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Extracellular signal-regulated kinases (ERKs) are evolutionarily ancient signal transduc-
ers of the mitogen-activated protein kinase (MAPK) family that have long been linked to 
the regulation of osteoblast differentiation and bone formation. Here, we review the 
physiological functions, biochemistry, upstream activators, and downstream substrates 
of the ERK pathway. ERK is activated in skeletal progenitors and regulates osteoblast dif-
ferentiation and skeletal mineralization, with ERK serving as a key regulator of Runt-re-
lated transcription factor 2, a critical transcription factor for osteoblast differentiation. 
However, new evidence highlights context-dependent changes in ERK MAPK pathway 
wiring and function, indicating a broader set of physiological roles associated with 
changes in ERK pathway components or substrates. Consistent with this importance, 
several human skeletal dysplasias are associated with dysregulation of the ERK MAPK 
pathway, including neurofibromatosis type 1 and Noonan syndrome. The continually 
broadening array of drugs targeting the ERK pathway for the treatment of cancer and 
other disorders makes it increasingly important to understand how interference with 
this pathway impacts bone metabolism, highlighting the importance of mouse studies 
to model the role of the ERK MAPK pathway in bone formation.

Key Words: Bone and bones · Extracellular signal-regulated MAP kinases · Mitogen-acti-
vated protein kinases · Osteoblasts

INTRODUCTION

One of the most evolutionarily ancient and well-studied signaling pathways are 
the group of mitogen-activated protein kinases (MAPKs), which are present in all 
eukaryotes, including yeast, where MAPKs regulate responses to pheromones, cell 
integrity, high osmolarity, or other signals.[1,2] While MAPK pathways are ancient, 
they underwent a major diversification with the development of vertebrate life 
concurrent with the evolution of skeletal tissues.[3] Accordingly, each of the major 
MAPK pathways of the conventional group, the extracellular signal-regulated ki-
nase (ERK), p38 and c-JUN N-terminal kinase (JNK) pathways, have been demon-
strated to have a key function in promoting bone formation by both osteoblasts 
[4-8] and also in regulating bone resorption by osteoclasts.[9-13] 

In this review, we focus on the contribution of the ERK pathway to osteoblast 
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differentiation. Both ERK isoforms, ERK1 (MAPK3) and ERK2 
(MAPK1) are expressed in osteoblast-lineage cells. The dis-
tal portion of the ERK signaling cascade displays a stereo-
typical “wiring” that is largely similar across cell types, with 
the MAP2Ks MAPK kinase (MEK)1 and MEK2 serving to acti-
vate ERK via phosphorylation. As indicated by mouse ge-
netics, though there are differences in biochemical func-
tion, ERK1 and ERK2 have partially redundant roles.[14,15] 
Similar partial redundancy is seen with MEK1 and MEK2, 
which is most evident in the development of placental de-
fects in either Mek1-/- or Mek1+/-Mek2+/- embryos.[16] Inter-
estingly, a knock-in of the Mek2 protein-coding sequence 
into the Mek1 locus demonstrated that Mek-associated de-
velopmental phenotypes are driven by the total Mek1 and 
Mek2 gene dosage, with the MEK1 and MEK2 proteins able 
to substitute for one another. Upstream of MEK1 and MEK2 
MAP2Ks, a wide range of kinases, large kinases in the 
MAP3K family, serve to activate the pathway in a manner 
that is both stimulus and cell type-specific, with the most 
classic activator of the ERK MAPK pathway being the RAF 
family of kinases. However, as discussed below, a wide 
range of MAP3Ks contribute to ERK activation in osteo-

blasts. 
Collectively, mutations in the ERK MAPK pathways are 

the most common genetic lesions in cancer, and include 
common recurrent mutations in BRAF and KRAS seen across 
many tumor types, in addition to other less common mu-
tations in ERK MAPK pathway components such as MEK1 
or mutations in upstream signaling components, including 
EGFR that ultimately lead to ERK activation.[17] According-
ly, this critical importance of ERK in tumorigenesis has led 
to introduction of a wide range of ERK MAPK pathway in-
hibitors for treatment of a wide range of tumors, resulting 
in a powerful pharmacopeia to modulate the ERK MAPK 
pathway in patients. These drugs include inhibitors of MEK1 
and MEK2 such as trametinib,[18] inhibitors of BRAF, a fre-
quently mutated MAP3K upstream of ERK, including ve-
murafenib and dabrafenib,[19] or inhibitors of mutated 
KRAS, such as the recently approved sotorasib.[20,21] Due 
to this, an increasing number of patients are exposed to 
ERK MAPK pathway inhibitors, and the skeletal consequenc-
es of this inhibition must be considered,[22] especially as 
outcomes and life expectancy for these patients improve 
and raise the relative importance of long-term sequelae of 

