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Abstract: Oxidative damage to DNA has important implications for human health and has been
identified as a key factor in the onset and development of numerous diseases. Thus, it is evident
that preventing DNA from oxidative damage is crucial for humans and for any living organism.
Melatonin is an astonishingly versatile molecule in this context. It can offer both direct and indirect
protection against a wide variety of damaging agents and through multiple pathways, which may
(or may not) take place simultaneously. They include direct antioxidative protection, which is
mediated by melatonin’s free radical scavenging activity, and also indirect ways of action. The latter
include, at least: (i) inhibition of metal-induced DNA damage; (ii) protection against non-radical
triggers of oxidative DNA damage; (iii) continuous protection after being metabolized; (iv) activation
of antioxidative enzymes; (v) inhibition of pro-oxidative enzymes; and (vi) boosting of the DNA
repair machinery. The rather unique capability of melatonin to exhibit multiple neutralizing actions
against diverse threatening factors, together with its low toxicity and its ability to cross biological
barriers, are all significant to its efficiency for preventing oxidative damage to DNA.

Keywords: antioxidant activity; metal chelation; free radical scavenger; antioxidative protection;
antioxidative mechanisms

1. Introduction

Oxidative damage (OD) to DNA may compromise the genomic integrity [1] and, consequently,
it has important implications for human health. In fact, OD has been identified as a key factor in
the onset and development of numerous diseases. Thus, it is evident that preventing DNA from
OD is crucial for humans and for any living organism. OD to DNA increases to unhealthy levels
as a consequence of oxidative stress (OS), which is a chemical stress arising from the imbalance
between the production and consumption of oxidants. Among such oxidants, free radicals (FR) seem
to be particularly relevant, and there is a wide variety of them in living systems. At the same time,
there are multiple endogenous and exogenous factors that contribute to elevate the levels of FR. Some
examples are ischemia, infections, physical or mental stress, aging, pollution, radiation, heavy alcohol
consumption, cigarette smoke, the intake of certain drugs, etc [2–15]. It is then logical that antioxidants
that are efficient FR scavengers are potential candidates to reduce OD to DNA.

There is abundant evidence on the antioxidant protection exerted by melatonin
(N-acetyl-5-methoxytryptamine) and related compounds [16–28]. Such protective effects can involve diverse
routes including free radical scavenging [29–37], but also the deactivation of other oxidants [38–42] and
the inhibition of metal-induced lipid peroxidation [43–48]. The data gathered so far on the antioxidant
activity of melatonin is so convincing that it has led to the hypothesis that one of the main functions of
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melatonin in living organisms is to protect them from OD [49]. Indeed, it has been found that low
levels of endogenous melatonin in humans may lead to high levels of oxidative DNA damage [50].

In addition, melatonin metabolites also have antioxidant effects, which maintains protection
against oxidants after melatonin is metabolized [16,51,52]. This combined action has been proposed
as one of the reason why melatonin is highly effective as an antioxidant and capable of providing
long-term protection against OS [52]. It has also been proposed that melatonin and its metabolites
work in a “task-division” way, with some of them acting mainly as FR scavengers, while others act as
metal chelating agents and inhibitors of the hydroxyl radical (•OH) production [19].

Based on the above mentioned facts, melatonin protects DNA from oxidation through different
mechanisms, including its chemical antioxidant effects. Here, the data published to date regarding this
particular action, and other possible protective mechanisms, are reviewed. In addition, some relevant
aspects of OD to DNA are also discussed.

2. Oxidative Damage to DNA

2.1. Induction by Free Radicals.

Free radicals can damage DNA directly or indirectly [53,54]. The direct damage often involves
hydrogen atom transfer (HAT), radical adduct formation (RAF), or single electron transfer (SET) routes.
The indirect damage arises from the action of the electrophilic species yielded when FR react with
biomolecules such as lipids, proteins, and other cellular components. For example, the peroxidation of
polyunsaturated fatty acids produces a variety of aldehydes that can lead to the formation of DNA
adducts [55].

while the second step corresponds to the Fenton reaction.
Since the metal oxidized forms, Fe(III) and Cu(II), are their most abundant and stable oxidative

state, the first step of the MC-HWR is more important in biological systems than the direct Fenton
reaction. In other words, the reduction process -Fe(III) to Fe(II) or Cu(II) to Cu(I)- is the crucial step to
the •OH production. Thus, if the formation of Fe(II) or Cu(I) is inhibited so is •OH production through
the Fenton reaction, and therefore the •OH-related oxidative damage. This is an important aspect
of the •OH production via the MC-HWR, because chelating agents able of decreasing the viability
of Fe(III) and Cu(II) reduction reactions are expected to be effective in preventing, or inhibiting,
oxidative damage to DNA.

From a chemical point of view, the direct reaction between •OH and DNA is a multifaceted
process. Due to the high reactivity of this radical, and its consequent low selectivity, such reaction
can yield a myriad of products. One of the possible reaction channels is the SET, yielding a radical
cation [59], which is expected to involve mainly guanosine sites. This is because guanosine is the most
easily oxidized of the nucleic acid bases, with a reduction potential of 1.29 V vs NHE [60]. The fact
that guanosine has the lowest ionization potential among the DNA components explains why it is the
main sink for hole transfer in double-stranded DNA [61]. The radical cation generated by SET can
readily deprotonate (Scheme 1), under physiological conditions, yielding carbon-centered radicals in
the deoxyribose unit [62], which are involved in one of the most important types of DNA damage
(strand scissions) [63,64]. Such carbon-centered radicals can also be directly produced by HAT from
the sugar sites to •OH [65–67]. Addition of this radical to 2′-deoxyguanosine (2dG) yields adducts
on different C sites in the imidazole ring (Scheme 1) [57,68]. In turn, the 8-OH-dG adduct can further
evolve. It may yield 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG), due to one-electron oxidation,
or 2,6-diamino-4-hydroxy-5-formamidopyrimidine 2′-deoxynucleoside (Fapy-dG) by cleavage of the
C8-N9 bond plus one-electron reduction [53].
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The 8-oxo-dG is one of the most abundant DNA lesions, and it considered as a biomarker
of oxidative stress [69,70]. It has been estimated that up to 100,000 8-oxo-dG lesions can occur
daily in DNA per cell [1,60]. The reduction potential of 8-oxo-dG is even lower (0.74 V vs. NHE)
than that of guanosine [71]. Therefore, it can be further oxidized by a large variety of
oxidants [72–76], yielding the corresponding radical cation, which can be transformed into the
5-hydroxy-substituted derivative of 8-oxo-dG (5-OH-8-oxo-dG) by hydration, deprotonation and
another SET reaction (Scheme 1) [75,76]. This species can also be oxidized, yielding 2′-deoxynucleoside
(dGh), spiroiminodihydantoin 2′-deoxynucleoside (dSp), and/or other products [75,76]. The relative
abundance of such products would be influenced by the reacting species and by environmental factors.
However, under physiological conditions dGh and dSp are both expected to be formed [53].

It seems worthwhile mentioning that, albeit they are not reviewed here, other nucleosides are
also susceptible to be damaged by •OH and other free radicals. The chemical routes involved in
such processes are similar to those described here for 2dG [77–79]. In addition, oxidants such as FR,
can produce not only single but multiple lesions to a DNA molecule, which may lead to the formation
of cross-linked products [80–86].

2.2. Other Causes

In addition to the previously discussed metal-induced damage, which can be attributed at least
partially to the production of •OH radicals, there are other possible factors that may contribute to DNA
lesions. Some halogen compounds such as HOCl and HOBr, which are produced as a response to
inflammation, can cause structural modifications to DNA [87–89]. In fact, one of the products yielded by
such processes, 5-chloro-2′-deoxycytidine, is considered a biomarker of chronic inflammation [90,91].
Nitric oxide (•NO) and superoxide radical anion (O2

−•) are also produced as a consequence of
immune responses to inflammation [92]. Albeit they do not directly damage DNA, their reaction
yields peroxynitrite (ONOO−) [93], which reacts with DNA [94–96]. Guanine residues seems to be
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the main target of ONOO−, since its reaction with these residues is significantly faster than those
involving other nucleosides, and its reactions with 8-oxo-dG is even more favorable than with the
parent molecule [97].

Some by-products of lipid peroxidation also induce damaged to DNA. For example, aldehydes
produced in this process can react with DNA, by RAF, yielding different products [55,98]. In turn,
they can lead to DNA interstrand cross-links [99]. Other chemicals that can damage DNA are
17β-estradiol [100], 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [101], d-aminolevulinic acid [102],
thioacetamide [103], bisphenol A [104], methyl methanesulfonate [105] and the amyloid beta
peptide [106]. In addition, there are other factors that represent a risk to DNA integrity such as
radiation [107–109], ischemia/reperfusion [110], intracerebral hemorrhage [111] and aging [112].

