6–10]. Differential timing

in origin firing determines the number and distribution of

replication forks along chromosomes and has important implica-

tions for genome stability. In fact, activation of late origins is

inhibited upon DNA damage or replication stress [11–15]. Timing

of replication origin firing is partly controlled by S-phase cyclins

and DNA checkpoint kinases. In Saccharomyces cerevisiae the deletion

of one of the S-phase cyclins, Clb5, causes a strong delay of late

replication origins [16]. This delay results in inactivity of most late

origins on the chromosome, as they are inactivated by the passing

replication fork before they can fire. In contrast, inhibition of S-

phase checkpoint kinases advances origin firing in both yeast and

human cells [15,17]. These findings support a model in which

replication timing is the result of competing signals, which may

determine the availability of replication factors to activate origins.

Replication factors, such as Cdc45, need to interact with

replication origins embedded in their chromosomal context. It is

therefore not surprising that the time of firing does not depend on

the origin itself but on its chromosomal environment [18,19]. This

has been demonstrated in Saccharomyces cerevisiae, where origins

consist of DNA segments of ,200 bp, also named Autonomously

Replicating Sequences (ARS), as they confer to episomal plasmids

the ability to replicate. Transfer of an early firing origin to a late

replicating region results in its late activation [19]. Moreover, late

ARSs maintain their late timing on a plasmid only when
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transferred with several kilobases of their surrounding chromo-

somal sequence [19,20]. Determinants of replication timing must

therefore be inherent to the chromosomal context, albeit their

precise nature remains to be uncovered.

A correlation between replication timing and transcriptional

activity of proximal genes has been observed in many organisms,

suggesting a connection between these nuclear functions. High

resolution replication profiles reveal an overall positive correlation

between gene expression and timing of replication in both human

and Drosophila melanogaster [8,9,21]. However, several instances

have been reported in which transcription by RNA polymerase II

(RNA pol II) inactivates DNA replication origins. In S. cerevisiae the

activity of a plasmid borne ARS is inhibited by transcription

induced from an adjacent promoter [22]. Moreover ARS605,

located within the open reading frame of a meiosis specific gene, is

active when transcription is repressed in mitosis, but becomes

inactivated upon transcriptional induction of this gene during

meiosis [23]. Similarly, replication origins within the mammalian

HoxB domain are silenced upon transcriptional activation of the

locus [24]. Therefore, while proximity to transcribed genes may

confer early activation timing to origins, the location within

actually transcribed regions may inhibit their activation.

Similar to their regulatory role in transcription, histone

modifications could regulate the access of replication factors to

replication origins and therefore determine the time of origin

activation. This has been proposed for histone acetylation.

Inhibitors of histone deacetylases cause advanced replication

timing, and late replicating chromosomal regions colocalize with

hypoacetylated chromatin [25,26]. Studies in S.cerevisiae showed

that increasing global histone acetylation by deletion of the Rpd3

histone deacetylase results in earlier association of Cdc45 with late

origins and advanced time of activation [2,4]. Moreover,

recruitment of a histone acetyltransferase (HAT) to a single late

origin advances Cdc45 binding in yeast and time of firing in both

human and yeast [4,27]. Nonetheless, a genome wide correlation

between histone acetylation and the time of origin firing has not

been detected [28]. It is therefore unlikely that this modification is

the sole determinant of replication timing.

The importance of multiple histone modifications in regulating

transcription is well established. Furthermore, transcription itself

leads to changes in the modification pattern of the underlying

chromatin [29]. For instance, the Set2 histone methyltransferase

binds directly to the phosphorylated C-terminal tail domain

(CTD) of elongating RNA pol II [30–35]. This results in

methylation of histone H3 lysine 36 over transcribed genes, which

causes the recruitment of the small Rpd3 complex (Rpd3(S)),

deacetylation of histones and repression of spurious transcription

initiation [36–38]. H3 K36 can be mono-, di- and trimethylated

(H3 K36me1, -me2 and -me3). While in yeast Set2 is responsible

for all three states of K36 methylation (K36me), separate enzymes

have evolved in higher eukaryotes to provide either K36me2 or

K36me3 [39]. Recent studies indicate that the different methyl

states of H3 K36 are functionally distinct. In D.melanogaster H3

K36me2 and -me3 have been shown to have opposite effects on

H4 K16 acetylation [39] while in Arabidopsis thaliana K36me2 and -

me3, but not -me1, are required for transcription of genes

regulating flowering time [40]. In S. cerevisiae K36me3, but not -

me2, is dependent on phosphorylation of the C-terminal domain

of RNA pol II by Ctk1 and correlates with transcription [41]. The

number of methylation moieties attached to K36 therefore

profoundly affects the function of this histone residue.

Histone modifications often provide the binding substrate for

histone-binding proteins. K36me3 has been shown to be directly

bound by three different proteins: Ecm5, Eaf3 and Nto1. Ecm5 is a

protein of unkown function, but the presence of a PHD-finger and

Jumonji-C domain strongly suggest a role in either binding or

regulating histone modifications [42]. Eaf3 is a subunit of both the

small Rpd3 histone deacetylase complex and the NuA4 histone

acetyltransferase complex, while Nto1 is part of the NuA3 histone

acetyltransferase [36–38,43,44]. Together they provide a direct link

between H3 K36me3 and the regulation of histone acetylation.

