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Arc expression identifies the lateral amygdala fear
memory trace
LA Gouty-Colomer1,6,7,8, B Hosseini1,8, IM Marcelo1,2, J Schreiber3, DE Slump1, S Yamaguchi4,5, AR Houweling3, D Jaarsma3,
Y Elgersma3 and SA Kushner1

Memories are encoded within sparsely distributed neuronal ensembles. However, the defining cellular properties of neurons within
a memory trace remain incompletely understood. Using a fluorescence-based Arc reporter, we were able to visually identify the
distinct subset of lateral amygdala (LA) neurons activated during auditory fear conditioning. We found that Arc-expressing neurons
have enhanced intrinsic excitability and are preferentially recruited into newly encoded memory traces. Furthermore, synaptic
potentiation of thalamic inputs to the LA during fear conditioning is learning-specific, postsynaptically mediated and highly
localized to Arc-expressing neurons. Taken together, our findings validate the immediate-early gene Arc as a molecular marker for
the LA neuronal ensemble recruited during fear learning. Moreover, these results establish a model of fear memory formation in
which intrinsic excitability determines neuronal selection, whereas learning-related encoding is governed by synaptic plasticity.
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INTRODUCTION
Fear conditioning is a robust form of associative learning in which
a previously neutral conditioned stimulus (CS) comes to predict an
aversive unconditioned event, eliciting defensive behaviors and
fearful emotions.1 The neurobiological circuitry underlying auditory
fear learning has been extensively investigated, wherein there is
overwhelming evidence that the lateral amygdala (LA) is a critical
site of plasticity.2,3 In particular, long-term N-methyl-D-aspartate
(NMDA) receptor-dependent synaptic potentiation of glutamater-
gic inputs onto LA principal neurons remains the leading candidate
mechanism for fear memory encoding.4 Accordingly, both genetic
and pharmacological blockade of synaptic plasticity in the LA
prevent the formation of long-term fear memories,5–9 whereas
potentiation of glutamatergic synaptic transmission onto LA
pyramidal neurons is induced by fear conditioning.5,6,10–12

Intriguingly, only a limited subset of neurons appears to be
recruited during fear memory encoding. In particular, recent
studies have implicated the cAMP response element-binding
protein (CREB) as a critical factor guiding LA neuron recruitment
into a fear memory network. Targeted restoration of CREB
expression selectively into the LA of CREB-deficient mice is
sufficient to fully restore auditory fear conditioning.13 Furthermore,
optogenetic activation of neurons with elevated CREB levels at the
time of training is sufficient to induce fear memory retrieval.14

Moreover, studies using virus-mediated mosaic overexpression of
CREB in wild-type mice have shown that recruitment of LA neurons
during fear learning is not merely a cell autonomous process,13 but
rather is dependent upon relative neuronal excitability at the time
of learning.15,16 Importantly, however, the hypothesis that the
recruitment of LA neurons into fear memory networks is

determined by their relative excitability has never been evaluated
under endogenous physiological conditions.
Recent computational modeling has proposed that the encoding

of fear memories in the LA is constrained to a limited subset of
neurons by the local microcircuitry through a combination of
intrinsic excitability and synaptic plasticity.17 Consistent with this
model, in vivo extracellular single-unit recordings have demon-
strated that only a minority of LA neurons undergo significant
changes in tone-evoked firing during auditory fear condition-
ing.18,19 Furthermore, ex vivo whole-cell patch-clamp recordings
also found that learning-induced plasticity was restricted to a
limited subset of LA neurons.5

Recent studies have provided strong experimental support that
immediate-early genes (IEGs), including the proto-oncogene c-Fos
and the activity-regulated cytoskeleton-associated protein (Arc),
represent time-limited molecular tags of these sparsely encoded
neurons in both sensory representations20–22 and memory
networks.13,23–27 Inhibition or ablation of IEG-tagged neurons
disrupts the recall and maintenance of fear-conditioning mem-
ories, respectively.15,28 Conversely, artificial activation of this
sparse IEG-tagged population is sufficient to induce fear memory
recall29 or falsely modify contextual memories.30,31 Importantly,
however, no previous studies have performed targeted electro-
physiological recordings from a defined memory trace, a crucial
step towards achieving a comprehensive understanding of how
the brain encodes learned associations.
Therefore, to investigate the neurophysiological properties of

individual LA neurons recruited during fear conditioning, we
utilized a fluorescence-based reporter of Arc as a time-limited
molecular tag of these sparsely encoded neurons. We found that
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neurons with elevated baseline intrinsic excitability were prefer-
entially recruited into the fear memory network. Furthermore,
synaptic potentiation of thalamic inputs to the LA during fear
conditioning was learning-specific and highly localized to Arc-
expressing neurons. Taken together, our findings establish a
model of fear memory formation in which intrinsic excitability
determines neuronal selection, whereas learning-related encoding
is governed by synaptic plasticity.

