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Abstract 

Background:  Dengue epidemics is affected by vector-human interactive dynam‑
ics. Infectious disease prevention and control emphasize the timing intervention at 
the right diffusion phase. In such a way, control measures can be cost-effective, and 
epidemic incidents can be controlled before devastated consequence occurs. How‑
ever, timing relations between a measurable signal and the onset of the pandemic are 
complex to be discovered, and the typical lag period regression is difficult to capture 
in these complex relations. This study investigates the dynamic diffusion pattern of 
the disease in terms of a probability distribution. We estimate the parameters of an 
epidemic compartment model with the cross-infection of patients and mosquitoes in 
various infection cycles. We comprehensively study the incorporated meteorological 
and mosquito factors that may affect the epidemic of dengue fever to predict dengue 
fever epidemics.

Results:  We develop a dual-parameter estimation algorithm for a composite model 
of the partial differential equations for vector-susceptible-infectious-recovered with 
exogeneity compartment model, Markov chain Montel Carlo method, and boundary 
element method to evaluate the epidemic periodicity under the effect of environmen‑
tal factors of dengue fever, given the time series data of 2000–2016 from three cities 
with a population of 4.7 million. The established computer model of “energy accumu‑
lation-delayed diffusion-epidemics” is proven to be effective to predict the future trend 
of reported and unreported infected incidents. Our artificial intelligent algorithm can 
inform the authority to cease the larvae at the highest vector infection time. We find 
that the estimated dengue report rate is about 20%, which is close to the number of 
official announcements, and the percentage of infected vectors increases exponen‑
tially yearly. We suggest that the executive authorities should seriously consider the 
accumulated effect among infected populations. This established epidemic prediction 
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model of dengue fever can be used to simulate and evaluate the best time to prevent 
and control dengue fever.

Conclusions:  Given our developed model, government epidemic prevention teams 
can apply this platform before they physically carry out the prevention work. The opti‑
mal suggestions from these models can be promptly accommodated when real-time 
data have been continuously corrected from clinics and related agents.

Keywords:  Dengue transmission, Vector-susceptible-infectious-recovered with 
exogeneity (VSIRX), Epidemic prevention timing

Background
Weather and environmental factors affect dengue transmission patterns through the 
interactive dynamics between mosquito ecology and vector–human transmission. Due 
to dengue fever is prevalent in southern Taiwan, and government agencies were fre-
quently using of anti-mosquito drugs for epidemic prevention which not only costs high 
but also increases the evolutionary pressure of vector mosquitoes, forcing young mos-
quitoes or larva to develop resistance and improve their survival ability. The solution for 
infectious disease prevention and control is the identification of the best intervention 
timing to disrupt the growth cycle by applying insecticides at the right phase of disease 
diffusion. In such a way, the cost of control can be effective, and epidemic incidents can 
be controlled before sensible damages occur. This study aims to develop a forecasting 
method for intelligent epidemic prevention.

The growth process of arthropod-borne infectious diseases should be understood 
to formulate effective epidemic prevention strategies. A diffusion model of the differ-
ential equation commonly used in mathematical epidemiology is adopted in this study 
to predict the transmission pattern of dengue fever in the next few years based on the 
recorded dengue fever data in Kaohsiung from 2006 to 2016 [1, 2]. In the 10-year data 
from the Health Bureau of Kaohsiung Municipal Government, 896 zones of Kaohsiung 
are included in several years. However, few cases are reported in only 251 zones, and 
only district data are available in most of the years. The number of reported cases is not 
equivalent to the number of infected patients. In this study, this issue is addressed using 
a negative binomial distribution. The data obtained include not only the number of cases 
but also the area, population, temperature, humidity, rainfall, the population of schools, 
and Breteau index of adult mosquitoes in each locality. Qianzhen District, with the most 
dengue cases, is selected as an example. Although temperature variations in these sev-
eral years are similar, the number of people infected per thousand was lower in 2014 
with a high mosquito index than that in the next year with a higher mosquito index.