Fig. 1. A diagram of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathways in osteoblasts. 
Noteworthy inhibitors, including both clinical drugs and tool compounds, are indicated. NF1, neurofibromatosis type 1; GDP, guanosine diphos-
phate; GTP, guanosine triphosphate; MAP3K, mitogen-activated protein kinase kinase kinase; MAP2K, mitogen-activated protein kinase kinase; 
MEKK2, mitogen-activated protein kinase kinase kinase 2; MLK3, mixed-lineage kinase 3; MEK, mitogen-activated protein kinase kinase; CREB, 
cAMP response element-binding protein; RSK2, p90 ribosomal S6 kinase; Runx2, Runt-related transcription factor 2.
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ERK MAPK pathway inhibition. This development of ERK 
MAPK pathway inhibitors has also provided a series of po-
tential therapies for skeletal disorders where ERK MAPK 
pathway overactivation may represent an important patho-
genic mechanism, such as neurofibromatosis type 1 (NF1).
[23,24] Thus, understanding the role of the ERK MAPK path-
way in bone formation by osteoblasts is important both 
for the intrinsic importance of ERK MAPKs as major regula-
tors of osteoblast differentiation and also due to the wealth 
of clinically-approved small molecule drugs targeting this 
pathway (Fig. 1).

PHYSIOLOGIC FUNCTION OF THE ERK 
MAPK PATHWAY IN OSTEOBLASTS

Most studies on loss-of-function of ERK MAPKs empha-
size their critical roles in promoting early commitment and 
differentiation of skeletal progenitors to the osteoblast lin-
eage and skeletal mineralization (Table 1). For instance, 
deletion of Erk1/2 in the limb bud mesenchyme and limb 
skeletal stem cells via Prx1-Cre results in severe hypo-min-
eralization of the limbs.[25] Similarly, deletion of Mek1/2 in 
early progenitors committed to the osteoblast lineage us-
ing osterix-Cre resulted in impaired bone formation,[8] and 
mice bearing a transgene of a dominant-negative MEK1 
display hypo-mineralization of long bones and the calvari-
um.[6] While this clearly indicates a role for ERK MAPK in 
osteoblast differentiation or activity in vivo, somewhat 
complicating this picture is the observation that ERK MAPK 
pathway disruption in either Erk1-/-Erk2col2 or Erk1-/-Erk2Prx1 
mice leads to defects in the growth plate, specifically an 
inability to clear and turnover hypertrophic chondrocytes.
[25] Given evidence from several investigators that the growth 
plate cells undergo a trans-differentiation or plasticity pro-
cess that contributes to the production of marrow-resident 
osteoblasts,[26-28] this raises the possibility that the block-
ade in hypertrophic chondrocyte clearance could in turn 
block the contribution of growth plate cells to the marrow 
osteoblast pool. Thus, ERK MAPKs could act not only to 
regulate the differentiation of committed osteoblast lin-
eage cells, but also in pre-commitment progenitors, such 
as those within the growth plate, to regulate initial com-
mitment to the osteoblast lineage. Notably, growth plate 
cells appear to only account for a portion of the osteoblasts 
present in long bones, thus ERK MAPKs may have separate 

but also important contributions in cathepsin k (CTSK)-lin-
eage periosteal stem cells [29] or leptin receptor (LEPR)+/
chemokine (C-X-C motif) ligand 12 (CXCL12)-abundant re-
ticular cells [30-32] or other skeletal stem and progenitor 
populations.