MATERIALS AND METHODS
Animals
Arc::dVenus mice were backcrossed more than 10 generations into
C57BL/6J.32 Mice were maintained on a 12 h light/dark cycle with food
and water available ad libitum. All experiments were performed during the
light phase, using adult mice (postnatal weeks 8–11). Mice were individually
housed for 5 days prior to the start of experiments. Randomization was
assigned based on the outcome of the littermate genotyping, and
experimenter blinding was performed whenever possible. All experiments
were approved by the Dutch Ethical Committee and in accordance with the
Institutional Animal Care and Use Committee (IACUC) guidelines.

Auditory fear conditioning
Fear conditioning was performed using a Med Associates Standard Fear
Conditioning chamber (30.5 cm×24.1 cm×21.0 cm) with a stainless steel
electrifiable grid floor, and enclosed within a larger sound-attenuating box.
Video images were recorded using a progressive scan CCD video camera
with a visible light filter suitable for near-infrared imaging. Mice in the naïve
group received no handling or exposure to the training context. Naïve mice
remained in their standard housing conditions until immediately prior to
behavioral testing for CS-evoked freezing, perfusion for confocal imaging or
killing for electrophysiology. In contrast, mice in the unpaired and paired
training groups were habituated to the conditioning chamber, 24 h prior the
training session. Habituation sessions consisted of a 30min exposure to the
training context without any tone or shock presentations. On the day of
conditioning, mice receiving paired training were placed in the conditioning
chamber for 180 s, followed by a series of three co-terminating presentations
of a tone CS (30 s, 5 KHz, 85 dB) and scrambled footshock unconditioned
stimulus (US) (2 s, 0.75mA). The intertrial interval between tone-shock
presentations was 210 s. The experiments shown in Supplementary Figure 2
comparing the strength of conditioning and Arc-dVenus activation following
1, 3 or 9 CS-US pairings used independent groups of mice. Training was
implemented using the same parameters (180 s placement-to-shock interval,
210 s interstimulus interval) and CS/US stimuli as the paired condition. Mice
in the unpaired group received the identical CS and US stimuli but in an
explicitly unpaired sequence. The unpaired protocol consisted of 3 US
presentations (10 s interstimulus interval) in which the first shock was
delivered immediately upon placement in the chamber, and followed by 3
CS presentations initiated 400 s after the last US presentation (90 s
interstimulus interval). Previous studies using similar explicitly unpaired
controls have demonstrated that subjects acquire minimal or no associative
fear of the CS.1,33 Tone-evoked freezing was tested 24 h after conditioning in
a novel context (120 s baseline, 180 s tone). Freezing was defined as the
cessation of all movement except for respiration and scored using an
automated algorithm.34

Immunofluorescence
After deep anesthesia induced by intra-peritoneal injection of pentobarbi-
tal (50 mg kg− 1), mice were transcardially perfused with saline, followed by
4% paraformaldehyde. Brains were dissected and post-fixed in 4%
paraformaldehyde for 2 h at 4 °C. After post-fixation, the brains were
transferred into 10% sucrose phosphate buffer (PB 0.1 M, pH 7.3) and
stored overnight at 4 °C. Embedding was performed in a 10% gelatin+10%
sucrose block, with fixation in 10% paraformaldehyde+30% sucrose
solution for 2 h at room temperature and immersed in 30% sucrose at
4 °C. Forty micrometer coronal sections were collected serially (rostral to
caudal) using a freezing microtome (Leica, Wetzlar, Germany; SM 2000R)
and stored in 0.1 M PB. Free-floating sections were incubated in sodium
citrate (10mM) at 80 °C for 1 h and rinsed with tris-buffered saline (TBS, pH
7.6). Sections were pre-incubated with a blocking TBS buffer containing
0.5% Triton X-100 and 10% normal horse serum (NHS; Invitrogen, Bleiswijk,
The Netherlands) for 1 h at room temperature. Sections were incubated in

a mixture of primary antibodies, in TBS buffer containing 0.4% Triton X-100
and 2% NHS for 72 h at 4 °C.
The following primary antibodies were used: mouse anti-NeuN (1:2000,

Millipore, Hertfordshire, UK; MAB377), goat anti-choline acetyltransferase
(1:200, Millipore AB144P), rabbit anti-Tbr1 (1:2000, Millipore AB10554),
mouse anti-Arc (C-7, 1:200, Santa Cruz sc-17839, Heidelberg, Germany),
rabbit anti-c-Fos (ab-5, 1:10000, Millipore PC38), mouse anti-GAD67
(1:1000, Millipore MAB5406). Sections were washed with TBS, and
incubated with corresponding Alexa-conjugated secondary antibodies
(1:200, Invitrogen) and cyanine dyes (1:200, Sanbio, Uden, The Nether-
lands) in TBS buffer containing 0.4% Triton X-100, 2% NHS for 2 h at room
temperature. For some experiments, nuclear staining was performed using
DAPI (1:100, Invitrogen). Sections were washed with PB 0.1 M and mounted
on slides, cover slipped with Vectashield H1000 fluorescent mounting
medium (Vector Labs, Peterborough, UK), and sealed.