We show here that methylation of H3 K36 is involved in

regulating the kinetics of Cdc45 association with replication

origins. Its binding to origins is delayed in the absence of SET2

and cannot be advanced by increasing histone acetylation in this

genetic background. Furthermore, our data are consistent with

K36me1 and -me3 having opposing functions in DNA replication

initiation. K36me1 increases at replication origins upon binding of

Cdc45, suggesting a positive function for K36me1 during initiation

of DNA replication. On the contrary, early origins are depleted of

K36me3 and this modification decreases around the time of

Cdc45 binding to origins, pointing to a negative role of this

modification. This is further supported by a shortened S-phase in

the absence of the K36me3-binding proteins Eaf3 and Nto1. We

propose that a combination of multiple histone modifications

regulates the timing of replication origin firing.

Results

H3 K36me by Set2 is necessary for accelerated S-phase
progression in the absence of RPD3

Deletion of the Rpd3 histone deacetylase in S.cerevisiae leads to

earlier Cdc45 binding at late origins and concomitant advancement

in time of activation, resulting in a more rapid S-phase progression

[2,4]. To better understand the molecular mechanisms involved in

this process we asked which histone lysine residues were necessary

for the accelerated S-phase in Drpd3 cells. We therefore deleted

RPD3 in strains carrying different combinations of histone lysine (K)

to arginine (R) substitutions and determined which mutations would

revert the more rapid S-phase. a-factor arrested cells (G1) were

released into S-phase at 30uC and their DNA content at indicated

times determined by FACS (Fig. 1A and data not shown). Although

this assay is not a precise measure for the length of S-phase, it is

sensitive enough to determine major differences between strains. It

should also be noted that G1 release and S-phase progression can

differ between experiments. Therefore, all kinetics presented within

one figure-panel show results from strains grown and processed in

parallel. A preliminary experiment using a H4 K5/8/12/16R

mutant did not alter the more rapid S-phase when RPD3 is deleted.

A H3 K4/9/14/18/23/27R mutant caused a prolonged cell-cycle

in the absence of RPD3, which rendered the analysis of difficult

interpretation, while the H3 K27R mutant still allowed for a more

rapid S-phase upon deletion of RPD3 (data not shown). However,

when H3 K36/37R was used as genetic background, deletion of

RPD3 no longer led to S-phase shortening (Fig. 1A). DNA synthesis

in the WT strain occurred between ,30 and 70 min after release

from G1. As expected, both entry into and progression through S-

phase were accelerated in the Drpd3 strain with DNA synthesis

occurring between ,20 and 40 min. This is not due to a general

shortening of the cell cycle. In fact, both WT and Drpd3 cells enter

mitosis at ,90 min, as indicated by the reappearance of the G1

peak. The K36/37R mutant progressed through S-phase with

kinetics similar to the WT. Strikingly, when RPD3 was deleted in

this histone mutant no shortening of S-phase was observed.

Therefore, H3 K36 and/or K37 are necessary for more rapid

DNA replication in the absence of histone deacetylation by Rpd3.

To test if methylation of H3 K36 by Set2 was necessary for a

more rapid S-phase in the absence of Rpd3, SET2 was deleted in a

Cdc45 and Histone Methylation
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WT and its isogenic Drpd3 strain. S-phase progression was

monitored as described above (Fig. 1B). As seen before cells

lacking RPD3 showed a reduction in the time of S-phase

progression compared to WT. Dset2 cells had a slightly longer S-

phase than the WT. We consistently observed a certain percentage

of Drpd3Dset2 cells remaining in G1 without entering the cell cycle.

Such a sub-population was observed in all six repeats of this

experiment and may reflect a secondary effect of the mutation.

The remaining Drpd3Dset2 cells however, replicated with similar

times as the Dset2 mutant, again abolishing the more rapid S-phase

in absence of RPD3. This parallels the behaviour of the K36/

K37R mutation and argues that methylation of K36 by Set2 is

necessary for the accelerated S-phase observed in Drpd3 cells.

Set2 is necessary to advance Cdc45 association with
origins in the absence of RPD3

Deletion of RPD3 had been shown to accelerate S-phase

progression by advancing Cdc45 binding and activation of late

replication origins [2,4]. To test whether H3 K36me is necessary

for this advanced binding of Cdc45, we determined the time of

Cdc45 association with eight origins, comparing WT, Drpd3, Dset2

and Drpd3Dset2 strains. WT, Drpd3, Dset2 and Dset2Drpd3 strains

expressing a FLAG-tagged version of Cdc45 were arrested in G1,

released into S-phase at 24uC to allow for better resolution and

samples taken at indicated times. ChIP was performed using

aFLAG-antibody and the resulting DNA analysed by semiquan-

titative PCR (Fig. 2B). Linearity of the reaction was tested by

amplification of increasing amounts of ChIP- and Input-DNA (Fig.

S1). A very late replicating telomeric sequence was used as internal

control. Although this sequence associates with Cdc45p as the

replication fork moves across, it does so later and was therefore

considered to be the best choice in order to control for loading

differences. FACS analysis determined S-phase progression (Fig.

