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Abstract. We studied the cell-surface delivery path- 
ways of newly synthesized membrane glycoproteins in 
MDCK cells and for this purpose we characterized an 
endogenous apical integral membrane glycoprotein. By 
combining a pulse-chase protocol with domain- 
selective cell-surface biotinylation, immune precipita- 
tion, and streptavidin-agarose precipitation (Le Bivic 
et al. 1989. Proc. Natl. Acad. Sci USA. 86:9313- 
9317), we followed the appearance at the cell surface 
of a major apical sialoglycoprotein, gpll4,  a baso- 
lateral protein, uvomorulin, and a transcytosing pro- 
tein, the polyimmunoglobulin receptor (pig-R). We 
determined that both gp114 and uvomorulin appeared 
to be delivered directly to their respective surface, 
with mistargeting levels of 8 and 2 %, respectively. 
Using the same technique, the plg-R was first detected 
on the basolateral domain and then on the apical do- 

main, to be finally released into the apical medium, as 
described (Mostov, K. E., and D. L. Deitcher. 1986. 
Cell. 46:613-621). To directly determine whether the 
gp114 pool present on the basolateral surface was a 
precursor of the apical gp114, we compared it with the 
equivalent plg-R pool, by labeling with sulfo-NHS-SS- 
biotin, a cleavable, tight junction-impermeable probe, 
and by following the fraction of this probe that be- 
came resistant to basal glutathione and accessible to 
apical glutathione during incubation at 37°C. We 
found that, contrary to pig-R, basolateral gp114 was 
poorly endocytosed and was not transcytosed to the 
apical side. These results demonstrate that an endoge- 
nous apical integral membrane glycoprotein of 
Madin-Darby canine kidney cells is sorted intracellu- 
larly and is vectorially targeted to the apical surface. 

M 
DCK cells have been extensively used to study the bio- 
genesis of epithelial cell polarity (6, 18, 26a, 31). 
Studies on the sorting of plasma membrane pro- 

teins were initially carried out with MDCK cells infected 
with enveloped RNA viruses, such as influenza and vesicular 
stomatitis virus, which bud, respectively, from the apical or 
the basolateral domains of the plasma membrane (27). Pola- 
rized viral budding is preceded by segregation of the main 
envelope glycoproteins, i.e., influenza HA and vesicular sto- 
matitis virus G protein into the budding domain (26). Fur- 
thermore, when these proteins were expressed in MDCK 
cells from transfected cDNAs they displayed a similar pola- 
rized distribution to that observed in infected cells (11, 28). 
Taking advantage of these powerful viral tools, several stud- 
ies established that, in MDCK cells, the polarized distribu- 
tion of viral envelope glycoproteins is determined by intra- 
cellular sorting at the level of the trans-Golgi network and 
vectorial delivery to the respective surface (19, 20, 23, 24). 

Because of their lower biosynthetic rates, and the corre- 
sponding need for higher sensitivity methods, studies on the 
targeting of endogenous MDCK glycoproteins have lagged 
behind those on viral glycoproteins. Only one paper has ap- 
peared, by Caplan et al. (1986), reporting the direct delivery 
of a basolateral membrane pump, the Na÷,K ÷ ATPase, to 

the basolateral surface [7]. The need for additional studies 
on the pathways of apical glyeoproteins in MDCK cells is 
stressed by observations in native intestinal and liver epithe- 
lia, which suggest an indirect pathway for apical membrane 
proteins: delivery to the basolateral domain followed by 
relocation to the apical domain (2, 13, 17). 

Largely, most studies available in both MDCK and native 
epithelial cells base their conclusion on vectorial versus 
transcytotic targeting on the "kinetics" of the appearance of 
the proteins at both surfaces, but not on the direct analysis 
of the fate of the protein pool present in the "incorrect" sur- 
face. In this report, we apply to MDCK cells three experi- 
mental strategies that we recently introduced to study the 
targeting of apical and basolateral integral membrane glyco- 
proteins in a human intestinal cell line (15). The first one is 
analogous to the approach used by Lisanti et al. (16) (pulse- 
chase and domain-selective biotinylation), except that the 
proteins were precipitated with specific antibodies (instead 
of lectins) to highly increase the sensitivity of the method. 
The second one involves a procedure to directly observe the 
fate of the basolateral pool of apical antigens; this method 
involves labeling with a cleavable biotin analog to measure 
their endocytotic and transcytotic rates (15). Finally, the 
pathways of the endogenous antigens are compared with that 
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of exogenous polyimmunoglobulin receptor (pig-R) ~, which 
includes a basolateral stage in its complex route to the apical 
surface and therefore constitutes an ideal positive control 
(21). Our results conclusively demonstrate direct targeting 
of an apical integral membrane glycoprotein and a basolat- 
eral cell adhesion molecule (uvomorulin) to their respective 
surface in MDCK cells. 