Interestingly, recent work in a zebrafish model of osteo-
blast-mediated scale regeneration finds evidence that ERK 
activation propagates across the entire tissue in a synchro-
nous wave that ultimately coordinates the regeneration 
process.[33] Evidence from a combination of modeling 
and proof-of-concept studies using transgenic fibroblast 
growth factor (FGF) family member expression suggests 
that this synchronized wave of osteoblast ERK activation is 
mediated by radial diffusion of an activating ligand, such 
as FGF, combined with induction of a refractory state in 
ERK activation after stimulation. This raises the possibility 
that, if this phenomenon is conserved, ERK MAPKs may not 
only promote osteoblast activity but mediate broader spa-
tiotemporal coordination of bone formation. Thus, it will 
be of particular interest to apply a real-time reporter of ERK 
activity to the bone to examine tissue-wide coordination 
of skeletal ERK activity in a mammalian system.

LIGANDS ACTING UPSTREAM OF ERK 
MAPKS IN OSTEOBLASTS 

A variety of stimuli activate the ERK MAPK pathway to 
coordinate signaling during osteoblast differentiation and 
skeletogenesis. FGF/FGF receptor (FGFR)-mediated signal-
ing regulates osteoblast-lineage commitment, proliferation, 
maturation, and apoptosis.[34] Numerous in vitro studies 
demonstrated that the ERK MAPK pathway is required for 
FGFs-induced osteoblast differentiation through Runt-re-
lated transcription factor 2 (Runx2) phosphorylation and 
activation.[35,36] Genetically, ERK activation is closely linked 
to the presence of FGFR2 mutations (S252W or P253R) as-
sociated with human Apert syndrome.[37-39] Similar ERK 
activation has also been observed with the craniosynosto-
sis-associated FGFR2 mutation (E731K).[40] A knock-in mouse 
model carrying a mutation encoding for the P253R altera-
tion in Fgfr2 exhibited ERK activation and premature fusion 
of the coronal suture, a shortening of the cranial base and 
long bone growth plates.[37] ERK MAPK pathway inhibi-
tion with a MEK1/2 inhibitor partially reversed these phe-
notypes, including the premature closure of the coronal 
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suture and the growth phenotype in long bones, with these 
results matching mechanistic studies demonstrating that 
FGFR2 activation engages the ERK pathway to phosphory-
late and stabilize Runx2 via a Peptidyl-prolyl cis-trans isom-
erase NIMA-interacting 1 (PIN1)-dependent mechanism.
[39,41-44]

Insulin-like growth factor 1 (IGF-1) regulates skeletal ho-
meostasis via autocrine and paracrine signaling.[45] Inten-
sive studies showed bone anabolic effects of IGF-1/IGF-1 
receptor (IGF-1R) signaling. IGF-1 stimulates mesenchymal 
stem cell (MSC) proliferation and osteogenic differentia-
tion, and mineralization capacity. Accordingly, Igf-1 over-
expression in osteoblasts increased trabecular bone densi-
ty,[46] whereas IGF-1R deletion in osteoprogenitor cells 
(Igf1rOsx) or mature osteoblasts (Igf1rOcn) caused delayed 
mineralization and reduced bone formation.[47,48] ERK 
activation is required for IGF-1-induced proliferation and 
osterix expression in human MSCs,[49,50] yet the role of 
the ERK MAPK pathway in mediating the osteoanabolic ef-
fects of IGF-1 signaling in vivo requires further study. 

The wingless-type MMTV integration site family mem-
ber (WNT) signaling pathway also activates ERK MAPK to 
exert its bone anabolic effect in osteoblast-lineage cells.
[47,51] WNT signaling is subdivided into canonical (β-catenin-
dependent) and noncanonical (β-catenin-independent) 
pathways and noncanonical pathway includes MAPK acti-
vation, though emerging evidence indicates that the ERK 
MAPK pathway can also impact canonical signaling. Both 
in vitro and in in vivo studies showed that WNT3a activates 
ERK MAPK to induce osteoblast precursor proliferation and 
differentiation.[52] Likewise, ERK activation suppresses the 
activity of glycogen synthase kinase 3β, an upstream in-
hibitor of β-catenin, resulting in bone formation.[51] In ad-
dition, mice lacking the WNT receptor Frizzled-9 showed 
low bone mass without alteration in the canonical WNT/
β-catenin signaling pathway, and ERK activation mediated 
by WNT5a is required for the bone anabolic effect of Friz-
zled-9 stimulation.[53] 