S2), while cell-budding demonstrated a synchronous progression

through the cell cycle for all four strains (Fig. 2A). This analysis

was repeated twice, with comparable results. Moreover, two

Figure 1. H3 K36me by Set2 is necessary for accelerated S-phase progression in Drpd3 cells. (A) Exponentially growing cells of strains
MVY17 (WT), MVY31 (Drpd3), MVY37 (K36/37R) and MVY34 (Drpd3K36/37R) were arrested in G1 with a-factor and released into S-phase at 30uC.
Samples were taken at indicated times and processed for FACS analysis. G1 and G2 DNA content are indicated at the bottom of the figure. Grey bars
indicate the estimated length of S-phase. (B) Same as (A) but with strains MMY001 (WT), MMY002 (Drpd3), MVY42 (Dset2) and MVY43 (Drpd3Dset2).
doi:10.1371/journal.pone.0005882.g001
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additional repeats using the Dset2 and Drpd3set2 strains further

confirmed the results described below.

Cdc45 association with the early ARS607 peaked between 28 and

36 min in both the WT and Drpd3 strains, but was delayed in Dset2

and Drpd3Dset2 strains (between 36 and 44 min) (Fig. 2B and 2C). At

the late firing ARS1412 binding of Cdc45 peaked between 44 and

52 min in the WT and peaked earlier in the Drpd3 strain by

approximately one time-point. This confirms the advanced activation

of late origins previously observed in Drpd3 cells [2,4]. Association of

Cdc45 at ARS1412 was again delayed in the Dset2 strain and, most

importantly, was not advanced upon deletion of RPD3 (Drpd3Dset2).

Similar results were obtained at six more ARSs, with the exception of

ARS1524 where Cdc45 binding was unaffected in the Drpd3 strain

(Fig. S3). These data show that deletion of SET2 delays Cdc45

binding to replication origins and eliminates its earlier association

with late origins in the absence of RPD3.

Dset2 does not decrease histone acetylation at origins
To rule out the possibility that the SET2 deletion reduces histone

acetylation at origins and therefore indirectly affects the dynamics of

Cdc45 binding we analysed the level of histone acetylation at ten

origins in WT, Drpd3, Dset2 and Drpd3Dset2 strains. Antibodies against

acetylated histones H3 or H4 were used for ChIP. Deletion of SET2

alone led to a slight increase in H3 and H4 acetylation at most origins

Figure 2. Set2p is necessary for advanced association of Cdc45 with origins in WT and Drpd3 cells. Strains MMY033 (WT), MVY51 (Drpd3),
MVY57 (Dset2) and MVY58 (Drpd3Dset2) were arrested in G1 with a-factor, released at 24uC into S-phase and samples were taken at indicated times.
(A) Cell budding was assessed by microscopy. (B) ChIP of Cdc45-3FLAG was performed with an a-FLAG antibody and analysed by semiquantitative
PCR using primers specific for ARS607, ARS1412 and a telomeric loading control (TEL). (C) Graphical representation of Cdc45-3FLAG ChIP showing the
relative intensity of ARS-specific fragments after normalization to the telomeric loading control fragment and the input DNA. The time of maximal
intensity is indicated for each strain.
doi:10.1371/journal.pone.0005882.g002
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when compared to the WT and was further increased in the absence

of RPD3 (Fig. S4). This is expected, as H3 K36me3 is known to

recruit the Rpd3S histone deacetylase complex. Two origins

(ARS607 and ARS603) showed a 2–3 fold increase in H4 acetylation

in Dset2 cells compared to the WT. Importantly, H3 and H4

acetylation levels in the Drpd3 mutant were not diminished upon

deletion of SET2 (Fig. 3 and Fig. S4). Drpd3Dset2 cells showed a slight

overall increase (up to ,1.5 fold) in histone acetylation when

compared to the Drpd3 strain (Fig. 3B). We conclude that the absence

of H3 K36me delays Cdc45 binding to origins even when the

surrounding chromatin is hyperacetylated.

Drpd3 does not significantly increase H3 K36me at
replication origins

With similar reasoning it is possible that histone acetylation could

lead to increased K36me at origins and indirectly determine their time

of activation. We therefore determined levels of K36me1 and -me3 at

the same ten ARSs by ChIP in WT and Drpd3 strains. Commercially

available antibodies against K36me2 gave a very poor signal and were

excluded from our analysis. Six out of ten origins show levels of

K36me1 increased more than 1.3 fold in the Drpd3 strain when

compared to the WT, with the highest increase at subtelomeric

ARS609 (approximately 2.5 fold) (Fig. 4A). Although these data

indicate a tendency for increased levels of K36me1 in the absence of

RPD3, no increase of K36me1 was observed in the Drpd3 strain at late

ARS1412 and ARS603, although Cdc45 binding is advanced in this

genetic background [4] (Fig. 2 and Fig. S3). Moreover, there is no

correlation between K36me1 and the timing of these origins (Fig. S5A

and S5B). Levels of K36me3 were even less affected by the deletion of

RPD3. Only four out of ten origins showed a 1.2–1.4 fold increase of

this histone modification (Fig. 4B). Taken together, these results show

that advanced Cdc45 binding to origins in the Drpd3 strain cannot

simply be explained by increased levels of either K36me1 or -me3.