Fluorescent in situ hybridization
Fluorescent in situ hybridization was performed using mice perfused at
5 min post training, to optimally visualize nuclear foci of dVenus and Arc
transcription.23 Coronal brain sections (40 μm) were collected in RNAse-
free 0.1 M PB as described in the immunofluorescence section. The cDNA
templates encoding the following mRNAs were used for single-stranded
RNA probe synthesis: Arc/Arg3.1 (3.5 kb, full length probe, GeneID: 11838;
Image Clone number: 349057; generously provided by J. Holstege and M.
Hosseini); Venus fluorescent protein (720 kb probe from pISH-Venus
Addgene plasmid 15865, kindly deposited by P. Mombaerts). The
riboprobes were obtained by linearizing the recombinant plasmids with
the appropriate restriction enzymes (Fermentas, Bleiswijk, The Netherlands;
New England BioLabs, Hitchin, UK) and RNA polymerases. Transcription
was performed in the presence of digoxigenin or fluorescein-labeled 11-
UTP (Roche, Almere, The Netherlands), for Venus or Arc riboprobes,
respectively, using a commercial RNA labeling kit (Roche). Riboprobes were
purified by standard LiCl precipitation protocol. Integrity and yield of
riboprobes was confirmed by gel electrophoresis and Nanodrop spectro-
photometry (Thermo Scientific, Waltham, MA, USA). All solutions used until
the completion of hybridization were treated with Diethylpyrocarbonat to
ensure optimal RNAse-free working conditions.
The protocol used for fluorescent in situ hybridization was adapted from

Hossaini et al.35 Free-floating sections were first washed in 0.1 M PB,
treated for 5 min with 0.2% glycine in PBS, rinsed in PBS and fixed for
10min in 4% paraformaldehyde. After another rinse in PBS, sections were
treated (10min) in PBS containing 0.1 M triethanolamine (Merck,
Hertfordshire, UK) pH 8.0 and 0.0025% acetic anhydride (Sigma-Aldrich,
Munich, Germany). Sections were then washed in 4 × standard saline
citrate (pH 4.5) and prehybridized for 1 h at 65 °C in hybridization solution
consisting of 5 × standard saline citrate (pH 4.5), 50% formamide (Sigma-
Aldrich), 2% Blocking Reagent (Roche), 0.05% 3-[(3-cholamidopropyl)
dimethylammonio]-1-propanesulfonate (Sigma-Aldrich), 1 μg ml− 1 yeast
tRNA (tRNA brewer’s yeast, Sigma-Aldrich), 50 μg ml− 1 Heparin (Sigma-
Aldrich) and 5mM ethylenediaminetetraacetic acid (pH 8.0, Sigma-Aldrich).
Sections were hybridized for 18–24 h at 65 °C in hybridization solution
containing 1.2 μg ml− 1 of each anti-sense riboprobe, Arc/Arg3.1 and Venus.
After hybridization, sections were washed in 2 × standard saline citrate (pH
4.5), followed by three washes of 15min at 65 °C in 2 × standard saline
citrate (pH 4.5) and 50% formamide, and a final wash in PBS. The sections
were then pre-incubated for 90min at room temperature in blocking
buffer, consisting of 0.5% Triton X-100 and 10% NHS in TBS. For detection
of the digoxigenin and fluorescein tags in riboprobes, sections were
incubated in 0.4% Triton X-100 and 2% NHS in TBS (pH 7.6), with primary
sheep polyclonal anti-digoxigenin (1:500, Thermo Scientific) and mouse
monoclonal anti-fluorescein (1:500, Roche) antibodies, for 72 h at 4 °C.
Subsequently, sections were washed with TBS and detection of anti-
digoxigenin and anti-fluorescein primary antibodies was carried out using
anti-sheep Cy3 from donkey (1:200, Jackson Laboratories, Bar Harbor, ME,
USA) and anti-mouse Alexa647 from donkey (1:200, Jackson Laboratories),
respectively, in 0.4% Triton X-100 and 2% NHS in TBS (pH 7.6) at room
temperature, for 2 h. Sections were then washed in 0.1 M PB and stained
using DAPI (1:100, Invitrogen) as a nuclear marker. Sections were then
mounted on slides, cover slipped with Vectashield H1000 fluorescent
mounting medium (Vector Labs) and sealed.
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Confocal imaging
Stained LA images were acquired using a Zeiss LSM 700 confocal
microscope (Carl Zeiss, Oberkochen, Germany) equipped with Zeiss Plan-
Apochromat × 10/0.45, × 20/0.8 and × 40/1.3 (oil immersion) objectives.
Native dVenus, Cy3, Alexa647 and DAPI were imaged using the excitation
wavelengths of 488, 555, 639 and 405 nm, respectively. Native dVenus
fluorescence intensity was quantified using ImageJ (NIH, 1.42q) with the
Multi Measure plug-in. The mean fluorescence intensity of each Arc-
dVenus+ neuron was determined by drawing a region of interest around
the cell soma.