Materials and Methods 

Reagents 
Cell culture reagents were purchased from Gibco Laboratories (Grand Is- 
land, NY). Affinity-purified antibodies, rabbit anti-mouse IgG, rhodamine- 
conjugated goat anti-mouse IgG and goat anti-guinea pig IgG were pur- 
chased from Cappel Laboratories (Westchester, PA). Protein A-Sepharose 
was from Pharmacia (Uppsala, Sweden), sulfo-N-hydroxy-succinimido- 
biotin (s-NHS-biotin), sulfosuccinimidyl 2-(biotinamido) ethyl 1,3-dithio- 
propionate (s-NHS-SS-biotin), and streptavidin-agarose beads were from 
Pierce Chemical Co.(Rockford, IL). All other reagents were obtained from 
Sigma Chemical Co. (St. Louis, MO). 

Cells, Antibodies, and Cell Culture 
MDCK type II were grown in DME supplemented with 10% horse serum. 
MDCK cells expressing the eDNA for the plg-R have been described previ- 
ously (21) and were grown in DME supplemented with 5% FBS. Guinea 
pig antiserum for the plg-R has been described elsewhere (4). mAb against 
uvomorulin was a generous gift from Dr. B. Gumbiner (University of Cali- 
fornia at San Francisco) (12). Rabbit polyclonal antibodies against gpll4 
were obtained by purification of this protein from apical membrane prepara- 
tions (29) by wheat germ agglutinin (WGA)-Sepharose affinity chromatog- 
raphy (22) and separation on SDS-PAGE (14). After electrophoretic transfer 
to nitrocellulose paper (33), the band was visualized by Ponceau red, cut 
out, and injected into New Zealand rabbits for immunization (10). For ex- 
periments, cells were grown on Transwells (Costar Data Packaging Corp., 
Cambridge, MA) and used after 7 d. 

Biotinylation 
Biotinylation of monolayers on Transwells with s-NHS-biotin (30) was car- 
ried out twice in a row for 20 rain at 4°C with 0.5 ml for the apical chamber 
and 1.5 ml for the basolateral chamber. Free biotin was blocked with 50 
mM NH4CI in PBS containing 1 mM MgCI2 and 0.1 mM CaCI2. Biotin- 
ylation with s-NHS-SS-biotin was performed as for s-NHS-biotin. After bi- 
otinylation, reduction of surface s-NHS-SS-biotin was performed with 50 
mM glutathione for 30 min (15) in 90 mM NaCI, 1 mM MgCI2, 0.1 mM 
CaCI2, 60 mM NaOH, and 10% FBS. 

Pulse-Chase Experiments 
Cells grown on filters were incubated for 30 min in DME without methio- 
nine/cysteine, and pulsed for 20 min in the same medium containing 0.8 
mCi/ml trany ~5 label (ICN K&K Laboratories Inc., Plainview, NY) and 
0.4 mCi/ml 35S cysteine (NEN, Chadds Ford, PA) as described (21). Cells 
were washed once with DME, chased in DME containing 10x cysteine/me- 
thionine, and stored at 4°C in NaCO3H-free DME, 20 mM Hepes, and 
0.2% BSA before biotinylation. 