2.3. Consequences for Human Health

DNA damage has serious, and sometimes life-threatening, consequences to human health
(Figure 1). In fact the evidence gathered so far, in this regard, is so abundant that it is not possible to
review it all here. Thus, only some will be mentioned as illustrative examples of the highly deleterious
effects that structural modifications to DNA imposes to human health. In particular OS-induced DNA
damage has been associated with a wide variety of diseases [113,114].
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It has been proposed that this kind of damage may play a key role in carcinogenesis induced
by chronic inflammation [115,116]. Elevated levels of OS and/or DNA damage have been found
in cases of human breast, prostate, colorectal, gastric, lung and ovarian cancer; as well as in
leukemia, melanoma and lymphoma patients [117]. The relationship between oxidative DNA
damage and cancer arises, at least partially, from the fact that DNA lesions that are not detected
during replication, such as 8-oxo-dG, can lead to mutations [118,119]. In addition, agents increasing
oxidative DNA damage usually enhance the risk of cancer development, while diets rich in fruits
and vegetables (which contain abundant antioxidants) decrease both oxidative DNA damage and
cancer incidence [120]. Three main mechanisms have been proposed to contribute to DNA damage,
by environmental agents, leading to carcinogenesis. They are: (i) oxidative DNA damage, involving
the production of 8-oxo-dG; (ii) the formation of lipid peroxide-derived DNA adducts; and (iii) the
methylation of cytosine by free radicals [121].
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OS-induced DNA damage has also been identified as an important contributing factor to
neurodegeneration. It initiates a series of events that promote neuronal loss, following central nervous
system (CNS) injuries [122]. Increased nuclear and mitochondrial DNA oxidation have been observed
in Alzheimer’s disease (AD), arising from the attack of reactive oxygen species (ROS) to DNA bases
and from the impairment of DNA repair mechanisms [123]. Amyloid beta-induced oxidative DNA
damage also contributes to the development and progression of this disease [124]. Elevated levels of
mitochondrial DNA oxidation products have been found in cases of mild cognitive impairment and
initial stages of AD, which has led to the suggestion that oxidative damage to DNA is an early event in
AD [125]. Levels of 8-OH-dG in the cerebrospinal fluid (CSF), higher than in control groups, have been
found not only in patients with AD but also in patients with Parkinson’s disease [126–128]. The same
trend was found for sporadic amyotrophic lateral sclerosis, and the 8-OH-dG in the CSF was positively
correlated with the illness duration [129]. However, in the particular case of PD, it has been proposed
that while the levels of 8-OH-dG might be used as an “early-stage marker”, the disease progression
might be characterized by a decrease of such levels in the CSF [130].

Oxidative DNA damage also seems to be involved in the development of cardiovascular
diseases [131]. This kind of damage was found to be higher in coronary artery disease patients
than in healthy subjects and to be potentiated by metabolic syndrome, which causes an increase in
OS [132]. In addition continuous flow left ventricular assist devices implanted in heart failure patients
were found to lead to elevated OS and DNA damage in blood leukocytes, and also to malfunction
in DNA repair pathways [133]. The 8-OH-dG levels were found to be elevated in the serum and
myocardium of patients with heart failure, compared to those in control subjects [134].

There are many other health disorders that have been related to high OS and
OS-induced DNA damage. One of them is the Wilson’s disease, which is characterized by
a copper accumulation, and the consequent increase in ROS production [135,136]. Others are
inflammatory bowel disease (including both ulcerative colitis and Crohn’s disease) [137,138],
diabetes [139] and its complications [140–142], acquired immunodeficiency syndrome [143,144],
Huntington’s disease [145,146], rheumatoid arthritis [147–149], and chronic obstructive pulmonary
disease [150], just to mention a few.

3. Antioxidant Protection

Shielding biomolecules in general, and DNA in particular, from oxidative damage can be achieved
in different ways that, depending on the moment at which they take place, might be roughly classified
as prevention or repairing strategies [151]. Antioxidant prevention involves deactivating free radicals
(or other oxidants) or inhibiting their formation, thus they do not reach biological targets. In addition,
DNA repair should occur before replication to maintain genomic integrity and a healthy status.
Enzymatic DNA repair plays an essential role in the defense mechanisms of living organisms, albeit in
some particular cases it can also involve chemical pathways [152].

Melatonin is produced by the pineal gland, although it also is found in several extra-pineal
organs [153–158]. It is best known for its regulatory role in circadian and seasonal rhythms [159–161].
However, there is increasing evidence on its many other biological functions [162]. Some examples
are its anti-inflammatory and immune-enhancing properties [163–165], its homeostatic role in the
mitochondrion [166–168] and in maintaining the fluidity of biological membranes [169]. In addition,
melatonin has well-documented antioxidant capacity. As mentioned in the Introduction section, it has
been proposed that one of the main functions of melatonin in living organisms is to protect them
from OD [49]. Melatonin has also been classified as a mitochondria targeted antioxidant, acting as
a “firewall” against FR [170]. We certainly agree with those statements. Since melatonin is a highly
versatile molecule that plays diverse roles in living organisms, it might be difficult to establish
(beyond any doubt) the relative importance of its many functions. However, its antioxidant protection
is definitively a very important one.
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Melatonin has protective effects against OD to DNA, and also beneficial effects regarding many
of the previously mentioned diseases. Since elevated ROS levels are among the major causes of
DNA damage, the protection exerted by melatonin has been largely attributed to its antioxidant
capacity (AOC) [171]. Melatonin’s AOC can be exerted not only directly, i.e., through its FR scavenging
activity, but also indirectly (Figure 2), for example through its metabolites [172,173], by stimulation of
antioxidative enzymes [15] or by modulating DNA repair pathways [171,174].

Molecules 2018, 23, x FOR PEER REVIEW  6 of 34 

 

are its anti-inflammatory and immune-enhancing properties [163–165], its homeostatic role in the 
mitochondrion [166–168] and in maintaining the fluidity of biological membranes [169]. In addition, 
melatonin has well-documented antioxidant capacity. As mentioned in the Introduction section, it 
has been proposed that one of the main functions of melatonin in living organisms is to protect them 
from OD [49]. Melatonin has also been classified as a mitochondria targeted antioxidant, acting as a 
“firewall” against FR [170]. We certainly agree with those statements. Since melatonin is a highly 
versatile molecule that plays diverse roles in living organisms, it might be difficult to establish 
(beyond any doubt) the relative importance of its many functions. However, its antioxidant 
protection is definitively a very important one. 

Melatonin has protective effects against OD to DNA, and also beneficial effects regarding many 
of the previously mentioned diseases. Since elevated ROS levels are among the major causes of DNA 
damage, the protection exerted by melatonin has been largely attributed to its antioxidant capacity 
(AOC) [171]. Melatonin’s AOC can be exerted not only directly, i.e., through its FR scavenging 
activity, but also indirectly (Figure 2), for example through its metabolites [172,173], by stimulation 
of antioxidative enzymes [15] or by modulating DNA repair pathways [171,174]. 

 
Figure 2. Some threats to DNA integrity and some pathways involved in melatonin’s protection. See 
text for details and references. 

Some of the melatonin’s features make it particularly efficient for exerting AOC protection, since 
they are in line with those expected in ideal antioxidants [175]. One of them is its amphiphilicity, 
which allows melatonin to readily cross physiological barriers [176,177]. Therefore, it can provide on-
site protection to DNA, against locally generated FR [171]. Another important feature of melatonin is 
its low toxicity, over a wide dose range. There is a large number of studies, in both animals and 
humans, indicating that short-term use of melatonin is safe, even in massive doses, while long-term 
administration may induce only mild (if any) adverse effects, comparable to placebo treatment [178]. 
The only significant short-term side effect reported after oral ingestion of ≤5 mg of melatonin by 
normal healthy adults was sleepiness [179]. Similar doses (administered as prolonged-release 
melatonin preparations) were found to be efficient and safe for the treatment of insomnia in children 
and adolescents with autism spectrum disorder.[180] Several in vivo studies on animals, involving 
high doses of melatonin showed that chances of acute and/or chronic toxicity of melatonin is 
extremely low [181–184]. In addition, oral doses of melatonin (up to 1 g daily), taken by human 

Figure 2. Some threats to DNA integrity and some pathways involved in melatonin’s protection.
See text for details and references.