Stereology
Coronal brain sections were collected serially through the entire extent of
the LA of each mouse, with a section thickness of 40 μm and
interval distance of 160 μm (Supplementary Figure 1). Sections were
immunofluorescently labeled with anti-NeuN and anti-choline acetyltrans-
ferase to identify mature neurons and to define the border between the
lateral and basolateral nuclei of the amygdala,36 respectively. Furthermore,
to optimally standardize the stereological analysis and in light of recent
findings demonstrating hemispheric lateralization of Arc expression
within the insular cortex following taste learning,37 all stereological and

dVenus + Arc + DAPI

Figure 1. Fear conditioning induces learning-specific activation of Arc-dVenus in the lateral amygdala (LA). (a) Tone-induced freezing in naïve
mice, and those receiving either paired or unpaired presentations of tone and shock (n = 8 mice/group). One-way analysis of variance,
F = 107.07, Po0.001. *Po0.05, ***Po0.001. (b) Arc-dVenus reporter and endogenous Arc RNA intra-nuclear foci (indicated by arrows) are
highly co-localized. Scale bar, 5 μm. (c–e) Arc-dVenus+ expression in the LA of mice from naïve (c), unpaired (d) and paired (e) conditions killed
5 h post training. Dotted lines indicate LA boundaries. Scale bar, 50 μm. (f and g) Matching the cell-type specificity of endogenous Arc
expression, Arc-dVenus+ neurons in the LA uniformly express the glutamatergic marker Tbr1 (n= 1900 cells; F), but not the GABAergic marker
GAD67 (n= 1140 cells; G). Scale bar, 10 μm.
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fluorescence intensity data were collected exclusively from the left
hemisphere.
Stereological estimation of the total population (NeuN+) and Arc-

dVenus+ subset of neurons was performed using the Optical Fractionator
probe within Stereo Investigator (version 10, MBF Bioscience, Williston, VT,
USA). Stacks of confocal images (156 × 156× 1 μm) across the thickness of
the sections (with a separation level of 1 μm) of Arc-dVenus+ and NeuN+

neurons were systematically collected. A counting frame size of 100
μm×100 μm was used to mark Arc-dVenus+ neurons throughout the
entire grid, using an exhaustive sampling configuration. NeuN+ cells were
counted using 35 μm×35 μm counting frames, which were selected in a
systematic random procedure by the analysis software. The grid size of
both exhaustive and random sampling configurations was set to
100 μm×100 μm.
The section thickness was assessed empirically at every sampling site to

precisely calculate any potential thickness variation across the sections as a
result of post-processing of the tissue. Guard zones (2 μm) were used at
the top and bottom of each section with a dissector height of 15 μm.
Accuracy in the estimation of the total number of quantified cells per
subject was estimated using the coefficient of error equations.38–40

Coefficient of error values were o0.1 in all mice analyzed.

Brain slice electrophysiology
Mice were anesthetized using isoflurane, decapitated and the brain
dissected in ice-cold modified artificial cerebrospinal fluid (ACSF) contain-
ing the following (in mM): 110 NaCl, 2.5 KCl, 2 CaCl2, 2 MgCl2, 1 NaH2PO4,
25 NaHCO3, 10 glucose, 0.2 ascorbate, 0.2 thiourea. Acute coronal slices
(300 μm) containing the LA were cut using a vibratome (Microm 650 V,
Thermo Scientific) and transferred to a storage chamber in ACSF, saturated
with 95% O2/5% CO2 and maintained at 32–34 °C. After at least 1 h of
recovery time, slices were transferred to the recording chamber where
they were continuously perfused with oxygenated ACSF at a perfusion rate
of 1.5–2ml min− 1.
Whole-cell patch-clamp recordings of LA neurons were performed at

32–34 °C under infrared differential interference contrast visual guidance
using an upright microscope (Nikon, Tokyo, Japan; Eclipse E600FN). Arc-
dVenus+ fluorescence cells were detected via illumination of a mercury
lamp using a YFP filter (Semrock, Rochester, NY, USA). Borosilicate glass
pipettes (4–7MOhm) were connected to an Axon Multiclamp 700B
amplifier (Molecular Devices, Sunnyvale, CA, USA) and data were acquired
at 20 KHz, filtered at 3 KHz, stored and analyzed using the pClamp software
(pClamp 10, Molecular Devices). Pipettes were filled with the following
medium (in mM): 130 KMeSO3, 11 KCl, 10 HEPES, 5 NaCl, 0.1 EGTA, 1 MgCl2,

2 Mg-ATP, 0.3 Na-GTP, 5 phosphocreatine, 50 U ml− 1 creatin phosphoki-
nase, the pH was adjusted to 7.2 and osmolarity to 290mOsm. Slices were
continuously superfused with ACSF, saturated with 95% O2/5% CO2 and
maintained at 32–34 °C. Liquid junction potential was left uncorrected.
Except for measurements of intrinsic properties, the GABAA receptor
blocker picrotoxin (00 μM) was added to the ACSF. Large, pyramidal-like
somata were visualized targeted for recordings, and readily distinguished
from fast-spiking neurons, characteristic of LA interneurons.41–43 No fast-
spiking neurons were found in the Arc-dVenus+ population, consistent with
Arc expression in the LA being limited to glutamatergic principal
neurons.44