lmmunoprecipitation and Streptavidin Precipitation 
After biotinylation, filters were excised and cells were solubilized in 1 ml 
of lysis buffer: 150 mM NaCl, 20 mM Tris pH 8.0, 5 mM EDTA, 1% Triton 
X-lO0, 0.2 % BSA, and protease inhibitors for 1 h under agitation. Extracts 
were precleared by addition of 100/~1 of a Staphylococcus aureus slurry 
(fixed bacteria, 50% vol/vol, prewashed three times) (Pansorbin; Calbio- 
chem-Behring Corp., San Diego, CA) for 20 min and centrifuged at 15,000 g 
for 10 rain. Supernatants were incubated for 12 h with protein A-Sepharose 
(10 mg/ml) precoated with rabbit anti-mouse Ig plus mAbs (diluted 1/100 
for ascites) or rabbit polyclonal antibodies (I/250) for gp114 or guinea pig 

1. Abbreviations used in this paper: pig-R, polyimmunoglobulin receptor; 
WGA, wheat germ agglutinin. 

polyclonal antibodies (1/4,000) for plg-R. After incubation, the beads were 
washed as described (15). To recover the immunoprecipitated biotinylated 
antigens, the beads were boiled with 10/~1 of 10% SDS for 5 min, diluted 
with lysis buffer (500 ~,l/tube), and centrifuged (1 min at 15,000 g). Super- 
natants were incubated overnight with streptavidin-agarose beads (50 t~l, 
50% slurry). Finally, the beads were washed (15) and boiled in gel sample 
buffer and analyzed by SDS-PAGE 6/16% (14). Dried gels were processed 
for fluorography as described (8) using preflashed films. Densitometric 
analysis was performed under conditions where linearity was best preserved 
using a scanning densitometer (model GS 300; Hoefer Scientific Instru- 
ments, San Francisco, CA); at least t ~  independent experiments were per- 
formed. Alternatively, immunoprecipitated antigens from biotinylated cells 
were directly analyzed by SDS-PAGE under reducing conditions for s-NHS- 
biotin or nonreducing conditions for s-NHS-SS-biotin, and blotted with 
~2Sl-streptavidin on nitrocellulose (30). 

Frozen Sections 
0.5-t~m frozen sections of MDCK cells on collagen (32) were processed for 
immunofluorescence as described (15). 

Results 

Characterization of the Surface Distribution of Two 
Endogenous and One Exogenous Integral Membrane 
Glycoproteins of MDCK Cells 
In a previous study (29), two major sialoglycoproteins (ap- 
proximate molecular mass 100 and 200 kD) were detected 
in isolated apical membrane fractions of MDCK cells by 
~2q-WGA blotting. The lowest molecular weight band was 
unextractable with carbonate buffer (29) and partitioned 
with the detergent phase of Triton X-114 (16), which indi- 
cated that it is an integral membrane protein. This protein 
was purified from isolated apical membranes of MDCK cells 
by affinity chromatography on a WGA-Sepharose column 
(22) and used to prepare polyclonal antibodies. Using this 
antibody on semi-thin frozen sections of MDCK cells the an- 
tigen was localized at the apical surface (Fig. 1, a and b). In 
contrast, an mAb against the cell adhesion molecule uvo- 
morulin labeled mainly the lateral membrane of the cells 
(Fig. l, c and d). Immunoprecipitation from cells labeled 
with s-NHS-biotin revealed only a 114-kD protein (gpll4); 
in filter-grown monolayers, 95% of gpll4 was labeled from 
the apical side (Fig. 2), confirming its apical localization. 
Under identical conditions, uvomorulin was preferentially 
labeled (96 %) from the basolateral side (Fig. 2). Rabbit pig- 
R, permanently expressed in MDCK cells by transfection of 
its eDNA (21) appeared also basolaterally polarized (94%) 
with the biotinylation procedure (Fig. 2). 

Surface Delivery of gpll4, Uvomorulln, and plg-R 
The biosynthesis of gp114 was followed by pulse-chase with 
"S methionine/35S cysteine and immunoprecipitation. After 
a 20-min pulse, a precursor 85-kD form was rapidly con- 
verted into the mature ll4-kD form within the first 45 min 
of chase (Fig. 3). The surface appearance of gpll4 and 
uvomorulin on confluent monolayers of MDCK cells grown 
on Transwells was studied by metabolic labeling with a 35S- 
methionine/35S-cysteine pulse (20 min), followed by chase 
in a medium containing an excess of cold methionine and 
cysteine. At different times of chase, the cells were labeled 
either on their apical or their basolateral side with s-NHS- 
biotin and the antigens were immunoprecipitated, released 
from the beads, and precipitated with streptavidin coupled 
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Figure 3. Biosynuaesis of gp114 in MDCK cells. Cells were pulsed 
with 3sS methionine and 3sS cysteine for 20 min and chased for the 
time indicated. Gp114 was immunoprecipitated, analyzed by SDS/ 
6-12 % PAGE, and processed for fluomgraphy. An 85-kD precursor 
form progressively matures into a 114-kD form. Molecular mass 
markers are in kD. 