Regardless of the trend in diffusion time-sequence change, the year with the most 
dengue fever cases is used to conduct static spatial thermal zone analysis. Hausdorff 
distance verification shows that the area where dengue fever appears with the highest 
probability includes most areas in Qianzhen District, and the area with the second-
highest possibility is No. 3 resident region. Spatial verification result is similar to general 
cognition. Therefore, the basis of this study is appropriate. On the basis of the spatial 
analysis result, we estimate and calibrate the diffusion model of dengue fever infection 
in the densest areas and the population of Kaohsiung as a whole to predict the trend of 
dengue fever occurred in the coming year.
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The issue of intelligent epidemic prevention is extremely challenging. Assuming that 
only one short time of mosquito eradication can be conducted for an infinite genera-
tion of mosquitoes, we find that if mosquito eradication is carried out at the early stage 
of the host’s onset, the mosquitoes produced later still bite an infectious host. Since 
then, a mosquito vector has remained infectious for generations. However, if the timing 
of mosquito eradication is too late, the host population is infected. As such, epidemic 
prevention fails. Theoretically, if hosts are fully infected and healed, the best time point 
should be at the time when hosts are just healed. Therefore, the choice of this time point 
depends on the prevalence of hosts but not on the growth conditions of mosquitoes. 
The use of environmental temperature to regress the prevalence of infectious diseases 
is inappropriate. Infected hosts and vectors are dynamically diffusive in time and asym-
metrically mobile in space. The best time point must be known through special analyti-
cal methods and lengthy and complicated operations.

Studies have been widely performed on general epidemic prevention and surveillance, 
as well as epidemic control, but such studies remain incomplete. Shen et al. [3] analyzed 
the data of a small number of clinical case reports by using the Bayes probability algo-
rithm and proposed a time prediction model for future outbreaks of infectious diseases 
throughout the city. Difficulties in dengue fever epidemic prevention include the poorly 
described trend and dynamics of vector mosquitoes. Therefore, no complete solution 
has been proposed.

Andraud et al. [4] reviewed 42 dynamic models of dengue fever transmission in the 
time dimension and completely classified them to describe the dynamic transmis-
sion models of these vector-borne infections and their corresponding control meth-
ods. Nuraini et  al. [5] discussed the transmission dynamics of dengue hemorrhagic 
fever caused by the cross-infection of different dengue viruses and proposed a control 
method to eliminate the stable balance by equilibrium solutions of two or more serotype 
infections.

Nishiura et  al. [6] estimated the basic transmission value R0 and found that dengue 
fever is a periodic epidemic disease. This periodicity affects the transmission ability of 
mosquito vectors or R0 but does not influence environmental factors. R0 is also a variable 
related to specific environmental factors so that it can predict prevalence in the coming 
year. Therefore, the regression model analysis is inappropriate without considering the 
transmission capacity of mosquito vectors. Amaku et al. [7] and Polwiang [8] compared 
two kinds of vector-borne infectious models and emphasized the advantages and disad-
vantages of both models as the foundation of future model improvements.

Zamiri et al. [9] investigated the epidemic outbreaks in temporal and spatial patterns 
by an SIR nonlinear dynamic model without considering the influence of vectors. Similar 
to our study, they also suggest that numerical studies can help the early prediction of the 
epidemic in terms of peak and duration. Chang et al. [10] re-emphasized the importance 
of understanding the transmission dynamics and suggested the prediction of dengue 
epidemic can be an early warning tool. Kilicman [11] contended that dengue transmis-
sion possesses memory by analyzing the SIR epidemic model. Cahyono et al. [12] ana-
lyzed the range of parameters that lead to the stability of the dengue fever SIR model. 
Although the epidemic research of dengue fever applies the SIR model extensively, how-
ever, few studies can estimate parameters from the case records of real clinic reports. 
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The insufficiency is partly due to the computational difficulty. Our study thus overcame 
the difficulty and obtained the parameters through an advanced Bayesian technique.

Finally, few studies have assessed dengue epidemic control. Gersovitz and Hammer 
[13] analyzed the economic effects of investment on epidemic prevention and assessed 
the cost-effectiveness of policies. Chanprasopchai et  al. [14] investigated the effect of 
dengue vaccination through the SIR model, leaving aside the safety dispute, and sug-
gested a significant reduction of hospitalization time. In Rio de Janeiro, 43 different 
insecticidal strategies were applied to adult mosquitoes and larvae for 5 years. Studies 
on the insecticide resistance of vector mosquitoes have shown that frequent insecticide 
applications are costly and may lead to the development of insecticide resistance in lar-
vae [15].