Passive membrane properties were analyzed using a 10mV hyperpolar-
izing voltage step in voltage-clamp mode. Resting membrane potential
was measured immediately after establishing the whole-cell configuration.
Single action potentials (APs) were evoked by a 10ms current injection
whose amplitude was minimally sufficient to reach the threshold from a
potential of − 75mV. The threshold was defined as the inflection point at
the foot of the regenerative upstroke. AP amplitude and after-
hyperpolarizing potential were measured from the threshold to the peak
and to the maximal hyperpolarizing value, respectively. AP duration was
measured at half of the maximal amplitude.
For evoked postsynaptic currents, thalamic fibers of the ventral part of

the striatum were stimulated using a bipolar Platinum-Iridium electrode
(FHC, Bowdoin, ME, USA). Postsynaptic responses were recorded from Arc-
dVenus− and Arc-dVenus+ neighboring cells, thereby reducing interslice
variability. Input-output curves were constructed by varying the stimulus
intensity from 0 to 200 μA (in 25 μA increments) at 0.1 Hz. Excitatory
postsynaptic current (EPSC) amplitude was normalized by the cell
capacitance. Paired-pulse ratio was analyzed as the ratio of the second
to the first EPSC resulting from two consecutive stimulations, in which the
interstimulus interval ranged from 25 to 100ms (in 15ms increments) and
from 100 to 300ms (in 25ms increments). For α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA)/NMDA recordings, the intracel-
lular solution was modified by substituting KMeSO3 and KCl with CsMeSO3

and CsCl, respectively. The AMPA component was measured as the peak
current recorded at − 70mV. The NMDA component was recorded at
+40mV (measured 100ms after stimulus onset), and entirely blocked in
the presence of 1-amino-phosphovaleric acid (50 μM).

Statistical analysis
Significance of observations was established by unpaired Student’s t test
or analysis of variance followed by Tukey’s post hoc test. Cumulative
probability distributions of fluorescence intensity were compared using

Figure 1. (Continued)
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the Kolmogorov–Smirnov test. Data are expressed as mean± s.e.m.
Significance threshold was set at Po0.05 for all statistical comparisons.

RESULTS
Arc-dVenus expression accurately reflects endogenous Arc
transcription
To visualize LA neurons recruited during fear learning, we utilized
a recently engineered mouse line expressing destabilized
Venus fluorescent protein (dVenus) under the control of a
transgenic Arc promoter (Arc::dVenus mice), thereby leaving the
endogenous Arc genes unmodified.32 Hence, these mice function
as a fluorescence-based reporter of Arc transcription without
interfering with the function of endogenous Arc itself. Using
compartmental analysis of temporal gene transcription by
fluorescence in situ hybridization,23 we confirmed the high co-
localization of Arc-dVenus and endogenous Arc nuclear RNA in the
LA after auditory fear conditioning, thereby demonstrating the
validity of Arc::dVenus reporter mice for visualizing LA cells with
recent endogenous Arc activation (Figure 1b).
To examine the specificity of Arc-dVenus activation during fear

learning, we used three independent groups: naïve (homecage)
controls, explicitly unpaired presentations of tone and shock, or
paired tone-shock conditioning (Figure 1a). Mice were killed 5 h
after fear conditioning, consistent with previous reports demon-
strating that maximal experience-driven Arc-dVenus expression

occurs within 4–6 h.32,45 Arc-dVenus fluorescence was robustly
increased in the LA of mice receiving paired training (Figure 1e). In
contrast, naïve mice (Figure 1c) and those receiving unpaired
training (Figures 1d) showed relatively weaker fluorescence,
confirming the specificity of Arc-dVenus activation in the LA to
fear learning.
Previous studies have demonstrated that endogenous Arc

expression is localized to principal neurons within the
forebrain.44 Therefore, to confirm the cell-type specificity of the
Arc-dVenus reporter in the LA, we performed immunohistochem-
ical labeling with antibodies against Tbr1 or GAD67, markers for
glutamatergic projection neurons or GABAergic interneurons,
respectively.46 Indeed, we found that Arc-dVenus+ neurons in
the LA were always NeuN+ (Figures 1c–e) and Tbr1+ (Figure 1f).
Conversely, we never observed an Arc-dVenus+ neuron that was
GAD67+ (Figure 1g), thereby confirming that Arc-dVenus expres-
sion is exclusively limited to glutamatergic neurons in the LA,
consistent with the cell-type specificity of endogenous Arc.