Other upstream stimulators of the ERK MAPK pathway in 
osteoblasts include the transforming growth factor-β (TGF-β) 
superfamily, including bone morphogenetic protein (BMP) 
ligands. These transduce signals to ERK MAPK via the non-
SMAD-dependent pathway to regulate stem cell differenti-
ation during bone formation and bone homeostasis.[54] 
Deletion of TGF-β type I receptor (Alk5) in skeletal progeni-

tors by Dermo1-Cre revealed that TGF-β promotes osteo-
blast proliferation and early differentiation through a com-
bination of both the SMAD2/3 and ERK MAPK signaling 
pathways.[55] At the cellular level, TGF-β induces activator 
protein-1 (AP-1) activation ERK activation.[56] ERK signal-
ing mediates BMP2 or 7-induced osteogenesis and Runx2 
expression, whereas constitutive activation of ERK signal-
ing decreased BMP2-induced Runx2 expression and acti-
vation.[57,58] BMP2 stimulation leads to Runx2 acetylation 
and stabilization, potentiating Runx2 transcriptional activi-
ty.[59] However, further study is needed to clarify the de-
gree to which the ERK pathway specifically accounts for 
the activity of BMP stimulation during skeletogenesis.

MAP3KS ACTIVATING THE ERK MAPK 
PATHWAY IN OSTEOBLASTS 

While RAF isoforms (ARAF, BRAF, and c-RAF/RAF1) are 
classical MAP3Ks that serve to activate MEK1 and MEK2 
MAP2Ks, particularly in a variety of oncologic contexts, it is 
clear that a broader diversity of MAP3Ks function upstream 
of ERK MAPKs in osteoblasts, often in combination with 
concurrently activating other MAPK pathways. In particu-
lar, studies of BRAF using a Col2-Cre line that targets a wide 
range of skeletal cells find that the knockout mice have 
grossly normal initial skeletogenesis.[60] Similarly, deletion 
of Braf with the osteoblast-targeting Col1-Cre did not pro-
duce histologically evident changes in bone architecture 
in 2-week old mice. Mice with a conditional deletion of c-
Raf/Raf1 using Col2-Cre have also been examined, finding 
impaired clearance of hypertrophic chondrocytes in the 
growth plate, a finding that may be expected to alter the 
production of growth-plate derived osteoblasts, though 
this has yet to be examined.[61] It will be of particular in-
terest to expand and update these findings to see whether 
RAF isoforms have a more subtle role in regulation of adult 
bone homeostasis and whether redundancy might be mask-
ing the contribution of RAF to osteoblast function.

Given this negative initial data with RAF isoforms, there 
has been interest in identifying other MAP3Ks that serve to 
activate ERK MAPKs in osteoblasts. MLK3 (MAP3K11) serves 
to activate both p38 and ERK downstream of BMP stimula-
tion, and activation of MLK3 induces Runx2 phosphoryla-
tion at a combination of p38- and ERK-mediated sites.[62] 
MLK3 acts downstream of the guanosine triphosphatase 
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(GTPase) CDC42, binding through a CDC42/Rac interactive 
binding (CRIB) region in MLK3. Accordingly, mutation of 
the CRIB region phenocopies the skeletal abnormalities of 
an MLK3 null allele. CDC42 is itself activated by the GEF fa-
ciogenital dysplasia 1 (FGD1).[63] As FGD1 is mutated in 
the human skeletal dysplasia disorder FGD, defective MLK3 
signaling is likely a key pathogenic mechanism for this dis-
order. This also provides a clear example of how impaired 
ERK signaling in osteoblasts can serve as a basis for human 
skeletal diseases.