Some of the melatonin’s features make it particularly efficient for exerting AOC protection, since
they are in line with those expected in ideal antioxidants [175]. One of them is its amphiphilicity,
which allows melatonin to readily cross physiological barriers [176,177]. Therefore, it can provide
on-site protection to DNA, against locally generated FR [171]. Another important feature of melatonin
is its low toxicity, over a wide dose range. There is a large number of studies, in both animals and
humans, indicating that short-term use of melatonin is safe, even in massive doses, while long-term
administration may induce only mild (if any) adverse effects, comparable to placebo treatment [178].
The only significant short-term side effect reported after oral ingestion of≤5 mg of melatonin by normal
healthy adults was sleepiness [179]. Similar doses (administered as prolonged-release melatonin
preparations) were found to be efficient and safe for the treatment of insomnia in children and
adolescents with autism spectrum disorder [180]. Several in vivo studies on animals, involving high
doses of melatonin showed that chances of acute and/or chronic toxicity of melatonin is extremely
low [181–184]. In addition, oral doses of melatonin (up to 1 g daily), taken by human volunteers,
resulted in no negative side effects [185]. In fact, there are no reports that exogenous melatonin causes
any serious adverse effects. Thus, the general agreement that melatonin has minimal toxicity over
a very wide dose range seems to be well justified. This allows considering supplementary intakes of
this compound, to increase its level beyond those arising from endogenous production, thus boosting
its capability to protect biomolecules in general, and DNA in particular, from OD. More information
on the safety of melatonin and its clinical utility can be found elsewhere [186].
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3.1. Free radical Scavenging Activity

Melatonin is capable of efficiently scavenging a wide variety of free radicals. Some of them are
•OH, alkoxy radicals (RO•), peroxy radicals (ROO•), and •NO [32,33,37,187–191]. It also scavenges
other, non-radical, oxidants such as hydrogen peroxide (H2O2) [192,193], singlet oxygen (1O2) [38]
and ONOO− [194]. The relationship between these actions, and the protection exerted by melatonin
against oxidative damage to DNA has been well documented.

Several reaction mechanisms have been investigated regarding the chemical protection exerted
by melatonin through its free radical scavenging activity, including SET, HAT and RAF. It has been
proposed that the relative importance of such mechanisms, as well as that of the different reaction sites,
is influenced by the reacting FR. For example for FR of moderate reactivity, such as ROO•, the main
reaction pathways are HAT from site 4 and RAF at site 6 [32] (Scheme 2). However when R has a high
electrophilic character (for example CCl3OO•) the SET pathway contributes to a significant extent
to the FR scavenging activity of melatonin. On the other hand, if the reacting FR is •OH (which is
more reactive than ROO•) the number of reaction paths involved in melatonin’s scavenging activity
increases. In this case HAT occurs from sites C1, C3, C4, C6 and C7; and RAF at sites C5 to C12.
Therefore, reaction with •OH would yield a wide variety of products.
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In addition, melatonin derivatives have been designed to increase its antioxidative protection
via SET [195–202]. Such a design was rationalized considering that the electron-rich aromatic ring
promotes the redox behavior of melatonin, in particular as an electron donor. Therefore, introducing
groups that stabilizes the indole ring, by increasing electron delocalization, might contribute to
an improved antioxidant activity. Some of the melatonin derivatives designed that way resulted to be,
in fact, better direct antioxidants than the parent molecule.

The role of the FR scavenging activity of melatonin on its protective effects against OD to DNA
has been well documented. Liang et al. [203] have recently shown that melatonin protects somatic cell
nuclear transfer porcine embryos from OS-induced DNA damage. It was proposed that such protection
involves the quenching of the FR arising from exposure to hydrogen peroxide (H2O2). In these
experiments melatonin decreased the amounts of intracellular ROS, at the same time that it elevated
the intracellular glutathione (GSH) levels, thus preventing H2O2-induced mitochondrial dysfunction.

Erenberk et al. [204] investigated the effects of melatonin in preventing the DNA damage
associated to the consumption of phenytoin sodium (PHT-Na). This is a drug used against epileptic
seizures, and also as a prophylactic treatment in traumatic brain injury, which leads to the formation of
ROS and the consequent DNA damage. It was found that melatonin (and/or its metabolites) attenuates
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the genotoxic effects of PHT-Na, and that it can reverse the DNA damage induced by this compound.
This can be directly associated with the ROS scavenging activity of melatonin, and led the authors to
proposed melatonin as an add-on antioxidant in the treatment of patients needing PHT-Na.

It has been proposed that melatonin may prevent the DNA damage caused by hyperglycemic
conditions, by scavenging the excess of ROS derived from it [205]. It was found that the administration
of 10 mg/kg melatonin over six weeks has beneficial effects for diabetic rats. Such a treatment decreased
OS parameters such as % tail DNA and mean tail moment. There is also evidence that melatonin has
protective effects against the genotoxicity induced by cyclophosphamide [206], which is a medical
drug used in chemotherapy and to suppress the immune system. Albeit, the exact mechanism of
such protection has not been fully elucidated, it was attributed to the antioxidant and FR scavenging
capabilities of melatonin.

There are other studies showing that OS-induced DNA damage in human spermatozoa is inhibited
by melatonin. Espino et al. [207] demonstrated that melatonin is capable of protecting ejaculated
human spermatozoa against apoptosis caused by OD. In this case, in vitro samples treated with
melatonin exhibited higher percentage of motile, progressive motile and rapid cells, as well as reduced
number of nonviable spermatozoa, compared with the control; at the same time that •NO levels
were significantly decreased. Bejarano et al. [208] found that melatonin supplementation, for 90 days,
resulted in an increased total antioxidant capacity in the seminal fluid and in a reduction of OD to
sperm DNA. This is in line with other reports on the potential role of melatonin as a spermatozoa
protector [209]. The beneficial effects of melatonin on sperm quality have been attributed to its role
in inhibiting increased ROS levels, which are related to teratozoospermia, sperm malformations and
instability of sperm DNA [210].

There is also evidence that melatonin inhibits OS-induced DNA damage in mammalian oocytes.
It has been recently reported that melatonin significantly decreased intracellular ROS levels, and the
associated DNA damage, in aged bovine oocytes [211]. Melatonin was found to reduce ROS
levels, and to inhibit 8-oxo-dG production in mice oocytes; thus protecting DNA from OD-induced
mutation [212].

UV radiation (UVR) is known to induce serious structural and functional alterations in human
skin. ROS have been identified as key species in UVR-mediated photo-damage to skin, due to their
potential to induce DNA oxidation [213], which yields 8-OH-dG and leads to carcinogenesis [214].
It has been found that pre-incubation with melatonin significantly reduces the amounts of 8-OH-dG
positive cells and prevents antioxidative enzyme gene and protein suppression. Based on this findings
it was proposed that melatonin plays a crucial role protecting DNA against UVR-induced OD in
human skin. It was hypothesized that the radical scavenging activity of melatonin is responsible
for reducing ROS levels, albeit indirect ways of action may be involved, i.e., antioxidative enzymes
(protected by melatonin) may also contribute to ROS reduction [215].

The 8-OH-dG lesions in DNA are also induced by microcystin, a liver-specific toxin synthesized
by Microcystis aeruginosa. This can be ameliorated by melatonin in a concentration-dependent manner.
To that purpose, melatonin (IC50 = 0.55 µM) was found to be significantly more effective than vitamin
C or vitamin E (IC50 = 31.4, and 36.8 µM, respectively) [216]. It was proposed that melatonin’s
protection against microcystin toxicity is caused, at least in part, by its direct •OH scavenging activity.
This radical, together with other ROS, has also been held responsible for the L-cysteine-induced
mitochondrial DNA (mtDNA) damage in mice brain. Melatonin was able to completely prevent such
damage, which was attributed to its capability of scavenging •OH [217]. Similar results were obtained,
and similar conclusions drawn, for other chemical agents (kainic acid and potassium cyanide) that
induce oxidative damage to mtDNA [218–220]. Moreover, melatonin prevents the damage induced by
cyanide, kainate, glutathione/Fe3+/O2 or H2O2/Fe2+ to calf thymus DNA. Based on these findings,
together with the knowledge that melatonin is an excellent •OH scavenger, it was proposed that this
radical may play a crucial role in the DNA damage induced by those chemicals [221].
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Oxidative DNA damage can arise as a consequence of many other factors. Phosphine (PH3) is
a widely used pesticide that was found to induce, both in vitro and in vivo, brain DNA oxidation
in rats, yielding 8-OH-dG. The capability of melatonin to prevent such a damage was explained
based on its FR scavenging activity [222]. Naphthalene is another toxic agent. Its toxicity involves
enhanced production of FR and DNA fragmentation, among other effects, which lead to cytoxicity.
It has been found that two hours pre-treatment of cultured cells with melatonin significantly inhibits
naphthalene’s cytoxicity [223].