Early origins are depleted in K36me3 compared to late
firing origins

High levels of K36me3 were observed only at origins to which

Cdc45 binds at later timepoints (Fig. S5A and S5B, Fig. 2 and Fig.

Figure 3. Dset2 does not decrease histone acetylation at origins. ChIP of MMY033 (WT), MVY51 (Drpd3), MVY57 (Dset2) and MVY58
(Drpd3Dset2) with antibodies specific for pan-acetylated histone H3 and H4 was performed. (A) Representative autoradiographs of PCR products
using primer pairs specific for the indicated ARS elements and a telomeric loading control (TEL). (B) Graphic representation: Analysis was by
semiquantitative PCR using primer pairs specific for indicated ARS elements and a telomeric loading control. The relative intensity of ARS specific
fragments after normalization to the loading control and the input is presented. Errorbars refer to the standard deviation of the results of three
independent experiments.
doi:10.1371/journal.pone.0005882.g003
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S3). This was surprising given the apparent positive role of Set2 in

Cdc45 binding to origins. As deletion of SET2 abolishes both

K36me1 and –me3, we considered the possibility that these two

modifications may have opposite effects. In WT yeast cells, the

time of activation of any given origin correlates with the time of its

association with Cdc45 [2–5]. We therefore investigated the ratio

of K36me1 and –me3 at replication origins and compared it to

their time of activation, as reported in [46]. ARS609 lies within a

gene-poor subtelomeric region where the average density of

K36me3 differs significantly from the rest of the genome and was

therefore excluded from the analysis [47]. A clear increase of

K36me3/K36me1 ratio was observed for late replicating origins

(Fig. 5A and Fig. S5). It is interesting to note that the major outlier

ARS1524 does not advance its time of Cdc45 binding in the Drpd3

mutant (Fig. S2) and therefore may be subject to other regulatory

mechanisms. Overall, a correlation factor of 0.76 was observed

between the ratio of K36me3/K36me1 and the time of origin

firing.

If this correlation is significant, then earlier firing origins should

be either enriched in K36me1 or depleted in K36me3. We

therefore determined K36me3 at origins at a genome-wide level.

Two independent ChIP experiments using an antibody against

K36me3 were hybridized against genomic DNA on yeast tiling

arrays (Nimblegen). As expected, K36me3 was more prominent

over coding regions when compared to intergenic regions (Fig.

S6A, W = 1.98e11, P-value = 2.2e-16, using the Wilcoxon rank

sum test with continuity correction). The location and timing data

for known replication origins were extracted from oriDB (www.

oridb.org and [48]). The average signal of K36me3 within the

coordinates provided by the database was assigned to each

replication origin. Replication origins were then clustered in 11

groups according to their time of firing and the distribution of

K36me3 within each group was analysed. Replication origins that

fired within six min of the activation of the first origin had

significantly lower levels of K36me3 (Fig. 5B, group 1 and 2,

W = 1142.5, P-value = 0.006). Moreover, excluding all subtelo-

Figure 4. Drpd3 increases K36me at some but not all origins. ChIP of MMY033 (WT) and MVY51 (Drpd3) with antibodies specific for K36me1
(A) and 2me3 (B). ChIP of strain MVY57 (Dset2) is included as a negative control in (A). Representative autoradiographs of PCR products using primers
specific for the indicated ARS elements and a telomeric loading control (TEL). The graph represents the average ratio (Drpd3/WT) of three
independent experiments after normalization to input DNA and loading control. Error-bars refer to the standard deviations thereof.
doi:10.1371/journal.pone.0005882.g004
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Figure 5. K36me1 and K36me3 show opposing behaviour at DNA replication origins. (A) The ratio of K36me3/K36me1 for indicated ARSs
is plotted against their time of activation and a linear trend-line was drawn. (B) ARSs are grouped for their time of firing in three minutes time
intervals relative to the firing of the earliest ARS [6]. ChIP on CHIP (Nimblegen) was used to determine genome-wide levels of H3 K36me3 and their
distribution was determined for each group of ARSs and represented as box-plot. W- and P-values described in the text were calculated using the

Cdc45 and Histone Methylation
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meric origins within 30 kb of the chromosome end raises the mean

distribution of K36me3 for later firing origins and further raises

the significance of K36me3-depletion at early origins (W = 985.5,

P-value = 0.003) (Fig. 5C). Similar results were obtained when

using timing-data from [46] (data not shown). Because the

resolution of ChIP is limited by the average fragment size of

500 bp of DNA, it was possible that the size of intergenic regions

biased our results. If so, early origins would be expected to reside

within longer intergenic regions. We were unable to identify

significant differences in the length of intergenic regions containing

group1 and 2 ARSs when compared to later firing ARSs (Fig. S6B,

W = 1817, P-value = 0.66)

We conclude therefore that non-telomeric late origins are

enriched in K36me3 compared to early firing origins, which show

particularly low levels of this modification.