Results
The accuracy of the parameter estimation algorithm by using the vector-susceptible-
infectious-recovered with exogeneity (VSIRX) model containing vector interaction 
trains with 3-year test data; the parameter estimation results satisfy our expectations.

In Fig. 1, when VSIRX model trains with 4-year data in 2010–2013, the 4-year cyclic 
result obtained completely meets our expectations. We then re-describe the interpreta-
tion in Fig. 1. The right figure shows the number of reported cases in 1456 days, namely, 
52 weeks per year. Although factors such as temperature and vector are not included in 
the model, the number of infected people “H” appears periodically because of the oscil-
lation caused by the cyclical effect. The number of reported cases predicted, the number 
of susceptible hosts “S”, the number of infectious hosts “I”, the number of hosts recov-
ered “R”, and the number of accumulative infections per week “H” is shown on the left 
from top to bottom. The number of reported cases is a part of the cumulative number of 
infections per week (ρ = 0.2144). The next column includes the total population under 
the equivalent effect, the total vectors under equivalent effect, the number of infectious 
vectors, and the number of infected vectors. No overfitting phenomenon is observed in 
the random trajectory of the number of reported cases. A negative binomial perturba-
tion is found in the estimated number of infected people, which is in line with the expec-
tation of statistical estimates.

Fig. 1  VSIRX model training with 4-year data in 2010–2013
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The estimated report rate is about 2%. The report rate can be correctly estimated 
because we can estimate a report rate with the highest possibility from the increasing 
trend of reports, considering that the basis for the cumulative epidemic is the actual 
number of infected people.

In Fig.  1, the infections of vector mosquitoes (Iv) fluctuate and increase yearly. 
Although the low temperature in winter reduces the growth rate of vectors, the survival 
of infected vectors raises the basis of dengue fever epidemic in the coming year.

In Fig. 2, when the VSIRX model was used to verify and analyze the data in 2014 and 
2015, the results obtained are consistent with the reported data. Here, to avoid the nega-
tive binomial distribution added by overfitting, we use simulation results that are not 
precisely the same as the data provided, and the expected statistical errors occur.

Discussion
Followed by the previous 4-year prediction, the 6-year prediction shows the trend of ver-
ification in the last 2 years. This study shows that the proportion of vectors infected with 
dengue fever fluctuates because of the temperature cycle and seasonal activity. However, 
the survival of infected vectors accumulates the number of infected vectors in the next 
year so that the proportion of infected insect vectors shows an exponential growth trend 
every year. In Iv drawing of Fig. 2, the up-and-down increasing trend yearly can reflect 
the exponential growth trend. The low temperature in winter slightly affects the expo-
nential growth of vectors, resulting in outbreaks in 2014 and 2015. From the predicted 
results, we can fully predict the number of reported cases and the cumulative number 
of unreported cases per week in the next 2 years. This parameter is critical for epidemic 
prevention. The possibility of increasing or decreasing according to temperature can be 
determined, and epidemic prevention units can be informed about the exact number of 
infections per day in the future and the number of hidden cases. This study suggests that 
the yearly cumulative effect should also be taken into account, giving exogenous causal 
variables. According to artificial intelligence estimation, the best time point for severe 
vector infection and timely medication for blocking the growth of vector mosquitoes 
can be determined.

Mosquito eradication can only be temporary. The temporary chance must fall at two-
time points: first, many mosquitoes are infected, and second, numerous residents are 
infected. When an epidemic situation is not difficult, the two incidents occur one after 

Fig. 2  The verification results of the VSIRX model for additional testing data in 2014 and 2015
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another. After an outbreak, all people and mosquitoes are infected. As such, any com-
pensate job will become too late. Previous epidemic prevention efforts lacked estimates 
of infected mosquitoes.

Nonetheless, knowing the infected residents shows a high incidence, the infected mos-
quitoes are infected after a sufficiently long time. Therefore, instead of choosing a time 
point, killing the mosquitoes seems like the only option to stop dengue fever infection. 
However, many years of efforts in Taiwan and other countries have shown that mos-
quitoes show an increased resistance, and the time difference from dosing to mosquito 
reproduction is becoming short. As a result of increasing evolutionary pressure, resistant 
mosquitoes have emerged. This study hopes to estimate when a significant population of 
mosquitoes is infected before a major outbreak occurs. This study also assumes that mos-
quitoes killed by drugs are indeed infected mosquitoes, so proliferating mosquitoes are 
not infected, and infected residents have passed the infection period of the virus.