MEKK2 (MAP3K2) is a member of the MAP3K family, and 
early in vitro biochemical studies have shown that MEKK2 
has the capacity to activate downstream MAPK pathways 
including ERK1/2, JNK, p38, and ERK5.[64-67] Studies of 
MEKK2 in osteoblasts demonstrated that MEKK2 promotes 
osteoblast activity by both mediating a nonclassical path-
way for deubiquitination and stabilization of β-catenin.[68] 
MEKK2 has also been suggested to regulate the activation 
of the JNK pathway downstream of SMURF1 loss-of-func-
tion in osteoblasts.[69] However, later studies in MEKK2 
deficient osteoblasts failed to find a clear contribution to 
JNK activation, at least under basal conditions, so the con-
tribution of SMURF1 regulation of MEKK2 activity to osteo-
blast differentiation and activity remains unclear.[4,68] In 
keeping with these important functions of MEKK2, MEKK2-
deficient mice display severe cortical and trabecular osteo-
penia alongside calvarial hypomineralization.[68] Recent 
findings additionally demonstrate that MEKK2 is a key me-
diator of the aberrant ERK activation occurring in osteo-
blasts downstream of loss of function of NF1, a GTPase-ac-
tivating protein that negatively regulates RAS activation.
[70] Despite MEKK2-deficient mice displaying severe os-
teopenia, either genetic or pharmacologic inhibition of 
MEKK2 prevented the constitutive ERK activation occurring 
in models of skeletal NF1 disease and overall ameliorated 
the NF1-associated skeletal phenotypes. This work, along-
side several prior studies establishing the ERK MAPK path-
way as one, though likely not the only, mediator of NF1-as-
sociated skeletal diseases,[23,24,71] argues that ERK MAPKs 
are not unconditionally pro-anabolic. Rather, there is likely 
a window of activity that is pro-anabolic, with degrees of 
activation outside of this range either not promoting os-
teoblast differentiation or having a deleterious effect. This 
“window effect” may also have an etiology in the distinct 
sets of downstream substrates for the ERK MAPK pathway 

that appear in early versus late-stage osteoblasts, with over-
activation of ERK perhaps prolonging ERK activity during 
the differentiation process and engaging distinct sets of 
effectors in mature osteoblasts. Ultimately, further study 
on the context-dependent roles of the ERK MAPK pathway 
will be needed to determine the basis for this apparent 
window in ERK activity that allows for bone anabolism. Ad-
ditionally, a comparison of these studies on MEKK2 and 
MLK3 emphasizes how each function in a distinct biochem-
ical context, functioning downstream of different upstream 
activators in a selective manner. This reinforces the general 
concept that MAP3Ks serve as key integration points that 
activate downstream MAPK pathways in a manner that is 
context and cell-type specific. This specificity also suggests 
that MAP3Ks are a promising point to modulate ERK MAPK 
signaling while also minimizing the toxicity associated with 
broad alterations of this essential pathway across multiple 
tissues.

REGULATORS OF THE ERK MAPK 
PATHWAY IN OSTEOBLASTS 

The NF1 protein negatively regulates RAS MAPK path-
way through its GTPase activity. Loss of function NF1 mu-
tations in humans causes NF1, a prevalent genetic disorder 
with an incidence of approximately 1/3500.[72] NF1 syn-
drome is characterized by cutaneous neurofibromas and 
neural tumors, but also a wide variety of non-tumor mani-
festations including skeletal dysplasia.[73,74] Patients with 
NF1 display skeletal abnormalities including craniofacial 
dysmorphogenesis, osteopenia/osteoporosis, short stat-
ure, and impaired fracture healing.[75,76] Similarly, condi-
tional mouse models lacking NF1 in various skeletal lin-
eage cells display characteristic features of the skeletal ab-
normalities of NF1 patients, including impaired bone 
structure and severe cortical bone porosity in Nf1Prx1,[77] Nf-
1Col,[71] Nf1Osx,[78] and Nf1Dmp1,[70] mice. To understand the 
pathogenesis of NF1 skeletal manifestations, several stud-
ies have investigated target pathways mediating the aber-
rant ERK effects of NF1 loss of function in skeletal lineage 
cells. It has been reported that RAS inhibition by lovastatin 
attenuates the constitutive activation of ERK MAPKs in os-
teoblasts isolated from Nf1Col2 mice.[71] NF1-deficiency in 
bone-forming cells causes a RAS/ERK-dependent increase 
in the endogenous inhibitor of mineralization, inorganic 
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pyrophosphate, ultimately leading to a bone mineraliza-
tion deficit.[78]