Figure 1. Indirect immunofluorescence localization of gp114 (a and 
b) and uvomorulin (c and d) on semi-thin frozen sections of MDCK 
cells grown on collagen. Gp 114 is localized mainly on the apical 
side of the cells (empty arrowheads) while uvomorulin is present 
only on the basolateral membrane (white arrowheads). Bar, 10/~m. 

to agarose beads (15). Gpl l4  arrived at the apical surface 
with a half time of 45 min, while uvomorulin made its ap- 
pearance on the basolateral membrane with a half time of 35 
min (Figs. 4 and 5). The time between the disappearance of 
the precursor form and the surface appearance of the mature 
form was 15 min for gpl l4 and 20 min for uvomorulin (Fig. 
5). Both antigens seemed to be delivered directly to their 
respective surface with 2 % missorting for uvomorulin and 
8% missorting for gpll4 (Fig. 5). At any time of the chase 

Figure 2. Immunoprecipitation of gpll4, uvomorulin ( Uvo ), and 
plg-R after surface labeling of the apical (A) or the basolateral (B) 
sides of MDCK cell monolayers. The biotinylated proteins were re- 
vealed after SDS/6--16% PAGE and transfer to nitrocellulose by 
~2SI-streptavidin blotting. Molecular weight marker is 116 kD. 
Gp114 was mainly detected in apically labeled cells while uvomoru- 
lin and plg-R were mainly detected in basolaterally labeled cells. 
The autoradiogram presented here for gpll4 was overexposed to 
show the basolateral pool of gp114 at the steady state. 

more gp114 was present on the apical than on the basolateral 
surface of the cells (Fig. 5) and no peak of gp114 could be 
detected on the basolateral membrane. Furthermore, the 
level of gpll4 on the basolateral surface appeared to be 
steady even after 280 min of chase. 

Previous work with native liver and intestinal cells has 
suggested that certain apical proteins may appear transiently 
in the basolateral surface before final transfer to the apical 
surface (2, 13, 17). To rule out the possibility that a similar 
transient appearance of gp114 in the basolateral surface of 
MDCK cells was missed by our domain-selective biotinyla- 
tion procedure, we carried out two types of experiments. 
First, we followed the cell-surface appearance of a protein 
for which this pathway has been very well documented, 
namely, the plg-R transfected into MDCK cells (21). As de- 
scribed above for gpll4 and uvomorulin, MDCK mono- 
layers were pulsed (I0 min) with 35S-cysteine, chased for 
various times, and subjected to domain-selective biotinyla- 
tion, immunoprecipitation, and streptavidin-agarose precip- 
itation. The plg-R was first detected on the basolateral sur- 
face with a half time of 30 min, then on the apical membrane 
with a half time of 65 min, and was finally secreted into the 
apical medium with a half time of 135 min (Fig. 5). These 
results confirm the basolateral to apical transcytosis described 
for the plg-R in MDCK cells (4, 21) and show that the proce- 
dure we used is sensitive enough to detect the transient ap- 
pearance of this receptor in the basolateral membrane. How- 
ever, a very fast transit of gp114 might have gone undetected. 
Therefore, as a second approach, we decided to study di- 
rectly the fate of the basolateral pool of gpll4. 