Exposure to microwave (MW) radiation, in vivo, was found to cause DNA single- and
double-strand breaks in brain cells; while melatonin treatment (immediately before or after exposure)
was found to prevent this damage [224]. This protection was attributed to the FR scavenging activity
of melatonin. It has been reported that hyperoxia is another event that leads to increased ROS levels.
Exposing bovine cerebral endothelial cells to 95 or 100% oxygen resulted in DNA fragmentation
and cell death. Melatonin was found capable of preventing that outcome, in a dose-dependent way,
which was explained based on its ROS scavenging activity [225].

Based on the evidence presented in this section, it can be stated that melatonin is a versatile FR
scavenger, capable of deactivating a wide variety of these toxic agents. Such capability has been proven
to have beneficial effects regarding OD-induced DNA damage. In particular there is ample evidence
showing its role in reducing 8-OH-dG levels, and derived lesions.

There are some related aspects that still need investigation regarding the protective effects of
melatonin against OD induced by chemical agents in general, and FR in particular. The possible
chemical mechanisms implicated in the capability of melatonin to protect biomolecules against
non-radical ROS, as well on reactive nitrogen species (RNS) and reactive sulfur species (RSS) is
one of them. As mentioned before, the reacting FR (or oxidant in general) may influence the chemical
route contributing the most to the scavenging activity of chemical antioxidants. Understanding such
routes in detail is crucial to design adequate strategies to counteract the toxicity of chemical oxidants,
and also to know the intermediate products yield in the process. The latter is important in the context
of OD because there is a chance that such intermediates are reactive enough to damage some biological
targets. That possibility certainly deserves detailed investigations.

3.2. Inhibiting Metal-induced Oxidation

As above mentioned, chelation is a chemical means of inhibiting metal-induced oxidation.
This particular process is directly involved in the •OH-inactivating ligand (OIL) [226,227] behavior
of antioxidants. The protection exerted by OIL species against •OH-induced OD may involve two
different ways of action [228]:

(i) sequestering metal ions from reductants, i.e., inhibiting the reduction of metal ions thus their
reduced forms are not available for Fenton-like reactions; or

(ii) deactivating •OH after being produced via Fenton-like reactions. In this case the •OH radicals
are still formed, but they are rapidly scavenged by the organic ligands in the metal chelates.

To the best of our knowledge, mechanistic insights regarding the OIL behavior of melatonin have
been reported only for its role as OIL-(i), when the redox metal is copper [18]. The most likely complex
was identified (Scheme 3A) and proved to inhibit oxidation induced by Cu(II)-ascorbate mixtures,
as well as the first step of the MC-HWR. Based on the high reactivity of free melatonin towards •OH
(described in Section 3.1) it might be anticipated that this molecule can also be efficient as an OIL-(ii)
antioxidant (Scheme 3B). However, further investigations on this subject are still needed.
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It is known that melatonin is capable of chelating several metal ions including iron, copper,
aluminum, lead, cadmium, and zinc [229]. By binding these metals, melatonin retards Fenton reactions,
preventing •OH generation. Moreover, melatonin protects DNA against OD induced by Fenton
reagents. It over-performs, in this capacity, other antioxidants such as resveratrol, ascorbic acid,
and lipoic acid [230]. There is also evidence that melatonin is capable of significantly decreasing
the amounts of FR yielded by the interactions of Fe(II), Cu(II), Al(III), Zn(II), and Mn(II) with the
amyloid-beta peptide [231]. It has even been suggested that the antioxidant and neuro-protective
activities of melatonin may involve removing toxic metals from the central nervous system [46].

In the particular case of iron (Fe), it has been demonstrated that melatonin’s complexes involve
Fe(III), although not Fe(II) [229]. This finding led to the proposal that Melatonin removes free Fe(III)
from biological environments, thus preventing its reduction to Fe(II), and the associated production
of FR. In the presence of iron, d-aminolevulinic acid generates ROS, via Fe-catalyzed oxidation,
which leads to the formation of 8-OH-dG lesions [232]. Melatonin inhibits the formation of such
lesions, in calf thymus DNA, in a dose-dependent manner [233,234]. To that purpose, melatonin was
found to be more efficient than mannitol and Trolox [233]. The inhibitory effects of melatonin on
oxidative DNA damage induced by ferric nitrilotriacetate (Fe-NTA), in the rat kidney, have also been
investigated. It was found that pre-treatment with melatonin prevents such damage, significantly
reducing the levels of 8-OD-dG [235]. It was inferred that the toxicity of Fe-NTA arises from the
production of ROS, and that melatonin protection is a consequence of its FR scavenging activity and
other antioxidative processes induced by this compound. The DNA strand breaks caused by the
exposure of rat lymphocytes to iron ions and 50 Hz magnetic field, simultaneously, was found to be
inhibited by melatonin [236]. Such inhibition takes place in a dose-dependent manner, with melatonin
0.5 mM and 1.0 mM leading to 50% and 100% inhibition, respectively.

Copper (Cu) is also an active metal in the context of MC-HWR and/or Fenton reactions. It has
been demonstrated that DNA damage caused by mixtures of Cu(II) + H2O2, at pH 7.4, is greater than
that derived from Fe(III) + H2O2, under the same conditions [237]. It was also found that the damage
increases in the presence of ascorbic acid. This can be attributed to the fact that at pH 7.4 the ascorbate
anion is the most abundant form of ascorbic acid; thus it can act as a reductant for both Cu(II) and
Fe(III). In other words ascorbate promotes de formation of •OH via Fenton reaction. This seems to be
confirmed by the finding that 8-OH-dG is the main product yielded in both cases. In addition, the DNA
damage was inhibited by metal chelating agents but not by FR scavengers [237]. Therefore, it seems that
under the above mentioned conditions the inhibition of OD to DNA is mediated by OIL-(i) behavior,
rather than by direct AOC. This is in line with recent theoretical predictions that the oxidative damage
induced by copper can be successfully inhibited by melatonin, through its chelating capability [18,19].
There is also experimental evidence that melatonin protects against copper-mediated FR damage [46].
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Chromium (Cr) may exist in diverse oxidation states. The Cr(VI)/Cr(V) pair has been reported
to mediate Fenton-like reactions, producing ROS that ultimately lead to DNA damage [238].
Melatonin was found to protect DNA from strand break injuries caused by Cr (VI) [239]. Cr(III) can
also induce oxidative damage to DNA. In fact it has been reported that Cr(III) is more reactive
than Cr(VI) towards DNA, under in vitro conditions [240]. There is abundant evidence that
Cr(III)-induced 8-OH-dG lesions can be inhibited by melatonin and other antioxidants [97,230,240,241].
However, melatonin was found to be more efficient for that purpose than ascorbate, Trolox, resveratrol,
xanthurenic acid and lipoic acid [97,230,240]. Moreover, melatonin significantly increases the
protective effects of ascorbate and lipoic acid against Cr-induced oxidative damage to DNA [230].
The formation of 8-OH-dG has been attributed to Cr(III)-mediated Fenton-type reaction yielding
•OH [97]. Thus, the protective effects of melatonin in this context have been proposed as promising for
reducing the incidence of Cr-related cancers [97,240]. It has been suggested that the protective effects
of melatonin against oxidative damage to DNA induced by chromium can be exerted by (i) scavenging
•OH; (ii) directly detoxifying H2O2, and/or (iii) metal chelation [230].

Lead (Pb) genotoxicity has been attributed to the increase of ROS levels and to the inhibition of
DNA repair [242]. The first one is two-fold, at least, and includes direct ROS production as well as
depletion of the cellular antioxidant pool [243]. Melatonin was found to significantly attenuate, in vivo,
the effects of Pb on DNA repair in rat lymphocytes, albeit its efficiency depends on the administered
Pb dose [243]. In addition, it can be inferred that the melatonin’s protection against Pb-induced toxicity
is mainly related to its ability of scavenging ROS, since it had only minor effects on the GSH levels.

It has been reported that Ni(II) can induce DNA damage acting as a catalyst for the Fenton
reaction, or by disrupting DNA repair systems [232]. Exposure to nickel causes the production of
mitochondrial 8-OH-dG and reduces mtDNA content and transcript levels. These damaging effects
have been associated with Ni-induced neurotoxicity, and are attenuated by melatonin [244]. This led
to the suggestion that melatonin may have pharmacological potential in protecting mtDNA against
the adverse effects of nickel in the nervous system.

Cobalt (Co) is also a threat to DNA integrity [245,246]. This metal can cause DNA-protein
cross-linking and disruption of the DNA repair system. In addition, it has been proposed that OS
may be involved in the Co-induced cytotoxicity and genotoxicity [247]. In the same work, it was
found that melatonin lowers tail DNA % and olive tail moment in rat kidney cells exposed to Co
nanoparticles. The protective effects of melatonin in this case were attributed to its capability of
lowering ROS levels. Considering that Co-induced FR production seems to be influenced by metal
chelation and that melatonin can chelate this metal, Romero et al. [232] proposed metal chelation as
an alternative route to explain the protection exerted by melatonin against Co toxicity.