Interestingly, altered ERK MAPK pathway regulation can 
result in divergent skeletal phenotypes. Protein-tyrosine 
phosphatase, nonreceptor-type 11 (PTPN11), also known 
as SHP2, is a SH2 domain-containing non-receptor protein 
tyrosine phosphatase that acts to regulate ERK activity in 
cell type and context-dependent manner, particularly down-
stream of receptor tyrosine kinase stimulation.[79] As with 
NF1, while ERK is a prominent downstream mediator of 
PTPN11 it is not the only downstream target, and other 
pathways, such as nuclear factor of activated T cells calci-
um signaling or PKA signaling can also be regulated.[80,81] 
Gain-of-function mutations in PTPN11 enhance ERK sig-
naling in osteoblasts and are seen in approximately 50% of 
patients with Noonan syndrome, which is associated with 
skeletal manifestations including impaired skeletal miner-
alization with onset in childhood and short stature.[82-84] 
Interestingly, loss of function in PTPN11 is associated with 
a distinct metachondromatosis phenotype including carti-
laginous proliferation throughout the skeleton in both hu-
mans and mice.[85,86] This activity of PTPN11 has been 
mapped to its function in early skeletal stem cells, includ-
ing a specific periosteal stem cell expressing CTSK and oth-
er markers.[29,80,85] The action of PTPN11 in early skeletal 
stem and progenitor cells has been associated with altera-
tions in lineage selection, both skewing osteoblast versus 
chondrocyte lineage towards chondrocytes by regulating 
Sox9 activity and also inhibiting the trans-differentiation of 
terminal growth plate chondrocytes into osteoblasts.
[80,87] These functions of PTPN11 are context-dependent, 
as deletion of PTPN11 in more mature, Bglap-expressing 
osteoblast lineage cells led to a very distinct phenotype of 
severe osteopenia.[88] Consistent with the known substrates 
of the ERK MAPK pathway in osteoblasts discussed below, 
this phenotype was associated with regulation of Runx2 
transcriptional activity.

Lastly, another regulatory element of MAPK signaling 
active in osteoblasts is cross-regulation by distinct MAPK 
pathways.[89] For instance, loss of function in the JNK path-
way, including loss of function in MAP3Ks upstream of JNK 
such as TAOK3 (MAP3K18), produces a marked increase in 
ERK activation.[90] Likewise, the widely utilized p38 inhibi-
tor SB203580 can upregulate ERK activity in osteoblasts,[91] 
though this may specifically reflect the ability of SB203580 

to induce MLK3 activity.[92] Thus, MAPK pathways may 
cross-regulate, and this cross-regulation may serve as a me-
chanism for signal integration in osteoblasts.

ERK MAPK SUBSTRATES IN 
OSTEOBLASTS 

Runx2 emerged as one of the first targets of ERK MAPKs 
in osteoblasts in a series of biochemical studies finding 
that ERK activity modulated the ability of Runx2 to trans-
activate an osteocalcin promoter fragment through the 
ability of ERK to phosphorylate Runx2.[35,93] Later bio-
chemical analysis identified ERK phosphorylation at S43, 
S301, S319, and S410, with dual mutation of the S201 and 
S319 sites rendering Runx2 refractory to MAPK induced 
functional activation.[36] Biochemically, Runx2 interacts 
with ERK MAPKs via a classical MAPK-binding D-domain in 
the protein/serine/threonine-rich domain in the C-termi-
nus.[35,94] Phosphorylation of Runx2 by ERK partially over-
laps with phosphorylation by p38, with both kinase fami-
lies targeting the S319 site in particular.[5,94] This ERK-me-
diated Runx2 activation has been mapped to acting down-
stream of FGF stimulation, with ERK-mediated phosphory-
lation of Runx2 at S301 leading to Runx2 stabilization and 
increased transcriptional activity in this context.[43] This 
effect is mediated at least in part by PIN1 being recruited 
to phosphorylated Runx2 by ERK MAPK, leading to Runx2 
prolyl isomerization that in turn leads to Runx2 acetylation 
and stabilization.[41,95] Accordingly, Pin1-deficient mice 
display calvarial hypomineralization and clavicular hypo-
plasia, stigmata associated with reduced Runx2 activity.
[96]