Fate of  the Basolateral Pool of  gpll4 and plg-R 

For this purpose, we used our recent modification (15) of the 
technique described by Bretscher and LuRer (5). Confluent 
monolayers of MDCK cells grown on filters were labeled at 
4°C (time 0) from the basolateral side with a cleavable ana- 
logue of s-NHS-biotin, s-NHS-SS-biotin. After labeling, the 
cells were warmed up for different times to allow endocyto- 
sis and the biotin remaining at the cell surface was stripped 
by reduction with 50 mM glutathione (15). The cells were 
then extracted and the biotinylated antigens were immuno- 
precipitated, analyzed by SDS-PAGE under nonreducing con- 
ditions, and detected by ~5I-streptavidin blotting. Endocy- 
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Figure 4. Appearance at the cell surface of gpll4 in MDCK cells. Cells were pulsed with 35S methionine and 35S cysteine for 20 min and 
chased for the times indicated. Newly synthesized gp114 was detected at the cell surface as described in Materials and Methods. lmmunopre- 
cipitated gp114 was analyzed by SDS/6-16% PAGE and fluorography. Molecular mass standards are from top to bottom 180, 116, 82, 
and 58 kD. 

tosis of a given antigen was measured as the increase in the 
amount of biotinylated antigen that became resistant to glu- 
tathione reduction. 

To determine the efficiency of the technique, we studied 
the fate of plg-R in transfected MDCK cells. All the label 
incorporated from the basolateral side into plg-R (Fig. 6, 
lane a) could be removed by the addition of glutathione at 
time 0 to the basolateral side (lane d) but not to the apical 
side (lane g) of the monolayer. On the other hand, incubation 
at 37°C resulted in fast protection of the biotinylated plg-R 
to reduction by glutathione from the basolateral side. Almost 
all plg-R was endocytosed by 30 min (lanes e and f )  and be- 
came sensitive to apical reduction by about the same time 
(lane h and i), consistent with the reported transcytotic path- 
way of this receptor (4, 21). The cleaved form of plg-R was 
detected in the apical medium somewhat later, by 120 min 
(lanesj and k). Thus, biotinylation of plg-R did not prevent 
its normal transcytosis to the apical side or its release by pro- 
teolytic cleavage into the apical medium. In combination 
with glutathione reduction, this method allowed us to follow 
the fate of the basolateral pool of the receptor. 

We applied the same technique to follow the fate of the 
basolateral pool of gp114 by labeling the cells with s-NHS- 
SS-biotin at 0°C followed by incubation at 37°C. Even after 
2 h at 37°C, gp114 labeled at time 0 on the basolateral surface 
was still sensitive to basolateral reduction (Fig. 7, lanes g-i) 
and insensitive to apical reduction (lanes d-f), indicating 
that very little transcytosis had occurred. Furthermore, 
when the rate of endocytosis of basolateral gp114 was com- 
pared with that of apical gpll4, they were found to be very 
slow in both cases (Fig. 8). Taken together, these results 
show clearly that the gpll4 molecules present on the baso- 
lateral surface do not behave as a transient precursor pool to 
apical gp114 but, rather, as a stable missorted population. 

Discussion 

As part of our effort to elucidate the mechanisms involved 
in the establishment and maintenance of epithelial cell polar- 
ity, we characterized the biogenetic pathway of an integral 
membrane sialoglycoprotein of the apical surface of MDCK 
cells and compared it with the corresponding pathways of a 
basolateral protein, uvomorulin, and a transcytosing recep- 

tot, pIg-R. Gp114 was shown to be an apical component of 
MDCK cells by several criteria: (a) it is one of the major 
WGA-binding sialoglycoproteins detected in an apical mem- 
brane preparation (29), from which we describe its purifica- 
tion in this report; (b) it was localized to the apical pole by 
frozen sections; and (c) by domain-selective cell surface 
labeling with s-NHS-biotin. Gp114 is an integral membrane 
glycoprotein because it partitions with Triton X-114 (16) af- 
ter phase separation (3) and is not extractable by high pH 
(29). 

Gpll4 was used as a model to study the surface delivery 
of apical proteins in MDCK cells. Using a combination of 
pulse-chase with 35S-methionine/35S-cysteine, domain-se- 
lective surface biotinylation at different times of chase fol- 
lowed by immune- and streptavidin-agarose precipitation, 
gp114 appeared to be directly targeted to the apical mem- 
brane. Several results strongly suggested this pathway. At any 
time of the chase, we detected more gp114 on the apical than 
on the basolateral domain, and the gpll4 present on the 
basolateral membrane remained stable for at least 280 min 
with no observable peak, compatible with its being a mis- 
sorted population. Furthermore, the times between Golgi 
processing of precursor gp114, as detected by shift to an 
Endo H-resistant, higher molecular weight form, and the 
basolateral or apical surface appearance of the processed 
form were very short and similar ('~15 min). By compari- 
son, the predominantly lateral cell adhesion molecule uvo- 
morulin was directly targeted to the basolateral membrane, 
with only 2 % being missorted to the apical side, as shown 
for Na+,K+-ATPase (7) using domain-selective binding of 
photoactivatable ouabain and immunoprecipitation with an- 
tiouabain antibodies. 