K36me1 increases and K36me3 decreases during S-phase
If K36me1 and –me3 have opposite effects on Cdc45 binding to

replication origins, they may have opposite dynamics during DNA

replication. We therefore tested the possibility of transient changes

in these two histone modifications during S-phase. Using lysate-

samples from the experiment described in figure 2, we analysed

the level of H3 K36me1 and –me3 by ChIP. The precipitated

DNA was amplified by semiquantitative PCR and ARS-specific

enrichment was normalized to the loading control and the input,

which accounts for changing copy number between different

chromosomal locations during S-phase (Fig. 5D and 5E). As

histone deposition occurs immediately behind the replication fork,

such normalization also accounts for differences due to nucleo-

some assembly [49]. In this time-course, Cdc45 association peaked

at 28–36 min at ARS305 and at 44–52 min at ARS603 in WT

cells (Fig. S3). We observed a 2.5–3 fold increase in K36me1 from

0 to 68 min for early ARS305 and 0 to 76 min for late ARS603 in

the WT (Fig. 5E upper panels, full line). Similar results were

obtained in the Drpd3 strain (Fig. 5E upper panels, dashed lines).

This increase represents the net increase in K36me1 once the

replication fork has passed, as normalization to the input hides

changes due to nucleosome deposition. Omitting normalization to

the input reveals that increases in K36me1 start concomitantly

with the peak of Cdc45 association and occur earlier in the Drpd3

strain compared to the WT at the late ARS603 (Fig. S7). This may

suggest a link between K36me1 and nucleosome assembly.

Analysis of K36me3 revealed a very different pattern. At the

early ARS305 K36me3 decreased steadily by ,2.5-fold between 0

and 44 min and a similar decrease was observed for late ARS603

between 36 and 52 min. Decreased K36me3 is observable even

when the data are not normalized to increased copy number (Fig.

S6). K36me3 levels in the Drpd3 strain were similar to WT at

ARS305. At the late ARS603 this histone modification showed

slightly lower levels in G1 and stayed at approximately the same

level throughout the time of analysis in this experiment, indicating

possible transient cell-cycle specific differences in K36me3

between the two strains. Similar data were obtained in two

independent time-courses and at other replication origins (data not

shown). We therefore conclude that K36me1 increases while

K36me3 decreases upon Cdc45 association with replication

origins.

EAF3 and NTO1 act together to delay S-phase
progression

If K36me3 delays the association of Cdc45 with origins, deletion

of proteins that bind this modification should result in a shortening

of S-phase, similar to Drpd3. Eaf3 and Nto1 are two factors that have

been shown to bind H3 K36me3 [36–38,42]. Eaf3 is a non essential

subunit of the NuA4 HAT complex and part of the Rpd3(S)

complex, while Nto1 is a subunit of the NuA3 HAT complex

[44,50,51]. We therefore deleted each of these factors singly or in

combination and analysed S-phase progression by FACS analysis.

S-phase progression was not affected by the deletion of EAF3 or

NTO1 alone, as the single mutants progressed through S-phase with

similar kinetics to the WT (Fig. 6A and 6B). As expected, DNA

replication occurred more rapidly in the Drpd3 strain and was not

further accelerated by additional deletion of EAF3 or NTO1.

However, when both EAF3 and NTO1 were deleted S-phase was

accelerated, similar to the Drpd3 strain. The triple mutant Deaf3-

Dnto1Drpd3 was similar to the Deaf3Dnto1 double mutant, indicating

that S-phase could not be further shortened by the deletion of RPD3

(Fig. 6C). These data show that K36me3-binding proteins Eaf3 and

Nto1 act redundantly to delay S-phase progression via a mechanism

that is genetically dependent on RPD3.

Based on these results, we propose that methylation of H3 K36

plays an important role in determining the time of Cdc45 binding

to replication origins and that the role of K36me1 and –me3 is

opposing, with K36me1 advancing and K36me3 delaying this

association.

Discussion

Histone acetylation has been shown to positively regulate the

time of Cdc45 association with replication origins and their

subsequent time of firing. Recruitment of a HAT to a late

replication origin advances its association with Cdc45 and its time

of firing in yeast [4]. This function of histone acetylation has been

confirmed by similar studies in human cells [27]. The role of

histone acetylation is further confirmed by a direct interaction

between the HATs and the Origin Recognition Complex (ORC)

[52,53]. Nevertheless, histone acetylation is unlikely to be the sole

chromatin modification to regulate the activation of replication

origins and similar to the regulation of gene transcription may act

in concert with a multitude of other chromatin modifications. We

show here that in S.cerevisiae methylation of H3 K36 takes part in

this process and therefore represents a novel chromatin mark to

regulate replication timing.

We first identified the H3 K36/37R and the Dset2 mutation as

suppressors of the shortened S-phase in the Drpd3 mutant.

Increased histone acetylation in the Drpd3 mutant shortens S-

phase by advancing the timing of Cdc45 binding to late replication

origins and causing their earlier activation. Deletion of SET2

delays Cdc45 binding to replication origins, suggesting a positive

function of H3 K36 methylation in replication initiation.

Furthermore, this delay cannot be reversed by deleting RPD3,

implying that methylation of H3 K36 is necessary to allow earlier

binding of Cdc45 to replication origins in conditions of histone

hyperacetylation. The suppression of the shortened S-phase and

the advanced Cdc45 binding in the Drpd3 mutant upon deletion of

Wilcoxon rank sum test with continuity correction. (C) Same as in (B), but excluding all ARSs within 30 kb from chromosomal ends. (D) ChIP of
MMY033 (WT) and MVY51 (Drpd3) with antibodies specific for K36me1 and 2me3. Representative autoradiographs of PCR products using primers
specific for the indicated ARS elements and a telomeric loading control (TEL). (E) Graphical representation of K36me1 or K36me3 ChIP showing the
relative intensity of ARS-specific fragments after normalization to the loading control and the input. Complete lines indicate WT and broken lines
indicate Drpd3.
doi:10.1371/journal.pone.0005882.g005
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SET2 likely reflect a concomitant change in the timing of origin

firing, but requires absolute confirmation by a more direct

experimental approach, such as 2-D gel analysis.