Fear learning robustly and selectively induces Arc-dVenus
expression
Using confocal stereology, we quantified the percentage and
fluorescence intensity of Arc-dVenus+ neurons in the LA following
fear conditioning (Figure 2; Supplementary Figure 1). In naïve mice,
only weak levels of Arc-dVenus fluorescence were detectable in
LA neurons, consistent with the low baseline expression of

Figure 2. Arc-dVenus expression is selectively induced by fear learning. (a) Native dVenus fluorescence from naïve, unpaired and paired mice
at 5 h post training. Scale bar, 10 μm. (b) Stereological quantification of Arc-dVenus+ neurons in naïve, unpaired and paired conditions. Paired
training significantly increases the percentage of Arc-dVenus+ cells compared with naïve and unpaired controls. In contrast, a similar
percentage of Arc-dVenus+ cells is observed between naïve and unpaired conditions (Naïve: n= 7 mice, Unpaired: n= 7 mice, Paired: n= 6
mice). One-way analysis of variance, F = 8.59, Po0.01. (c) Cumulative distribution of Arc-dVenus fluorescence intensity. Fluorescence intensity
is significantly higher in mice receiving paired fear conditioning, compared with naïve and unpaired controls. Kolmogorov-Smirnov: Naïve
versus Paired, D= 0.48, Po0.0001; Unpaired versus Paired, D= 0.24, Po0.001. (d) Frequency histograms of Arc-dVenus fluorescence intensity. x
axis is truncated at 45 a.u. (Panels c and d: bin size, 5 a.u.). *Po0.05, **Po0.01, ***Po0.001.
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endogenous Arc.47 Unpaired conditioning did not influence the
percentage of Arc-dVenus+ neurons. In contrast, the percentage of
Arc-dVenus+ neurons observed in mice receiving paired condition-
ing was significantly increased compared with naïve (Po0.01) and
unpaired (Po0.05) groups (Figure 2b). Moreover, paired training
induced a strong right-shift of the cumulative probability distribu-
tion of Arc-dVenus fluorescence, compared with naïve (Po0.0001)
and unpaired (Po0.001) conditions (Figure 2c). Together, our
findings indicate that the induction of Arc-dVenus expression in the

LA during fear conditioning is highly specific for associative
learning, compared with non-associative sensory stimulation.
To further explore the relationship between the strength of

learning, percentage of Arc-dVenus+ neurons and dVenus
fluorescence intensity, we used independent groups of mice
trained with 1, 3 or 9 CS-US pairings. Stereological analysis
demonstrated an asymptotic percentage of Arc-dVenus+ neurons
beyond 3 CS-US pairings, which closely paralleled the CS-evoked
freezing curve (Supplementary Figures 2A and B). Notably,

Figure 3. Baseline Arc-dVenus+ neurons are preferentially recruited during fear conditioning. (a–c) Representative images of Arc-dVenus and
endogenous Arc co-localization at 1 h post training. Scale bar, 10 μm. (d) Overall percentage of LA neurons expressing endogenous Arc in
naïve, unpaired and paired conditions. Paired and unpaired training induce an increase in the number of neurons expressing endogenous Arc.
One-way analysis of variance, F = 25.03, Po0.001. (e) Endogenous Arc is preferentially localized to Arc-dVenus+ neurons in mice receiving
paired conditioning, compared with naïve or unpaired controls. Two-way analysis of variance, group × Arc-dVenus interaction, F = 94.12,
Po0.0001. *Po0.05, **Po0.01, ***Po0.001.
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however, despite a similar strength of conditioning and percen-
tage of Arc-dVenus+ neurons, mice receiving 9 CS-US pairings had
a significantly increased dVenus fluorescence intensity compared
with mice receiving only 3 CS-US pairings (Supplementary Figures
2C and E). Therefore, successive CS-US pairings do not recruit cells
randomly within the LA, but instead result in a highly overlapping
re-activation of a similar neuronal subpopulation.
Recent models of memory formation have hypothesized

that at any given time, a limited subset of neurons exist in an a
priori primed state, which could serve to preferentially bias
their allocation into a newly encoded associative memory
trace.13,15–17,31,48,49 Therefore, we considered the possible
mechanisms by which cellular activation in the LA could transform
the Arc-dVenus fluorescence intensity curve from the baseline
(naïve) state to the distribution observed after fear conditioning
(Figure 2c). In particular, the rightward shift in the Arc-dVenus
fluorescence intensity distribution could have resulted from two
non-mutually exclusive possibilities: (i) In Figure 2b, we observed a
~ 50% increase in the number of Arc-dVenus+ neurons in the LA
following paired training. Accordingly, if these newly Arc-dVenus+

neurons are predominantly of high fluorescence intensity, the
resulting cumulative probability curve would shift to the right. (ii)
A second possibility is that baseline Arc-dVenus+ neurons are
preferentially recruited during fear conditioning. Prior to con-
ditioning, ~ 10% of LA neurons are Arc-dVenus+, and thereby
represent the fluorescence intensity distribution of the baseline
(naïve) group. During fear conditioning, activation of these

baseline Arc-dVenus+ neurons would necessarily increase their
fluorescence level and consequently shift the overall population
distribution to the right. Therefore, to distinguish between these
possibilities, we examined the absolute frequency histograms of
fluorescence intensity, which fully account for the difference in the
overall percentage of Arc-dVenus+ neurons (Figure 2d). Notably,
the fluorescence intensity distribution remained significantly
right-shifted despite having fully accounted for the increased
percentage of Arc-dVenus+ neurons, and consistent with a model
of neuronal selection during fear conditioning in which baseline
Arc-dVenus+ neurons are preferentially recruited into the
memory trace.