The toxicity of mercury (Hg) involves a wide variety of mechanisms, some of which are relevant in
the context of this review. Hg has been reported to significantly increase ROS levels and OS, to deplete
GSH levels, to damage DNA and to cause failure in the DNA repair machinery [248–250]. In particular,
Hg-induced genotoxic effects are believed to be mediated by its oxidant behavior, which can lead to
DNA damage involving both the purine-pyrimidine bases and the deoxyribose units [249,251]. It has
been recently demonstrated that melatonin and vitamin E can both inhibit the Hg-induced genotoxicity,
and that their protective effects are potentiated when simultaneously administered [249]. This finding
seems to support the hypothesis that melatonin’s protection against the toxic effects of Hg is mediated
by its antioxidant capacity [252].

Exposure to arsenic (As) has been reported to cause oxidative DNA damage, as evidenced by the
formation of 8-oxo-dG lesions, strand breaks, DNA-protein crosslinks and abnormal DNA methylation,
as well as impairment of the DNA repair system [253]. DNA damage induced by arsenite are mediated
by ROS, which is in line with observations of depleted GSH levels and the protection provided by
antioxidants. Melatonin was found to protect human blood cells, in vitro, against the DNA damage
induced by As, which was attributed to the antioxidant potential of melatonin [254]. In addition, it has
been reported that methylated As can occur in vivo and lead to DNA oxidation, which is prevented by
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melatonin and other antioxidants. This finding led to the conclusion that the indirect genotoxic effects
of As are mediated by ROS [13].

The protection against metal-catalyzed molecular damage provided by melatonin has been
recently, and comprehensively, reviewed [232]. It was proposed that the mechanism involved in the
protection exerted by melatonin, in this context, is manifold and involves metal chelation, direct free
radical scavenging and promotion of the activity and expression of antioxidant enzymes. It was
suggested that the low toxicity of this compound and its ability to easily cross cellular membranes
are contributing factors to the efficiency of melatonin for counteracting metal-induced damage to
biological molecules, including DNA.

Regardless of the action mechanism, it can be stated that melatonin protects biomolecules in
general, and DNA in particular, against metal-induced OD. However, more investigations on the
chemical routes involved in such protection are still needed. In particular, mechanistic insights on
the OIL-(i) and OIL-(ii) behavior of melatonin would be of great interest. In addition, the relative
importance of the possible mechanisms, depending on the involved metal, would be relevant.
From a chemical point of view OIL behavior may –arguably- be the most evident way of protecting
biomolecules against metal-induced OD. However, metals can lead to OD by routes other than
Fenton-like reactions. Such a possibility also deserves further investigation.

3.3. Counteracting the Effects of Other OD Triggers

In addition to FR and active redox metals there are other factors that can trigger OD to DNA.
A few examples including some chemicals (Scheme 4), and other threatening factors are presented next.
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It has been reported that exposure to formaldehyde increases the levels of DNA damage.
This compound causes raised levels of ROS and depletion of GSH, among other effects,
which ultimately induce morphological changes in tissues [255]. Melatonin can significantly ameliorate
formaldehyde’s toxicity. This protection likely involves reduction of ROS levels and DNA damage
(in particular 8-OH-dG lesions), a balance of the oxidant/antioxidant status and an inhibition of
neutrophil infiltration [255].

17β-Estradiol (E2) has been reported to produce DNA damage, which is reflected in the 8-oxo-dG
levels. Thus the toxic effects of this compound might be mediated by OD. Melatonin prevents such
a damage in hamster kidneys, which led to the proposal that melatonin is a likely protector from the
E2-induced carcinogenesis [100].

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a precursor of 1-methyl-4-phenyl-pyridine
ion (MPP+). The MPTP/MPP+ pair has known neurotoxic effects and may induce Parkinson’s
disease [256–258]. It has been shown that this pair causes OD to mtDNA, as indicated by the presence



Molecules 2018, 23, 530 13 of 36

of 8-oxo-dG [101] that, as previously mentioned, is considered as a biomarker of this kind of damage.
In the same study it was demonstrated that melatonin can offer protection against the cell death
induced by MPTP/MPP+. The protective effects of melatonin, in this context, were attributed to
its capability of inhibiting generation of mitochondrial oxygen FR and preventing mitochondrial
membrane potential collapse.

It has been found that potassium bromate (KBrO3) induces oxidative DNA damage in the kidney
of rats. After treatment with this chemical, the levels of 8-oxo-dG in renal genomic DNA increased by
more than 100% [259]. This effect was partially inhibited by melatonin, which was explained by its
antioxidant activity.

Exposure to hypochlorous acid (HOCl) can cause DNA strand breaks and modified nucleotides
(including oxidation of pyrimidine bases and chlorination of cytosine) in human respiratory tract
epithelial cells [260]. Such DNA damage is thought to be involved in HOCl cytotoxicity, together with
protein damage manifested as carbonyl formation and oxidation of thiol groups. Melatonin was
found to protect cells from the molecular damage caused by HOCl exposure, diminishing its cytotoxic
effects [261].

Overproduction and accumulation of d-aminolevulinic acid (dALA) can lead to DNA damage
and, eventually, to carcinogenesis. Toxic levels of dALA arise as a consequence of acute intermittent
porphyria, hereditary tyrosinemia, lead poisoning, and photodynamic therapy. The damaging effects
of dALA to DNA have been measured based on the production of 8-OH-dG sites in rat lung and spleen
homogenates. Melatonin treatment was found to completely inhibit the increase in 8-OH-dG levels
caused by dALA [102]. The hazard posed by dALA to DNA integrity was associated to the formation
of ROS. Thus the protective effects of melatonin may arise from its antioxidant activity.

Thioacetamide induces DNA fragmentation and depletion of GSH levels, among many other
effects, leading to hepatic fibrogenesis. Melatonin was found to inhibit such effects by decreasing OS
levels and DNA damage [103], at the same time that it provided some additional benefits.

Currently it is well known that the amyloid beta peptide (βAP) is involved in the Alzheimer’s
disease. In fact, it is considered the main neuropathologic marker of this disease. It has been found that
exposure to βAP resulted in significant OD to mtDNA [106,262], while addition of melatonin prevents
the damage in human neuroblastoma cells [106]. Moreover, it was proposed that melatonin may be
better than other antioxidants for treating the Alzheimer’s disease. This proposal was based on some
additional appealing properties of melatonin, such as its low toxicity, its ability to cross biological
barriers, and its inhibitory effects in βAP aggregation.

Melatonin has also been found to prevent radiation-induced damage to DNA [107–109,263,264].
For example, it has been proven to reduce DNA fragmentation in the testes of rats exposed to
microwaves, by reducing OS levels [107]. Melatonin inhibits strand breaks in human cells exposed
to X-ray radiation [108]. Pre-treatment with melatonin also prevents DNA strand breakage in
rat brain [109] and 8-OH-dG lesions in rat liver [264], exposed to ionizing radiation (1000 and
800 cGy, respectively).

Some health disorders may lead to DNA damage as well. Ischemia/reperfusion induces
increased levels of 8-OH-dG and thiobarbituric acid reactive substances, which are byproducts
of lipid peroxidation. Pre-treatment with melatonin significantly prevents the formation of both
markers [110]. There is additional evidence supporting the protective effects exerted by melatonin
against ischemia/reperfusion-induced OD to DNA [265–268].

Intracerebral hemorrhage (ICH) significantly increases OS, leading to DNA damage involving
the formation of 8-OH-dG sites, apurinic/apyrimidinic abasic sites and depletion of DNA
repair [269]. It has been recently demonstrated that melatonin treatment alleviates ICH-induced
DNA damage. It was proposed that the protective effects of melatonin in this context is multifaceted,
impacting apoptosis, inflammation, OS levels, DNA damage, brain edema, and mitocondrial
membrane permeability [111]. The results from that work led to the suggestion that melatonin
is a promising candidate in the treatment of mitochondrial dysfunction and ICH-induced disabilities.
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In addition, it has been suggested that the administration of physiological doses of melatonin
may help to prevent age-related oxidative DNA damage in the brain [112]. Such a proposal was made
based on the finding that increased levels of serum melatonin significantly decrease the 8-OH-dG
content and the 8-OH-dG/dG ratios in the brain of adult mice.

Based on the data presented in this section, it can be stated that melatonin is a versatile protector
against OD to DNA, since it prevents the damage caused by a wide variety of factors that may threaten
DNA’s integrity. However, most of the information gathered so far account for the overall effects
of melatonin. On the contrary, little information is currently available on the chemistry associated
to the protection provided by melatonin against the toxic effects of chemical species other than FR.
Based on the structures of the compounds shown in Scheme 4, it is likely that the mechanisms
involved in both the damage and the melatonin protection would strongly depend on the toxic agent.
Properly elucidating such reaction mechanisms is an important step in the way of fully understanding
chemical induced OD and antioxidant protection.