As histone acetylation at origins is not reduced in the absence of

SET2 and K36me only moderately increases in the Drpd3 strain,

we conclude that these modifications must act together to facilitate

the conversion from the pre-RC to the RC. In fact, complexes that

bind to chromatin often contain more than one histone binding

domain (reviewed in [54,55]). Moreover, some replication factors

associate in an interdependent manner [56,57]. Interactions of

Figure 6. EAF3 and NTO1 act together to delay S-phase progression. (A) Strains MMY033 (WT), MVY51 (Drpd3), MVY54 (Deaf3) and MVY55
(Deaf3Drpd3) were arrested in G1 with a-factor and released into S-phase at 30uC. Samples were taken at indicated times and processed for FACS
analysis. (B) as (A) with strains MMY001 (WT), MMY002 (Drpd3), MMY118 (Dnto1) and MVY119 (Drpd3Dnto1). (C) as (A) with strains MMY001 (WT),
MMY002 (Drpd3), MVY137 (Deaf3Dnto1) and MVY138 (Drpd3Deaf3Dnto1). Grey bars indicate the estimated length of S-phase. (D) Cell budding was
assessed by microscopy. Complete lines indicate WT (black) and Drpd3 (grey); broken lines indicate Deaf3Dnto1 (black) and Drpd3Deaf3Dnto1 (grey).
doi:10.1371/journal.pone.0005882.g006
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multiple proteins with different histone modifications may

therefore be part of the same assembly network.

The positive effect of Set2 on time of Cdc45 binding to

replication origins was surprising, as K36me3 over transcribed

coding regions recruits the Rpd3(S). Deletion of SET2 was

therefore expected to accelerate origin firing to some extent [36–

38]. Moreover, Dset2 suppresses the sensitivity to HU of an spt16-

11 mutant, supporting a negative role of this histone methyltrans-

ferase in DNA replication [58]. These apparently contradictory

observations led us to consider K36me1 and K36me3 as separate

signals that may have opposite functions in DNA replication.

Indeed, the ratio of K36me3/K36me1 increased at most later

firing origins analysed in this study. The simplest explanation for

such a tendency would be that K36me1 helps to activate

replication origins, but its effect can be counteracted by

K36me3. The resulting prediction that early origins are depleted

in K36me3 holds true at a genome-wide level. Later firing origins

had a more widespread distribution of K36me3. Interestingly, the

mean level of K36me3 of later firing origins further increased

when those located within 30 kb from the telomere were excluded

from the analysis. A genome-wide study of replication timing

classified replication origins within approximately 35 kb from the

telomere in a distinct group with an overall later activation time

compared to the rest of the genome [6]. K36me3 may therefore

affect only internal late origins, while subtelomeric origins may be

delayed by other mechanisms, including low levels of K36me1 and

histone acetylation.

Since the timing of replication origin firing, and Cdc45 binding

to replication origins, has been shown to be dictated by the

chromosomal environment [18,19], it is possible that the effect of

histone modifications on origin activation is purely context driven.

If this was the case, then one would not expect histone

modifications to change during origin activation. On the other

hand, activation of replication origins could involve mechanisms

that modify adjacent nucleosomes directly. In this scenario the

local chromatin structure at any given origin would aid or resist

these mechanisms. For K36me the latter is true. Indeed, analysis

of K36me1 and K36me3 in synchronous cells undergoing DNA

replication reveals an increase in K36me1 and a decrease in -me3

at replication origins at approximately the time of Cdc45 binding.

K36me3 is not completely reduced to background levels, which

may be due to the limitations of our analysis. Although cells are

progressing synchronously through S-phase, the activation of an

origin is a single event that occurs in only a subset of the entire

population at any given time. The decrease of K36me3 raises the

possibility that a histone demethylase is directly recruited and aids

origin activation. Alternatively, changes in K36me3 and -me1

levels could be achieved through nucleosome disassembly and

assembly at the initiating replication fork. While the exact

mechanism demands further investigation, the switch in the level

of K36me3 versus K36me1 at the time of Cdc45 association with

origins suggests a direct involvement of these histone modifications

in the initiation of DNA replication.

The low level of K36me3 at early firing ARSs and its decrease

during origin activation both support an inhibitory function of this

modification in origin firing. K36me3 signals for binding of Eaf3

and Nto1 to histone H3 [36–38,42]. Deleting both of these

proteins leads to a shortened S-phase, suggesting a negative role of

these factors in DNA replication which may be mediated by H3

K36me3. The Eaf3 chromodomain protein is part of the Rpd3(S)

complex and recruits the complex over coding regions via direct

binding to methylated K36 [36–38,59]. It is also a non-essential

subunit of the NuA4 HAT complex [50,51]. The PHD finger

protein Nto1 is a subunit of the NuA3 HAT complex [44]. The

association of NuA3 with chromatin is partially dependent on

lysine 36 and Set2 [60]. While the inhibiting function of Eaf3

could be due to the recruitment of Rpd3(S), it is surprising that

recruitment of a HAT complex would have a similar effect. A

recent study proposes competition between Rpd3(S) and NuA4

[58]. NuA4 is the only essential HAT complex in S.cerevisiae and

has been proposed to function in DNA replication [58,61]. It is

possible that all three complexes compete for their substrates.