Mouse genetic studies from a variety of investigators 
have reinforced this link between ERK MAPKs and Runx2 
by finding that mice with loss of ERK MAPK pathway func-
tion display a cleidocranial dysplasia-like phenotype, the 
combination of calvarial hypo-mineralization, clavicular 
hypoplasia, stigmata associated with haploinsufficiency of 
Runx2 in both humans and mice.[97,98] Similarly, deletion 
of Mek1/2 using osterix-Cre produces a cleidocranial dys-
plasia-like phenotype.[8] Conversely, several lines of evi-
dence suggest that a gain in ERK activity leading to increased 
Runx2 activity contributes to craniosynostosis pathogene-
sis, particularly in models of Apert syndrome associated 
with FGFR2 gain-of-function mutations. For instance, ERK 
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inhibitors can block cranial suture closure associated with 
FGF2 stimulation.[44] Mechanistically, FGF stimulation leads 
to Runx2 phosphorylation via the ERK MAPK pathway and 
subsequent PIN1-dependent Runx2 acetylation and stabi-
lization, ultimately increasing Runx2 transcriptional activi-
ty.[42,43] Thus, craniosynostosis and cleidocranial dyspla-
sia can be associated with ERK pathway gain-of-function 
and loss-of-function, respectively, with Runx2 serving in 
both cases as a key downstream target. This offers in vivo 
phenotypic validation of the importance of the ERK MAPK 
pathway for Runx2 activity and raises the possibility that 
FGFR2 mutation-associated craniosynostosis and cleido-
cranial dysplasia phenotypes can be considered as oppo-
site ends of a phenotypic continuum of ERK and downstream 
Runx2 activity in osteoblasts.

Another important ERK MAPK substrate is the AGC ki-
nase p90 ribosomal S6 kinase (RSK2), where ERK activates 
RSK2 via phosphorylation.[99] Phosphorylated RSK2 in turn 
phosphorylates and activates activating transcription fac-
tor 4 (ATF4), a driver of collagen transcription in mature os-
teoblasts.[23] Accordingly, mice and humans lacking Rsk2 
show low bone mass due to impaired production of type I 
collagen, the major organic component of bone, with RSK2 
mutations in particular associated with Coffin-Lowry syn-
drome, which includes prominent skeletal dysplasia fea-
tures.[100] Considered together, it is particularly interest-
ing that 2 prominent ERK MAPK substrates in osteoblasts, 
Runx2 and ATF4, have functions that appear to parse re-
spectively to the early and the late stages of osteoblast dif-
ferentiation. This raises the possibility that the ERK MAPK 
pathway could have quite distinct functions in early versus 
mature osteoblasts, as these functional differences could 
partition based on downstream substrate expression or 
function.

While these are the best-studied effectors of ERK func-
tion in osteoblasts, there are likely many other relevant 
ERK MAPK substrates, including the Fos family (Fos, Fra1, 
Fra2, Fosb) of subunits of the AP-1 transcriptional complex. 
While subunits such as FOS or FRA1 can be phosphorylat-
ed and stabilized by ERK and also play important roles in 
osteoblast biology,[101-103] it remains unclear the degree 
to which ERK activation is specifically driving FOS and AP-1 
activity in osteoblasts. In particular, mice with a knock-in 
mutation in the ERK phosphorylation site of FOS have in-
tact osteoblast parameters, calling into question whether 

FOS is a relevant ERK effector in osteoblasts.[104]

THE ERK5 MAPK PATHWAY IN 
OSTEOBLASTS

Alongside, ERK1/2, p38, and JNK isoforms, ERK5 is also a 
member of the so-called “conventional” group of MAPKs, 
which are defined by the presence of a Thr-Xaa-Thr motif 
in the activating loop.[105] ERK5 is activated by the up-
stream MAP2K MEK5, and this pathway is intact in osteo-
blast lineage cells. One notable feature of ERK5 is its rela-
tively high degree of homology with ERK2 and the pres-
ence of a threonine-glutamate-tyrosine motif in the acti-
vation loop identical to that in ERK1 and ERK2.[106] Simi-
larly, MEK5 displays homology with MEK1 and MEK2 and is 
also targeted by several of the most commonly used MEK1/2 
inhibitors, including U0126 and PD98059, raising the pos-
sibility that the MEK5/ERK5 pathway may account for some 
of the activity ascribed to the ERK1/2 pathway in studies 
using MEK inhibitors.[107] Despite these similarities, mouse 
genetic loss of function studies established that the ERK1/2 
and ERK5 MAPK pathways have distinct functions in vivo.
[108]

The function of the ERK5 MAPK pathway in osteoblasts 
remains controversial due to conflicting results using chemi-
cal inhibitors or in vitro systems. For instance, in vitro stud-
ies with cell lines and an ERK5 inhibitor show that ERK5 in-
hibition reduced osteoblast differentiation downstream of 
fluid flow shear stress.[109] In contrast, treatment of mice 
with a MEK5 inhibitor in vivo results in increased osteoblast 
differentiation and bone formation.[110] It is possible that 
this discrepancy reflects either differentiation-stage or con-
text-specific differences in ERK5 function or simply limita-
tions of the small molecule inhibitors or culture systems 
used. 