Current high‐intensity insecticide strategies not only require a large amount of budget 
for biological control but also apply an intense evolution pressure to mosquito strains, 
thereby forcing their larvae to develop resistance to the insecticide for survivals. Infec-
tious disease prevention and control aim to find the best intervention timing and places 
to break the growth cycle by applying insecticides at the right phase of disease diffusion. 
In such a way, control measures without knowing the vector growth pattern can be cost-
effective, and epidemic prevalence can be controlled before sensible damages occur.

The impact of dynamic infection among vector mosquitoes is incorporated in this 
study, so the estimated strategy obtained by VSIRX model is accurate. Epidemic pre-
vention must be sensible. The instinct of living things for survival should also be noted 
while eliminating the source of infection. If the intensity of mosquito eradication is not 
properly controlled, the surviving mosquito population becomes resistant and difficult 
to eradicate. We elucidate the status of vector-borne infections. At the best time, we can 
eliminate precisely and effectively mosquitoes, thereby more effectively preventing the 
epidemic. Accurately grasping the dynamics of vector mosquitoes by using the differen-
tial equation is similar to a special drug. In this way, the epidemic situation can quickly 
recede, and the goal of intelligent epidemic prevention is achieved.

Conclusions
In this study, the problems originally proposed to be solved have been addressed, and the 
original goals have been achieved. A model has been established based on problem context 
and novel methodology development, considering energy accumulation-delayed spread-epi-
demic prevalence. According to different time points, the growth curve in spread gestation 
is continuously updated with the latest information, and the epidemic prediction model of 
dengue fever is established to simulate and evaluate the best chance for dengue fever preven-
tion and control. Substantial industrial benefits can be used for policy recommendations.

This study aims to establish a basic model of the correlation between vector factors 
and dengue fever clustering in South Taiwan and provide a reference for establishing a 
time–space flow prediction model. Effect evaluation and control opportunity are simu-
lated, and the time–space flow prediction model of dengue fever epidemic is developed 
to evaluate the timing of epidemic prevention and provide a reference for creating a den-
gue fever prevention policy.
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Difficulties in preventing dengue fever epidemic include understanding the trend and 
dynamics of vector mosquitoes. As such, no complete solution has been established. An 
extensive parallel operation has also been created using high-speed computers based on 
mathematical dynamics (MCMC VSIRX) and a high-speed high-efficient algorithm to 
learn the most probable parameters in dynamic models within hours by using limited 
epidemic case reports, including various values, such as the incidence of disease and 
bite rate, which are difficult to measure directly. On the basis of the actual number of 
reported cases and the logic among various numbers, we can estimate the situation of 
vector-borne infections in each region that cannot be observed through the sampling 
method. The benefits of high-speed computing go beyond that.

Among the estimated parameters, an important one is the “disease report rate”. 
Because of the intervention of authorities, potential patients may resist receiving medi-
cal screening in order not to be isolated. The surrounding community may yield social 
stigma to the source person of infected. This effect of afraid-to-be-examined also 
appears in recently epidemic diseases. The actual report rate is key to the battle of public 
health, but no one can easily get his number. This study found a report rate that closed to 
the historical record. Therefore, the estimation can be useful information for the future 
work of governmental authorities.

We can also filter more than tens of billions of possible schemes and follow-up effects 
in just a few days based on the ability of high-speed computers and unique, efficient 
algorithms and determine the best time point with statistical significance for epidemic 
prevention units. In this manner, we can make epidemic prevention decisions.

Methods
The statistical model for epidemiological analysis of dengue fever dissemination is based 
on the primitive model of Kermark and McKendrick [16], which has been widely applied 
for mathematical epidemiologists [4]. The population and vector mosquitoes are divided 
into multiple groups (compartment) with different infection status by using an SIR clus-
tering model. In a given environment, the mathematical model of dengue fever can 
express the interactive growth and transmission of dengue virus between human hosts 
and vector mosquito hosts. The transfer parameters of the environment determine that 
the model can flexibly state the effect of the interactive infection and growth of human–
vector mosquito population.