Deletion of both EAF3 and NTO1 may result in increased

recruitment of NuA4 and so accelerate DNA replication.

Our data cannot entirely exclude the possibility that Set2 affects

replication initiation indirectly. Assays that could rule out this

possibility, such as targeting of Set2 to a single origin, are of difficult

interpretation due to the crosstalk of H3 K36 methylation and

histone acetylation. However, changes in gene expression in the

Dset2 strain are mediated by the Rpd3S complex [29]. If Set2 were

to control replication origins indirectly, then deletion of EAF3 alone

should affect DNA replication in a similar manner to Dset2. Our

data strongly argue against this possibility (Fig. 6). Furthermore,

several observations support a direct involvement of H3 K36

methylation in regulating the timing of Cdc45 binding to replication

origins. The similarity of FACS profiles between the H3 K36/37R

mutant and the Dset2 mutant argues for histones as the relevant

substrate for the effect of Set2 on replication origins. Moreover,

different replication origins are affected to a different extent by the

deletion of either SET2 (compare ARS409 and ARS1524 – WT and

Dset2 in Fig. S3) or RPD3 (compare ARS603 and ARS1524 – WT

and Drpd3 in Fig. S3). Such variability between single replication

origins should not be observed, if deletion of SET2 merely alters the

expression of a replication factor. Finally, changes of H3 K36me1

and – me3 during DNA replication strongly argue that these histone

modifications are part of this process and therefore changes in the

local environment of replication origins are likely to affect the

dynamics of Cdc45 binding directly.

The participation of K36me in regulating the kinetics of Cdc45

binding to replication origins may have important implications in

regulating the choice of origin usage. Potential preRCs are

scattered along chromosomes. Some of these loci may reside

within chromosomal regions that endanger the correct establish-

ment of a topologically complex structure such as a functional RC.

It would be advantageous to convert only those pre-RCs to RCs

that lie within chromosomal regions posing the least problematic

environment. Nevertheless, conversion of too few pre-RCs into

RCs can result in chromosomal instability [62]. Differential timing

of such conversions presents a solution to this dilemma by limiting

this event to occur prevalently within the most favourable

chromosomal environments, while ensuring formation of sufficient

replicators. From this perspective, a pre-RC within a repressive

environment will eventually be converted to a functional RC, but

only if not prevented by a passing replication fork deriving from a

nearby more favourable chromosomal environment [63,64].

Histone modifications are the ideal candidates to inform the

replication apparatus about the nature of the chromosomal

environment. Both histone acetylation and K36me1 are depleted

from heterochromatin. Higher order chromatin may present a

topologically restrained environment for the initiation of a

functional bidirectional replication fork. K36me3 marks chromo-

somal regions of ongoing transcription by RNA pol II

[30,31,33,34]. The dynamics of transcription and the resulting

changes in DNA topology may interfere with the successful

establishment of the RC (reviewed in [65–67]). In fact, origin

usage is profoundly altered by transcription within euchromatic

regions [22–24]. We therefore propose that methylation of H3

K36 is part of a signaling-network of histone modifications that
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informs the replication apparatus about its choice of origin usage

by either favouring or inhibiting its interaction with chromatin

(Fig. 7).

Materials and Methods

Yeast media and a factor arrest
Yeast cultures were grown at 30uC in rich medium (YPDA)

unless otherwise stated. For a-factor arrest cells were grown to a

density of 0.5 at OD600, incubated in fresh media containing 1 mg/

ml a2factor for 2–3 hours and then released from arrest by

incubation in fresh media containing 50 mg/ml pronase after

washing twice with H2O.

FACS analysis
FACS analysis was performed essentially as described previous-

ly, except that ProteinaseK treatment was omitted and cells were

stained with 1 mM SYTOX Green (Molecular Probes) [68]. Entry

into S-phase was estimated visually upon broadening of the G1

peak.

Yeast Strains
Yeast strains in this study are isogenic to RMY200 [69] or

YDS2 [70]. Gene disruptions were performed by one-step gene

deletion [71]. A list of strains used in this study is shown in Table

S1.

Budding analysis
An equal volume of fixing solution (0.9% NaCl, 3.7%

formaldehyde) was added to 500 ml aliquots of cells. 250–300

cells were counted and the percentage of budded cells calculated.

Chromatin immunoprecipitation
50 ml of 1OD600 yeast cultures were formaldehyde crosslinked

at room temperature for 15–20 min. ChIP was performed as

described elsewhere [72,73]. All antibodies used in this study

were tested for specificity and titrated using appropriate mutant

strains (data not shown). Immunoprecipitation of CDC45-FLAG3

using the aFLAG-M2 antibody (Sigma) was carried out as

described in [4]. A list of antibodies used in this study is provided

in Table S2.