That the surface-delivery assay described in this paper is 
sensitive enough to detect transient appearance of a protein 
in the basolateral membrane was shown by studies with 
MDCK cells permanently expressing pIg-R (21). Previous 
studies using antibody binding have shown that this receptor 
is initially targeted to the basolateral membrane of the 
MDCK cells and is then transcytosed to the apical mem- 
brane and shed into the apical medium by proteolytic cleav- 
age (4, 21). Using the same protocol as for gp114 we showed 
that we could first detect the appearance of newly synthe- 
sized pIg-R on the basolateral surface followed by its arrival 
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Figure 5. Appearance at the cell surface of newly synthesized 
gp114, uvomorulin (Uvo), and plg-R. Cells were pulsed for 20 min 
(gp114 and uvomorulin) or 10 min (pig-R) and chased for the time 
indicated. Fluorograms were scanned as described in Materials and 
Methods and the results were expressed as a percentage of the 
amount at the time of maximal expression at the cell surface. The 
secretory component was expressed independently as a percentage 
of the maximal amount recovered in the apical medium at t = 280 
min. Precursor (a), apical (n), basolateral ( . ) ,  and secreted (I) 
forms. 

Figure 6. Transcytosis of pIg-R in transfected MDCK cells. En- 
docytosis and transcytosis of basolateral plg-R was followed using 
a procedure derived from Bretcher and Lutter (5). Confluent 
monolayers were labeled with s-NHS-SS-biotin (blot) from the 
basolateral side at 4°C and reduced with glutathione (glut) from the 
apical (a) or the basolateral (b) side, immediately or after incuba- 
tion at 37°C for 0, 0.5, or 2 h. The plg-R was immunoprecipitated, 
analyzed by SDS/6-12 % PAGE under nonreducing conditions, and 
revealed by ~25I-streptavidin blotting. The secretory component 
released into the apical medium was also analyzed (Ap med). Mo- 
lecular mass standards are 116 kD for the left panel and 82 and 58 
kD for the right panel. The plg-R was endocytosed (lanes d-f),  
transcytosed (lanes g-i), and secreted into the apical medium 
(lanes j and k). 

at the apical surface and finally its release into the apical 
medium. We believe that domain-selective labeling with 
s-NHS-biotin has several advantages over surface immuno- 
precipitation. The accessibility of the basolateral domain 
should be more facile for biotin (mol wt ~400)  than for anti- 
bodies (mol wt '~150,000) or even Fab fragments (mol wt 
'~50,000). This may be one of the reasons why we find a 
higher percent of basolateral pig-R, 95 %, rather than the 
50%/20% level reported by Breitfeld et al. (4) using anti- 
body (Fab) or ligand (dimeric IgA) binding; another reason 
for the low apical level of plg-R may be recycling to an apical 
endocytic compartment (4). In addition, biotin labeling has 
been shown to be restricted to the cell surface (30), while 
surface immunoprecipitation can be contaminated by intra- 
cellular antigen during cell lysis, resulting in an overestima- 
tion of  the percent of  surface protein. 