3.4. Metabolic Derivatives

Many of the beneficial effects of chemical antioxidants are lost after being metabolized. This is
not the case for melatonin, which maintains its protection against OD after being transformed by
metabolism or oxidative conditions. There is compelling evidence that melatonin’s metabolites
(Scheme 5) are capable of offering protection against oxidative insults.
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Scheme 5. Fragment of the metabolic route of melatonin. NAT = N-acetyltransferase,
HIOMT = hydroxyindole-O-methyl transferase, NAS = N-acetylserotonin, AFMK = N1-acetyl-N2-formyl
-5-methoxykynuramine, AMK = N1-acetyl-5-methoxykynuramine, c3OHM = cyclic 3-hydroxymelatonin,
6OHM = 6-hydroxymelatonin, 4OHM = 4-hydroxymelatonin, 2OHM = 2-hydroxymelatonin.

N-Acetylserotonin (NAS) is not only the direct precursor of melatonin, in the tryptophan pathway,
but it can also be reversibly formed from melatonin through demethylation [270]. It has been reported
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that NAS has neuro-protective effects [271,272] as well as antioxidant and anti-aging activities [273].
NAS can efficiently protect DNA from the OD caused by H2O2 and Cr(III) [274–276] and also from
UV-induced damage [277,278]. It also inhibits Cu-induced oxidation [47,48].

N1-Acetyl-N2-formyl-5-methoxykynuramine (AFMK) is a product of melatonin oxidation,
which can involve both enzymatic and non-enzymatic processes [279–286]. AFMK has an excellent
ability as a •OH scavenger [287–290]. It protects against high energy radiation [291] and reduces
oxidative DNA damage and lipid peroxidation, preventing neuronal cell injuries caused by
H2O2 [287–289,292]. AFMK inhibits the OS induced by Cu(II)-ascorbate mixtures, via Cu(II)
chelation [18]. It also protects DNA from UV-induced damage [277,278,289] and from the
oxidation caused by Fenton reagents [229] or derived from exposure to mixtures of 5-aminolevulinic
acid + Fe(II) [234].

N1-Acetyl-5-methoxykynuramine (AMK) is formed by deformylation of AFMK [16,51,192,293].
There are several reports showing that AMK is a good and versatile free radical scavenger. It was
found to be capable of deactivating a wide diversity of ROS [34,294,295], RNS [35,36,296–298] and
other oxidants [34,39,40]. There is evidence that AMK also reduces Cr(III)-induced 8-OH-dG lesions in
isolated calf thymus DNA [97].

Cyclic 3-hydroxymelatonin (c3OHM) is believed to be a non-enzymatic product of melatonin,
which is yielded from the reactions of melatonin with oxidants, particularly •OH [37]. Albeit it
was once thought to be a biomarker of OS [299], currently c3OHM is known to be not
an end-product, which can be further metabolized into AFM and AMK [52,300]. It is also known
that such a transformation is mediated by FR [28]. c3OHM efficiently scavenges •OH [301],
ABTS•+ (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) [300] and peroxyl radicals [27]. It is
also capable of chelating Cu(II), preventing its reduction and the consequent •OH production
through Fenton-like reactions [18]. This theoretical prediction is supported by experimental evidence
demonstrating that c3OHM inhibits oxidative DNA damage and 8-OH-dG lesions, induced by Fenton
reagents, under in vitro conditions [301].

6-Hydroxymelatonin (6OHM) has been identified as a major melatonin metabolite in the human
skin [154,278,302]. It is also a product yielded by the reaction of melatonin with •OH, in Fenton-type
generating systems [282] and by the UV-induced metabolism of melatonin in keratinocytes and cell-free
systems [285]. It has been reported that 6OHM can reduce neurotoxicity induced by quinolinic-acid,
due to its capability of scavenging 1O2 and O2

•− [303]. It also lowers Fe(II)-induced neurotoxicity [44]
and inhibits the OD induced by this metal [43,44], UV radiation [295], thiobarbituric acid [304] and
cyanide [305]. In addition, it has been proposed to inhibit OS induced by Cu(II)-ascorbate mixtures
and •OH production [18]. 6OHM also protects DNA damage induced by Fenton reagents [301]
and UV radiation [277,306]. The latter is believed to take place by enhancing the DNA repair in
exposed melanocytes.

4-Hydroxymelatonin (4OHM) and 2-hydroxymelatonin (2OHM) are generated during the
UV-induced metabolism of melatonin [285]. In addition, they can be produced during the oxidation of
melatonin through chemical routes. For example, 2OHM is formed due to the reactions of melatonin
with hypochlorous acid [307], oxoferryl hemoglobin [308] and •OH [282]. The latter also produces
4OHM. To the best of our knowledge, there are no previous studies indicating whether, or not,
2OHM and 4OHM can play a protective role against OS-induced damage to DNA. The information
regarding their antioxidant capacity is also very scarce. It has been recently proposed, based on
theoretical calculations, that 4OHM may play an important role on the protective effects of melatonin
against OS. On the contrary, the effects of 2OHM in this context were predicted to be only minor.
The antioxidant activity of these two compounds, as well as their potential role in protecting
biomolecules against OD certainly deserves further investigation.

AFMK, AMK, c3OHM, 6OHM, 4OHM and 2OHM are all products yielded by the oxidation
of melatonin. Since most of them also have antioxidant properties, the protection exerted by
melatonin against OD is a continuous process in which multiple oxidative offenders can be
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deactivated. Moreover, part of the antioxidant protection exerted by melatonin may be attributed
to its metabolites [173]. In this regard melatonin is a particularly virtuous molecule. Most of the
antioxidants, when metabolized, are transformed into species that do not necessarily offer protection
against OD. Melatonin, on the other hand, is one of the few known antioxidants that does not loose
AOC during metabolism.

3.5. Other Protection Mechanisms

This aspect would be only briefly addressed here since it is not within the main focus of this review.
However, it seems important to emphasize the fact that there are several mechanisms (other than those
more extensively reviewed here) that may significantly contribute to the indirect antioxidant activity of
melatonin. A few examples of the evidence gathered so far, regarding some of them, are provided here.

3.5.1. Activating Antioxidative Enzymes

The protective effects of melatonin against radiation-induced DNA damage has been partially
attributed to its indirect antioxidant activity. It has been proposed that its protection against
UV-induced damage to human skin involves preventing the depletion of the antioxidative enzymes
catalase, glutathione peroxidase and superoxide dismutase (SOD) [215,309].

The fact that melatonin lowers the neurotoxic effects induced by 6-hydroxydopamine [310] has
been attributed to both its free radical scavenging activity and its role in adjusting the activity of
Mn-SOD and Cu/Zn SOD [15]. As in many other works, mentioned here, it seems that in this case the
antioxidative protection exerted by melatonin involves multiple ways of action.

Exposure to bisphenol A can lead to DNA damage, which is believed to be mediated by increased
OS levels and is accompanied by depletion of SOD activity [104]. The capability of melatonin to prevent
such alterations may then be attributed to both its direct antioxidant activity and its involvement
in activating SOD. The role of melatonin in preventing OD and modulating SOD has also been
related to the protective effects of this molecule against DNA damage induced by carbon-ion beam
irradiation [311].

There is also evidence that melatonin and its metabolites (6OHM, AFMK and NAS) protect
melanocytes from UVB-induced DNA damage and OS through activation of nuclear erythroid 2-related
factor 2 (Nrf2) and its target enzymes [277]. Induction of Nrf2 has also been associated with the effects
of melatonin in reducing oxidative and nitrosative DNA damage [312]. In fact, numerous investigations
have shown that melatonin activates phase-2 antioxidative enzymes, via the Nrf2 pathway, including
heme oxygenase-1 (HO-1), γ-glutamylcysteine synthetase (γ-GSC), nicotinamide adenine dinucleotide
phosphate (NADPH): quinone dehydrogenase-1 (NQO1) and SOD [313–333].

There are many other reports in the literature documenting the role that antioxidant enzymes play
in the protective effects exhibited by melatonin against OD [170,194,334–338]. In addition, it seems
that melatonin concentrations influence the relative importance of direct FR scavenging versus indirect
actions involving activation of enzymatic pathways [339]. Apparently, high concentrations (~1 mmol)
favors the first, while low concentrations (~100 nm) promotes the enzymatic removal of ROS.