Preferential recruitment of neurons with enhanced intrinsic
excitability
To further examine the hypothesis that baseline Arc-dVenus+

neurons are preferentially recruited during fear learning, we made
use of the differential half-life of endogenous Arc50 compared with
dVenus.32 Endogenous Arc is nearly undetectable in naïve mice,47

and peaks in the LA at 1 h after fear conditioning, specifically
marking neurons that were activated during conditioning
(Supplementary Figure 3). In contrast, baseline Arc-dVenus+

neurons remain easily detectable over a 1 h period given that
the in vivo half-life of Arc-dVenus fluorescence is 3 h.32 Therefore,
at 1 h after fear conditioning, a high percentage of Arc-dVenus+

neurons with co-localized expression of endogenous Arc would

a

b

Figure 4. Arc-dVenus+ neurons exhibit increased excitability. (a) Superimposed current-clamp recordings with − 100, 0, +140, +300 pA
sustained current injection at a holding membrane potential of − 75mV. Arc-dVenus+ neurons (top) fire more APs than non-activated
neighbors (bottom) in naïve, unpaired and paired conditions. Scale bars: 20 mV, 50 ms. (b) Plot of the mean AP count versus current injection
intensity for naïve (left), unpaired (center) and paired (right) conditions. Arc-dVenus+ neurons (naïve: n= 15, unpaired: n= 17, paired: n= 16;
green) show higher excitability compared with neighboring Arc-dVenus− neurons (naïve: n = 16, unpaired: n= 17, paired: n= 18; black). Naïve:
n= 12 mice, Unpaired: n= 6 mice, Paired: n= 8 mice. Repeated measures analysis of variance, Arc-dVenus × current intensity interaction: naïve,
F = 14.06, Po0.001; unpaired, F = 3.75, Po0.05; paired, F = 3.55, Po0.05. *Po0.05.
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confirm that baseline Arc-dVenus+ neurons are preferentially
recruited during fear conditioning. In contrast, a low rate of co-
localized expression would suggest that the baseline Arc-dVenus+

population has no a priori bias towards activation. Indeed,
consistent with a model of preferential recruitment, 92.6% of

Arc-dVenus+ neurons from mice undergoing paired training were
co-localized with endogenous Arc, compared with only 10.2% in
naïve mice (Figure 3); Po0.0001. Mice receiving unpaired training
also showed recruitment of baseline Arc-dVenus+ neurons,
although the co-localization was significantly lower than in mice

a

b

c d

e f

Figure 5. Synaptic potentiation is learning-specific and highly localized to Arc+ neurons. (a) Superimposed averages (5 traces) of EPSCs evoked
via thalamic input stimulation (0–200 μA, 25 μA increments) at a holding membrane potential of − 70mV. Stimulus artifacts are truncated. Arc-
dVenus+ neurons (top) display strongly potentiated evoked EPSCs specific to the paired (right) versus naïve (left) or unpaired (center)
conditions. Scale bars: 200 pA, 10ms. (b) Input-output curves for naïve (left), unpaired (center) and paired (right) conditions. In the naïve and
unpaired conditions, EPSCs recorded from Arc-dVenus+ (naïve: n= 13, unpaired: n= 19; green) and Arc-dVenus− (naïve: n = 14, unpaired: n= 18;
black) neurons are similar. In contrast, EPSCs are selectively potentiated in Arc-dVenus+ neurons in the paired condition (n = 34, green)
compared with neighboring Arc-dVenus− neurons (n= 34, black), across all stimulus intensities 450 μA. Naïve: n= 12 mice, Unpaired: n= 12
mice, Paired: n= 21 mice. Repeated measures analysis of variance, stimulus intensity × Arc-dVenus interaction: naïve, F = 0.88, P = 0.39;
unpaired, F = 0.28, P= 0.69; paired, F = 5.26, Po0.01. (c) Averages (5 traces) of EPSC pairs (normalized to the first EPSC) with a 45ms
interstimulus interval from Arc-dVenus+ (left) and Arc-dVenus− (right) neurons of mice receiving paired conditioning. Scale bars: 100 pA, 10ms.
(d) Paired-pulse ratios were similar between Arc-dVenus+ (n= 14, green) and Arc-dVenus− (n= 16, black) neurons from 15 mice. Repeated
measures analysis of variance, stimulus intensity × Arc-dVenus interaction, F = 1.08, P = 0.33. (e) Evoked EPSCs (average of 5 traces) at -70, 0 and
+40mV holding membrane potentials, scaled to the +40mV peak amplitude. Arc-dVenus+ (left) and Arc-dVenus− (right) neurons from mice
receiving paired conditioning. Scale bars: 100 pA, 40ms. (f) AMPA/N-methyl-D-aspartate ratio is significantly increased in Arc-dVenus+ (n= 24,
green) compared with neighboring Arc-dVenus− (n= 26, black) neurons from 15 mice. *Po0.05.
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receiving paired training (Po0.05). Lastly, c-Fos activation was
also highly co-localized with Arc-dVenus at 1 h post-training
(Supplementary Figure 4), demonstrating that this finding is not
simply restricted to Arc. Together, these data indicate that baseline
Arc-dVenus expression represents a unique molecular marker for
LA neurons that are preferentially recruited during fear memory
encoding.
Given that Arc-dVenus+ neurons are preferentially recruited