To ease the explanation of our VSIRX model [Eq. (1)] [17], a real figure was drawn from 
2014 and 2015, as shown in Fig. 3, where the solid line represents the number of cases; 
the dash line represents the temperature, and the dotted line represents Breteau index. In 
Fig. 3, we can observe that the temperature variations in the two years were similar and the 
mosquito index at the first year was higher than that of the second year, but, inversely, the 
number of people infected per 10 thousand was lower in 2014 than the next year. Our dif-
ferential equation model in Eq. (1) can easily explain this accumulation phenomenon. The 
variables capturing the population size in each infection status are denoted by the letters SH, 
IH, and RH, where “SH” is the number of people susceptible, i.e., who can be infected, “IH” 
is the number of people infected, and “RH” is the number of people recovered. The model 
also includes the vector activities, and (Sv, Iv) is the number of Infectious and infected vec-
tors, respectively. The number of recovered vectors is not included because the life cycle of 
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mosquitoes is not long enough to be modelled. The total number of people (SH + IH + RH) 
likely remains unchanged in the system because of the low mortality rate caused by dengue 
fever. Each individual has also assumed has an equal chance of being bitten by vector mos-
quitoes in a closed system. The definition and initial values of parameters in Eq. (1) can be 
found in Table 1.

(1)
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
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
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
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

dSH
dt

= −rbH IMSH − µHSH + σHRH +�H ,
dIH
dt

= rbH IMSH − (µH + γH )IH ,
dRH
dt

= γHIH − (µH + σH )RH ,
dSv
dt

= −rcvIHSv − µvSv +�v ,
dIv
dt

= rcvIHSv − µvIv .

Fig. 3  The dengue cases per 10 thousand capita, temperature, mosquito index, in black, red, and green lines, 
respectively

Table 1  Initial values of parameter estimated

Parameters Description Initial value Assumption

Unit of simulation time scale 1 Day

Unit of parameter timebase Year

a Rate host on vector bite 0.5 Bites per day

bH Rate host on infectious bite 0.5 Positive per bite

µH Rate host nature mortality 5.5 × 10–5 Dead ratio per day/50-year life

γH Rate host recovery 1 × 10–2 Recovered ratio per day/3 month

ηH Rate host to vector infection 0.375 Probability of infection

σH Rate host immunity loss 1 × 10–3 Loss ratio per day

�H Rate host growth 10 Numbers per day

cM Rate vector on infectious host bite 0.8 Bites per day

µM Rate vector nature mortality 0.143 Dead ratio per day/1-week life span

ηM Rate vector to host infection 0.75 Probability of infection

�M Rate vector growth 1000 Numbers increase per day/hatch 
rate should be time-variant

r a/NH rate bite per mosquito per human

NH Host population size 1020



Page 9 of 10Lee et al. BMC Bioinformatics          (2021) 22:118 	

The numbers between the infected and official recorded may not be consistent. Our 
model must capture the inconsistency. The counting process C(t1, t2) is the number of 
officially reported cases between times t1 and t2. The number of people actually infected 
between times t1 and t2 is ΔNSI(t1, t2). We, therefore, associate the two numbers with 
relations of proportion and uncertainty in [Eq. (2)].

The proportion of infected to be reported to authorities is denoted as the report rate 
ρ. The distribution NegBin (number = n, prob = θ) is a discrete negative binomial prob-
ability distribution of the number of successes (with probability θ) in a sequence of inde-
pendent and identically distributed Bernoulli trials before a specified number of failures 
(n) occurs.

Obtaining data about viruses in insects is limited by various factors. However, we still 
have the track of human disease. We can still reversely infer the most-possible infec-
tion trajectory of insect vectors from the result. On the basis of the actual number 
of cases reported and the logic among various numbers, we estimate the situation of 
vector-borne infections in each region that cannot be observed by sampling observing 
method. On the basis of dengue fever case data, we can estimate a set of the most-possi-
ble parameters in a half-day of computation using the most advanced parameter estima-
tion algorithm and a 32-core high-speed computer. We can easily verify the results of 
the analysis with the worst outbreak starting from Kaohsiung in 2014 and 2015. Our pri-
mary analysis result shows that the estimated parameters are sufficient to represent the 
current pattern of dengue epidemic spread [18]. After repeated calibration by perform-
ing Markov chain Montel Carlo (MCMC), and the estimation are carried out, the set of 
parameters is obtained in accordance with the trajectory of the reported cases.
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