3.5.2. Inhibiting Pro-oxidative Enzymes

It has been reported that the activity of xanthine oxidase (XO), an enzyme that generates ROS,
increases after exposure to MW radiation [107,340–343]. At the same time, melatonin has protective
effects against DNA fragmentation, induced by this kind of radiation. Thus, the beneficial effects
of melatonin in this context has been attributed, at least partially, to the capability of melatonin for
lowering the OS produced by XO [107]. It is not clear, though, if in this case melatonin acts only as
a ROS scavenger or if it actually inhibits XO activity [342]. However, in a different study conducted
on kidney tissue after ischemia and reperfusion [267], it was proposed that melatonin neutralizes the
products of the XO + O2 reaction, rather than directly suppressing the XO activity. Therefore, it seems
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likely that the protection offered by melatonin against MW radiation is also mediated by its capability
of scavenging ROS.

The protective effect of melatonin against Opisthorchis viverrini-induced oxidative and nitrosative
stress and liver injury were investigated in hamsters [312]. It was found that the formation of
DNA lesions, namely 8-oxo-dG and 8-nitroguanine, is inhibited by melatonin. This protection was
attributed to the inhibitory effects of melatonin on the mtRNA expression of oxidant generating
genes, including inducible nitric oxide synthase, nuclear factor-kappa B and cyclooxygenase-2.
Although, at the same time melatonin seems to increase the expression of antioxidant genes Nrf2
and Mn-SOD.

3.5.3. Boosting DNA Repair Machinery

It has been reported that pre-treatment with melatonin (100 mg/kg) protects rats exposed to
whole-body X-ray radiation by modulating 8-oxoguanine glycosylase1 (Ogg1), apurinic/apyrimidinic
endonuclease (Apex1) and X-ray repair cross-complementing group 1 (Xrcc1) gene expression in
peripheral blood cells [263]. These genes are among the most important ones for dealing with
FR-induced DNA damage, in the base excision repair (BER) pathway. Ogg1 is involved in the removal
of 8-oxo-dG DNA lesions [344], Apex1 mediates the repair of abasic sites [345] and Xrcc1 is required
for repairing strand breaks [346]. Thus the finding that melatonin modulate these genes has a direct
impact on reducing DNA damage. Moreover, based on the finding that melatonin may increase the
normal tissue tolerance to radiation, by enhancing DNA repair, it was proposed that this molecule
might be used to downgrade radiation toxicity in patients undergoing cancer radiotherapy [263].

Also relevant for cancer patients are the finding that melatonin reduces the DNA damage
induced by cyclophosphamide [347], which is an anti-tumor agent currently used in clinical practice.
The protective effect of melatonin in this case was attributed to its capacity to up-regulate the XPF
expression, which is involved in the DNA nucleotide excision repair machinery. In view of that,
melatonin administration was proposed as a co-treatment during chemotherapy.

Pre-treatment with melatonin was reported to increase DNA repair capacity in breast and
colon cancer cells exposed to the mutagen methyl methanesulfonate [105]. In the same study
the genome-wide gene expression was examined and it was found that melatonin leads to altered
expression of many of the investigated genes. This led to the suggestion that melatonin may enhance
DNA repair capacity by affecting several key genes involved in DNA damage responsive pathways.

The effects of melatonin on DNA double-strand breaks caused by ionizing radiation were
investigated using 108 male Wistar rats. The results from this investigation showed that the
administration of melatonin (100 mg/kg), 8 and 24 h before exposure, significantly promotes DNA
repair in non-homologous end joining pathways by increasing the expression of genes Ku70 and
Xrcc4 [348].

It is very interesting, in this context, that melatonin was found to reduce the time of DNA repair by
one-half, although it does not seem to increase the activity of the base-excision repair glycosylases [285].
It was then proposed that the melatonin’s ability to accelerate the DNA repair might involve other
routes including: (i) chemical inactivation of H2O2; (ii) stimulation of DNA repair pathways other than
BER; and/or (iii) interaction with BER-related enzymes other than glycosylases, or with their cofactors.

There is another interesting proposal regarding the relationship between melatonin’s anticancer
activity and its role preserving DNA integrity. Santoro et al. [349] proposed that melatonin-induced
enhancement of the DNA repair machinery might (i) prevent carcinogenesis in healthy individuals;
(ii) inhibit mutations in pre-cancerous lesions; (iii) reduce the risk that cancer cells mutate into more
aggressive phenotypes; and (iv) limit the side effects of anticancer therapy in healthy tissues.

The role of melatonin in modulating DNA damage response and repair pathways has been
recently, and thoroughly, reviewed [171]. Thus the interested reader is referred to that work for further
details on this topic.



Molecules 2018, 23, 530 18 of 36

4. Concluding Remarks

The beneficial effects of melatonin as an antioxidant have been profusely documented in the
literature. In the particular case of its protection against oxidative DNA damage, the evidence gathered
so far clearly indicates that melatonin is an astonishingly versatile molecule in this context. It can offer
both direct and indirect protection against a wide variety of damaging agents and through multiple
pathways, which may (or may not) take place simultaneously.

The direct antioxidative protection of melatonin is evidenced by its efficiency for scavenging
free radicals, which are frequent triggers of oxidative damage to DNA. Melatonin has been proven
to deactive several of these species including hydroxyl, alkoxy and peroxy radicals. Melatonin can
also deactive non-radical reactive oxygen, and nitrogen, species. Such protection is evidenced by the
melatonin effects in reducing 8-OH-dG, and associated DNA lesions.

The indirect antioxidative protection of melatonin involves many ways of action. It can protect
DNA against metal-induced damage. Such protection seems to be quite general, since melatonin
has been proven to inhibit the deleterious effects of a wide variety of metals including Fe, Cu, Cr,
Pb, Ni, Co, Hg and As. Such protection itself may involve different mechanisms. One of them is
mediated by the chelating capabilities of melatonin, which leads to the prevention of Fenton-related
•OH generation.

There is also evidence supporting the protective effects of melatonin against other triggers
of oxidative DNA damage. They include chemical agents such as formaldehyde, 17β-estradiol,
the MPTP/MPP+ pair, potassium bromate, D-aminolevulinic acid and thioacetamide; as well as
radiation and some health disorders.

In addition, melatonin’s metabolites (including AFMK, AMK, c3OHM, 6OHM and 4OHM) also
have antioxidant properties. Thus, the protection exerted by melatonin against oxidative damage to
DNA is a continuous, and virtuous, process in which multiple oxidative offenders can be deactivated.
Moreover, part of the antioxidant protection exerted by melatonin may be attributed to its metabolites

Other indirect pathways contributing to melatonin’s protective effects against oxidative damage
to DNA involve activating antioxidative enzymes, inhibiting pro-oxidative enzymes and boosting the
DNA repair machinery. The rather unique capability of melatonin to exhibit multiple ways of actions,
against diverse threatening factors, together with its low toxicity and its ability to cross biological
barriers, are all significant to its efficiency for preventing oxidative damage to DNA.
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mercury vapour on genotoxicity and DNA repair. Mutat. Res. 2005, 586, 102–114. [CrossRef] [PubMed]

251. Rao, M.V.; Sharma, P.S.N. Protective effect of vitamin E against mercuric chloride reproductive toxicity in
male mice. Reprod. Toxicol. 2001, 15, 705–712. [CrossRef]

252. Kim, C.Y.; Nakai, K.; Kameo, S.; Kurokawa, N.; Liu, Z.M.; Satoh, H. Protective effect of melatonin on
methylmercury-induced mortality in mice. Tohoku J. Exp. Med. 2000, 191, 241–246. [CrossRef] [PubMed]

253. Rossman, T.G. Mechanism of arsenic carcinogenesis: An integrated approach. Mutat. Res. 2003, 533, 37–65.
[CrossRef] [PubMed]

254. Pant, H.H.; Rao, M.V. Evaluation of in vitro anti-genotoxic potential of melatonin against arsenic and fluoride
in human blood cultures. Ecotoxicol. Environ. Saf. 2010, 73, 1333–1337. [CrossRef] [PubMed]

255. Aydemir, S.; Akgun, S.G.; Beceren, A.; Yuksel, M.; Kumas, M.; Erdogan, N.; Sardas, S.; Omurtag, G.Z.
Melatonin ameliorates oxidative DNA damage and protects against formaldehyde-induced oxidative stress
in rats. Int. J. Clin. Exp. Med. 2017, 10, 6250–6261.