In vivo studies emphasize that the functions of ERK5 in 
bone are complex and context dependent. Conditional de-
letion of ERK5 using an Nkx3.1-Cre resulted in spinal defor-
mity similar to scoliosis and trabecular osteopenia in verte-
bral bodies.[111] However, histomorphometry studies on 
these mice demonstrated a hyperdynamic state with in-
creases in both osteoclast and osteoblast activity associat-
ed with increases in the expression of the osteoclastogenic 
cytokine receptor activator of nuclear factor-κB ligand 
(RANKL) by osteoblasts and decreases in the RANKL decoy 



Role for ERK in Osteoblast Biology

https://doi.org/10.11005/jbm.2022.29.1.1 https://e-jbm.org/  9

receptor osteoprotegerin. Thus, in this context, ERK5 regu-
lates osteoclast differentiation via osteoblast-osteoclast 
coupling. Another study deleted ERK5 in early limb bud 
progenitors/stem cells using Prx1-Cre, finding delayed 
mineralization of long bones.[112] Mechanistically, this 
was linked with ERK5 phosphorylation of the SMAD1 linker 
region at S206 and SMURF2 at T249, which ultimately re-
sulted in SMAD degradation, and ERK5-mediated suppres-
sion of SMAD-dependent Sox9 transcription. Accordingly, 
additional heterozygosity for Sox9 rescued the Erk5Prx1 phe-
notype of delayed mineralization. These results indicate an 
important role for ERK5 in skeletal mineralization, but 
leave open the question of to what degree this reflects a 
dysfunction in chondrocytes, osteoblasts, or early progeni-
tors prior to commitment to these lineages. It will be of 
particular interest to deconvolute the contribution of these 
cell types using additional lineage-specific Cre lines and 
also to examine the contribution of ERK5 beyond the initial 
onset of mineralization to the maintenance of bone mass 
in older animals.

CONCLUSION

Given that a recurring theme in studies of the ERK MAPK 
pathway in the bone in that ERK function is highly depen-
dent on cellular context, going forward, it will be impor-
tant for our understanding of the ERK MAPK pathway to be 
updated in terms of our rapidly advancing understanding 
of the cell types comprising bone. Whereas a decade or 
more ago, the cells comprising bone were largely catego-
rized in terms of simple morphologic and functional char-
acteristics into chondrocytes, osteoblasts, and osteocytes, 
a much richer picture has emerged in recent work of many 
specific cell types and lineages that are discriminated through 
cell surface markers or genetic lineage reporters. These cell 
types include PTHrP+ growth plate-resident stem cells,[26] 
specific periosteal stem cells,[29,85] FACS defined skeletal 
stem cells that include populations both overlapping and 
not overlapping with these 2 former cell types,[113-115] 
ACTA2-lineage osteoprogenitors,[116] and multiple sub-
sets of CXCL12- abundant reticular cells that comprise the 
marrow stroma,[30,31] many of which also express LEPR.
[32,117] This discovery of an increasingly diversifying set of 
skeletal cell types is the important challenge that it is no 
longer sufficient to simply define how a given signaling 

pathway augments or inhibits osteoblast differentiation. 
Rather, it is now increasingly necessary to consider that the 
function of these pathways may differ substantially in each 
of these cell types, and that comparative genetic studies, 
likely largely using conditional knockouts targeted to sev-
eral of these skeletal lineages, will be necessary to decon-
volute the differential function of major signaling pathways 
to these cell types. This possibility for distinct functions in 
distinct cell lineages may at least partially underlie the com-
monly contradictory results obtained when signaling path-
way functions are probed using cultures of mixed bone 
marrow stromal cells that are heterogeneous and contain 
several of these cell types. Given the robust function of the 
ERK MAPK pathway in regulating osteoblast differentia-
tion, it is an outstanding candidate to serve as an initial 
template for how signaling pathways can serve starkly dif-
ferent functions in different specific skeletal populations. 
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