ChIP on CHIP
Immunoprecipitated and genomic DNA was amplified as

described in [74]. Labelling, hybridization on whole genome

tiling arrays for S.cerevisiae and analysis was performed by

Nimblegen (www.nimblegen.com). The complete data-set is

available in ArrayExpress with accession number E-TABM-497.

Primer sequences
Primer sequences for all PCR fragments used in this study are

available upon request.

Figure 7. Model for action of histone modifications at replication origins. Replication factors have differential affinity for chromatin regions.
Low affinity occurs at regions with low levels of histone acetylation and absence of K36me (silenced chromatin, left) and high levels of K36me3
(transcribed chromatin, right). High levels of K36me1 and histone acetylation cause high affinity for replication factors (center).
doi:10.1371/journal.pone.0005882.g007
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Supporting Information

Figure S1 Linearity of PCR reactions Different amounts (0.5–1–

2–4 ml) of Cdc45-FLAG chromatin-immunoprecipitated DNA

and of the corresponding Input-DNA were amplified by PCR to

attest linearity of the reaction. The resulting gel (top) was vacuum-

dried and analysed by Phosporimaging and the intensities reported

in the graphical representations (lower part of the figure). 2 ml was

chosen for amplification of Cdc45-FLAG and Input samples.

Found at: doi:10.1371/journal.pone.0005882.s001 (0.13 MB TIF)

Figure S2 Set2p is necessary for accelerated DNA replication in

Drpd3 cells. Exponentially growing cells of strains MVY17 (WT),

MVY31 (Drpd3), MVY57 (Dset2) and MVY58 (Drpd3Dset2) were

arrested in G1 with a-factor and released into S-phase at 24uC.

Samples were taken at indicated times and processed for FACS

analysis. Grey bars indicate the estimated length of S-phase.

Found at: doi:10.1371/journal.pone.0005882.s002 (0.10 MB TIF)

Figure S3 Set2p is necessary for advanced binding of cdc45 in

WT and Drpd3 cells. Exponentially growing cells of strains

MVY17 (WT), MVY31 (Drpd3), MVY57 (Dset2) and MVY58

(Drpd3Dset2) were arrested in G1 with a-factor, released at 24uC
into S-phase and samples were taken at indicated times. ChIP of

Cdc45-3FLAG was performed with a-FLAG antibody and

analysed by semiquantitative PCR using primers specific for the

indicated ARS elements and a telomeric loading control (TEL).

Graphical representation of Cdc45-3FLAG ChIP showing the

relative intensity of ARS-specific fragments after normalization to

the loading control and the input is presented. Complete lines

indicate WT (black, diamonds) and Drpd3 (grey, squares); broken

lines indicate Dset2 (black, diamonds) and Drpd3Dset2 (grey,

squares).

Found at: doi:10.1371/journal.pone.0005882.s003 (0.09 MB TIF)

Figure S4 Hyperacetylation at replication origins due to loss of

Rpd3p is unaffected by the deletion of SET2. Alternative graphic

representation of data presented in figure 3. The graph represents

the average ratio (Dset2/WT or Drpd3Dset2/Drpd3) of histone

acetylation of three independent experiments after normalization

to input DNA and loading control. Error-bars refer to the

standard deviation thereof.

Found at: doi:10.1371/journal.pone.0005882.s004 (0.08 MB TIF)

Figure S5 Early origins are depleted in K36me3 compared to late

firing origins. ChIP of MVY17 (WT) and MVY31 (Drpd3) was

performed with antibodies specific for H3 K36me1 and 2me3.

Analysis was by semiquantitative PCR using primers specific for the

indicated ARS elements and a telomeric loading control (TEL). The

relative intensity of ARS specific fragments after normalization to

the loading control and the input is presented for WT (A) and Drpd3

(B). The graphs represent the average of three independent

experiments. Error-bars refer to the standard deviation. The K36

m3/m1 ratio for each origin is also presented (C).

Found at: doi:10.1371/journal.pone.0005882.s005 (0.08 MB TIF)

Figure S6 The length of intergenic regions does not correlate

with the time of origin firing. H3 K36me3 levels over coding

regions were compared to H3 K36me3 levels over intergenic

regions genomewide (A). The length of intergenic regions

containing ARSs were taken from the Saccharomyces genome

database (www.yeastgenome.org) and grouped for their time of

replication as in Fig.6B (B). W- and P-values described in the text

were calculated using the Wilcoxon rank sum test with continuity

correction.

Found at: doi:10.1371/journal.pone.0005882.s006 (0.08 MB TIF)

Figure S7 K36me1 increases and K36me3 decreases during S-

phase. ChIP of MMY033 (WT) and MVY51 (Drpd3) with

antibodies specific for H3 K36me1 and 2me3 was performed.

Graphical representation of K36me1 (A) or K36me3 (B) ChIP

showing the relative intensity of ARS-specific fragments after

normalization to only the loading control is presented. Complete

lines indicate WT and broken lines indicate Drpd3.

Found at: doi:10.1371/journal.pone.0005882.s007 (0.06 MB TIF)

Table S1 Strains used in this study

Found at: doi:10.1371/journal.pone.0005882.s008 (0.05 MB

DOC)

Table S2 Antibodies used in this study

Found at: doi:10.1371/journal.pone.0005882.s009 (0.03 MB

DOC)
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