256. Hare, D.J.; Adlard, P.A.; Doble, P.A.; Finkelstein, D.I. Metallobiology of 1-methyl-4-phenyl-1,2,3,6
-tetrahydropyridine neurotoxicity. Metallomics 2013, 5, 91–109. [CrossRef] [PubMed]

257. Nicotra, A.; Parvez, S.H. Apoptotic molecules and MPTP-induced cell death. Neurotoxicol. Teratol.
2002, 24, 599–605. [CrossRef]

258. Przedborski, S.; Vila, M. MPTP: A review of its mechanisms of neurotoxicity. Clin. Neurosci. Res.
2001, 1, 407–418. [CrossRef]

259. Cadenas, S.; Barja, G. Resveratrol, melatonin, vitamin E, and PBN protect against renal oxidative DNA
damage induced by the kidney carcinogen KBrO3. Free Radic. Biol. Med. 1999, 26, 1531–1537. [CrossRef]

260. Spencer, J.P.E.; Whiteman, M.; Jenner, A.; Halliwell, B. Nitrite-induced deamination and
hypochlorite-induced oxidation of DNA in intact human respiratory tract epithelial cells. Free Radic.
Biol. Med. 2000, 28, 1039–1050. [CrossRef]

261. Zavodnik, I.B.; Lapshina, E.A.; Zavodnik, L.B.; Łabieniec, M.; Bryszewska, M.; Reiter, R.J. Hypochlorous
acid-induced oxidative stress in Chinese hamster B14 cells: Viability, DNA and protein damage and the
protective action of melatonin. Mutat. Res. 2004, 559, 39–48. [CrossRef] [PubMed]

262. Bozner, P.; Grishko, V.; LeDoux, S.P.; Wilson, G.L.; Chyan, Y.C.; Pappolla, M.A. The amyloid 13 protein
induces oxidative damage of mitochondrial DNA. J. Neuropathol. Exp. Neurol. 1997, 56, 1356–1362. [CrossRef]
[PubMed]

263. Rezapoor, S.; Shirazi, A.; Abbasi, S.; Bazzaz, J.; Izadi, P.; Rezaeejam, H.; Valizadeh, M.;
Soleimani-Mohammadi, F.; Najafi, M. Modulation of radiation-induced base excision repair pathway gene
expression by melatonin. J. Med. Phys. 2017, 42, 245–250. [PubMed]

264. Karbownik, M.; Reiter, R.J.; Qi, W.; Garcia, J.J.; Tan, D.X.; Manchester, L.C.; Vijayalaxmi. Protective effects of
melatonin against oxidation of guanine bases in DNA and decreased microsomal membrane fluidity in rat
liver induced by whole body ionizing radiation. Mol. Cell. Biochem. 2000, 211, 137–144. [CrossRef] [PubMed]

265. Sun, C.K.; Chen, C.H.; Chang, C.L.; Chiang, H.J.; Sung, P.H.; Chen, K.H.; Chen, Y.L.; Chen, S.Y.; Kao, G.S.;
Chang, H.W.; et al. Melatonin treatment enhances therapeutic effects of exosomes against acute liver
ischemia-reperfusion injury. Am. J. Transl. Res. 2017, 9, 1543–1560. [PubMed]

266. Nagai, R.; Watanabe, K.; Wakatsuki, A.; Hamada, F.; Shinohara, K.; Hayashi, Y.; Imamura, R.;
Fukaya, T. Melatonin preserves fetal growth in rats by protecting against ischemia/reperfusion-induced
oxidative/nitrosative mitochondrial damage in the placenta. J. Pineal Res. 2008, 45, 271–276. [CrossRef]
[PubMed]

267. Cetin, N.; Suleyman, H.; Sener, E.; Demirci, E.; Gundogdu, C.; Akcay, F. The prevention of
ischemia/reperfusion induced oxidative damage by venous blood in rabbit kidneys monitored with
biochemical, histopatological and immunohistochemical analysis. J. Physiol. Pharmacol. 2014, 65, 383–392.
[PubMed]

268. Chen, H.H.; Chen, Y.T.; Yang, C.C.; Chen, K.H.; Sung, P.H.; Chiang, H.J.; Chen, C.H.; Chua, S.; Chung, S.Y.;
Chen, Y.L.; et al. Melatonin pretreatment enhances the therapeutic effects of exogenous mitochondria against
hepatic ischemia–reperfusion injury in rats through suppression of mitochondrial permeability transition.
J. Pineal Res. 2016, 61, 52–68. [CrossRef] [PubMed]

269. Nakamura, T.; Keep, R.F.; Hua, Y.; Hoff, J.T.; Xi, G. Oxidative DNA injury after experimental intracerebral
hemorrhage. Brain Res. 2005, 1039, 30–36. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.mrgentox.2005.06.009
http://www.ncbi.nlm.nih.gov/pubmed/16125447
http://dx.doi.org/10.1016/S0890-6238(01)00183-6
http://dx.doi.org/10.1620/tjem.191.241
http://www.ncbi.nlm.nih.gov/pubmed/11038016
http://dx.doi.org/10.1016/j.mrfmmm.2003.07.009
http://www.ncbi.nlm.nih.gov/pubmed/14643412
http://dx.doi.org/10.1016/j.ecoenv.2010.05.004
http://www.ncbi.nlm.nih.gov/pubmed/20646762
http://dx.doi.org/10.1039/c2mt20164j
http://www.ncbi.nlm.nih.gov/pubmed/23322189
http://dx.doi.org/10.1016/S0892-0362(02)00213-1
http://dx.doi.org/10.1016/S1566-2772(01)00019-6
http://dx.doi.org/10.1016/S0891-5849(99)00019-2
http://dx.doi.org/10.1016/S0891-5849(00)00190-8
http://dx.doi.org/10.1016/j.mrgentox.2003.12.009
http://www.ncbi.nlm.nih.gov/pubmed/15066572
http://dx.doi.org/10.1097/00005072-199712000-00010
http://www.ncbi.nlm.nih.gov/pubmed/9413284
http://www.ncbi.nlm.nih.gov/pubmed/29296039
http://dx.doi.org/10.1023/A:1007148530845
http://www.ncbi.nlm.nih.gov/pubmed/11055556
http://www.ncbi.nlm.nih.gov/pubmed/28469765
http://dx.doi.org/10.1111/j.1600-079X.2008.00586.x
http://www.ncbi.nlm.nih.gov/pubmed/18373555
http://www.ncbi.nlm.nih.gov/pubmed/24930510
http://dx.doi.org/10.1111/jpi.12326
http://www.ncbi.nlm.nih.gov/pubmed/26993080
http://dx.doi.org/10.1016/j.brainres.2005.01.036
http://www.ncbi.nlm.nih.gov/pubmed/15781043


Molecules 2018, 23, 530 32 of 36

270. Young, I.M.; Leone, R.M.; Francis, P.; Stovell, P.; Silman, R.E. Melatonin is metabolized to N-acetyl serotonin
and 6-hydroxymelatonin in man. J. Clin. Endocrinol. Metab. 1985, 60, 114–119. [CrossRef] [PubMed]

271. Zhou, H.; Wang, J.; Jiang, J.; Stavrovskaya, I.G.; Li, M.; Li, W.; Wu, Q.; Zhang, X.; Luo, C.; Zhou, S.; et al.
N-Acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic
activation in experimental models of ischemic injury. J. Neurosci. 2014, 34, 2967–2978. [CrossRef] [PubMed]

272. Bachurin, S.; Oxenkrug, G.F.; Lermontova, N.; Afanasiev, A.; Beznosko, B.; Vankin, G.; Shevtzova, E.;
Mukhina, T.; Serkova, T. N-Acetylserotonin, melatonin and their derivatives improve cognition and protect
against β-amyloid-induced neurotoxicity. Ann. N. Y. Acad. Sci. 1999, 890, 155–166. [CrossRef] [PubMed]

273. Oxenkrug, G.; Requintina, P.; Bachurin, S. Antioxidant and antiaging activity of N-acetylserotonin and
melatonin in the in vivo models. Ann. N. Y. Acad. Sci. 2001, 939, 190–199. [CrossRef] [PubMed]

274. Qi, W.; Reiter, R.J.; Tan, D.X.; Manchester, L.C.; Siu, A.W.; Garcia, J.J. Increased levels of oxidatively damaged
DNA induced by chromium(III) and H2O2: Protection by melatonin and related molecules. J. Pineal Res.
2000, 29, 54–61. [CrossRef] [PubMed]

275. Jiang, J.; Yu, S.; Jiang, Z.; Liang, C.; Yu, W.; Li, J.; Du, X.; Wang, H.; Gao, X.; Wang, X. N-Acetyl-serotonin
protects HepG2 cells from oxidative stress injury induced by hydrogen peroxide. Oxid. Med. Cell. Longev.
2014, 2014, 310504. [CrossRef] [PubMed]

276. Reiter, R.J.; Mayo, J.C.; Tan, D.X.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant:
under promises but over delivers. J. Pineal Res. 2016, 61, 253–278. [CrossRef] [PubMed]

277. Janjetovic, Z.; Jarrett, S.G.; Lee, E.F.; Duprey, C.; Reiter, R.J.; Slominski, A.T. Melatonin and its metabolites
protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways.
Sci. Rep. 2017, 7, 1274. [CrossRef] [PubMed]
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