Figure 7. Fate of the basolateral pool of gp 114. Endocytosis and 
transcytosis of basolaterai gp114 was studied by labeling the cells 
with s-NHS-SS-biotin (blot) from the basolateral side at 4°C and 
by reducing with glutathione (glut) from the apical (a) or the baso- 
lateral (b) side, immediately or after incubation at 37°C for 0, 0.5, 
or 2 h. Gp114 was immunoprecipitated, analyzed by SDS/6-12% 
PAGE under nonreducing conditions, and revealed by ~251-strepta- 
vidin blotting. Gp114 was poorly endocytosed (lanes g-i) and trans- 
cytosed (compare lanes a-c with d-f).  
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Figure 8. Endocytosis of gp114 from the apical or the basolateral 
side. Cells were labeled with s-NHS-SS-biotin (biot) from the api- 
cal (a) or basolateral (b) sides at 4°C and reduced with glutathione 
(glut) from the apical (a) or the basolateral (b) side, immediately 
or after incubation at 37°C for 0, 0.5, or 2 h. Gpll4 was immuno- 
precipitated and analyzed by SDS/6-12 % PAGE under nonreducing 
conditions and revealed by ~25I-streptavidin blotting. Very little en- 
docytosis was observed even after 2 h from both apical and 
basolateral sides (compare lane c withfand lane i with I). Molecu- 
lar mass standards are 116 and 82 kD. 

Although the results with plg-R clearly show that we were 
able to detect a flux of protein in the basolateral membrane, 
they did not rule out completely a fast transit of gp114 
through the basolateral domain. To directly study the fate of 
the basolateral pool of gpll4 we used a new assay (15), de- 
rived from a procedure by Bretscher and Lutter (5). This as- 
say employs a cleavable analog of s-NHS-biotin that is mem- 
brane impermeable and does not significantly cross the tight 
junctions. Using this analog, s-NHS-SS-biotin, we found the 
same polarity ratio for gpll4 as found with s-NHS-biotin 
(compare Fig. 2 and 8). To remove the biotin present at the 
cell surface we used glutathione (15), that is membrane and 
tight junction impermeable, at least within the times used 
(see Fig. 8). By combining basolateral biotinylation of 
MDCK cells expressing the plg-R and domain selective 
reduction with glutathione, we showed that, when the cells 
were incubated at 37°C, the plg-R was endocytosed and 
transcytosed to be released into the apical medium. How- 
ever, using the same protocol, the basolateral pool of gp114 
was shown to be endocytosed very slowly and not signifi- 
cantly transcytosed. This was not likely due to inactivation 
by biotin labeling since for the plg-R the normal pathway was 
not affected. These results indicate that gp114 has a long resi- 
dence time in the basolateral membrane, where it behaves as 
a stable pool of newly synthesized protein. Our results are 
consistent with the hypothesis of intracellular sorting and 
vectorial delivery of plasma membrane proteins in MDCK 
cells (16, 19, 20, 23, 24). 

It is of great interest to apply the methods used here to the 
study of the biogenetic pathways of apical proteins in intesti- 
nal cell lines. It has been proposed that in the enterocyte two 
of the major apical hydrolases, sucrase-isomaltase and amino- 
peptidase N, are sorted at the level of the basolateral domain 
(13, 17). Recently, we found that one apical and one basola- 
teral protein are sorted intracellularly in an intestinal cell 
line, SK-CO-15 (15). However, using an identical approach 
in CaCo-2 cells, newly synthesized aminopeptidase was de- 
tected transiently on the basolateral surface while basola- 
teral alkaline phosphatase seemed to behave as a stable mis- 
sorted pool (like gpll4 in MDCK cells) (Le Bivic, A., A. 
Quaroni, B. Nichols, and E. Rodriguez-Boulan, manuscript 
submitted for publication). The study of other apical pro- 
teins will be necessary to define the prevalence of direct 

versus indirect pathways in intestinal cells. It will be particu- 
larly informative to study proteins that, endogenously or by 
transfection, are expressed in both liver and a cultured epi- 
thelial line. In this regard, it is interesting to note that gp114 
shares many common features with two apical proteins in the 
liver, the gp110 and HA4 (1, 9). They all bind WGA and are 
integral membrane proteins heavily glycosylated with core 
proteins having similar molecular weights (1, 9). Comparing 
these proteins would be of interest, considering that an in- 
direct pathway was proposed for HA4 (2) in liver. 
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Note Added in Proof. While this paper was in press, a report by K. Matter, 
M. Brauchbar, K. Bucher, and H.-P. Hauri (Cell. 1990. 60:429-437) 
showed that several apical hydrolases follow both vectorial and transcytotic 
routes to the apical surface of intestinal (CaCo-2) cells. In their study, 
Mater et al. employed various types of targeting assays, including biotin 
targeting assays similar to those that we recently published (15, 16) and 
that we use in this report. 
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