during fear conditioning, their defining electrophysiological
properties might offer unique insights into the mechanisms
underlying associative memory encoding. Passive membrane
properties and single AP characteristics of Arc-dVenus+ and
neighboring Arc-dVenus− neurons demonstrated no two-way
interactions of Arc-dVenus status and training condition
(Supplementary Table 1). Furthermore, there were no overall
main effects of Arc-dVenus status. However, three parameters
demonstrated overall main effects of training condition: mem-
brane resistance (F2,104 = 5.52, Po0.01), AP threshold (F2,95 = 8.37,
Po0.001), and AP half-width (F2,95 = 6.03, Po0.01) (Supplemen-
tary Table 1). Post hoc pairwise comparisons across training
conditions demonstrated that membrane resistance was signifi-
cantly lower in mice receiving paired training compared with
naïve mice (Po0.01), with no significant differences of either
condition in comparison with mice receiving unpaired training. AP
threshold was significantly more depolarized in mice from the
paired (Po0.01) and unpaired (Po0.01) condition, compared
with naïve mice. Lastly, AP half-width was significantly narrower
in mice receiving paired training, compared with naïve (Po0.05)
or unpaired (Po0.01). Importantly, these main effects of training
condition are independent of whether the recorded neurons were
Arc-dVenus+ or Arc-dVenus− , and therefore reflect global experience-
dependent changes observed broadly throughout the LA.
Intrinsic excitability has been widely hypothesized as a

candidate mechanism for neuronal recruitment during associative
learning.15–17 However, no previous studies have been able to
directly address this hypothesis under entirely physiological
conditions. Therefore, we performed targeted whole-cell record-
ings from Arc-dVenus+ neurons and their non-activated Arc-
dVenus− neighbors. Consistent with the hypothesis that increased
excitability might support their preferential recruitment into the
fear memory trace, baseline Arc-dVenus+ neurons had significantly
higher intrinsic excitability than their non-activated neighbors
(Figure 4). Moreover, Arc-dVenus+ neurons from both the paired
and unpaired conditions displayed a similar increase in excitability,
the magnitude of which was independent of learning or sensory
stimulation. Accordingly, Arc-dVenus+ neurons also displayed
higher instantaneous AP frequencies than neighboring Arc-
dVenus− neurons (Supplementary Figure 5). Notably however,
no differences were observed in AP amplitude or duration across
spike trains (Supplementary Figures 6 and 7). Taken together,
these findings suggest that enhanced excitability cannot account
for the encoding of a fear memory, but rather is highly consistent
with a model for neuronal selection during learning regulated by
intrinsic excitability.

Synaptic plasticity is highly localized to Arc-dVenus+ neurons
during fear conditioning, and postsynaptically mediated
The encoding of auditory fear memories is thought to occur
through selective potentiation of glutamatergic synaptic inputs to
the LA.5,6,10–12 However, previous studies investigating auditory
fear-conditioning-induced synaptic modifications have been
performed without knowledge of whether recorded neurons
were part of the memory trace. Therefore, the Arc::dVenus mice
represented a unique opportunity to examine directly whether
learning-induced synaptic potentiation is preferentially localized
to Arc-dVenus+ neurons, as predicted by a model of sparse
memory encoding. We recorded EPSCs evoked by stimulation of

thalamic afferents to LA neurons. In both naïve and unpaired
conditions, similar EPSC amplitudes were observed in Arc-dVenus+

and neighboring Arc-dVenus− neurons (Figures 5a and b). In
contrast, paired conditioning induced a robust and highly specific
potentiation of thalamic afferent synapses, selectively in Arc-
dVenus+ neurons (Figures 5a and b). Therefore, Arc expression
defines the LA neuronal ensemble onto which synaptic plasticity is
highly localized during fear conditioning.
We next sought to determine whether the site of plasticity for

the enhancement in glutamatergic synaptic transmission during
auditory fear conditioning was pre- or postsynaptic. If fear
conditioning differentially modifies the neurotransmitter release
probability onto Arc-dVenus+ versus Arc-dVenus− neurons, such a
change should be evident by a decrease in the paired-pulse ratio
for glutamatergic inputs onto Arc-dVenus+ neurons compared
with neighboring Arc-dVenus− neurons. Therefore, we performed
paired-pulse stimulation of thalamic afferents across a range of
interstimulus intervals from 25 to 300ms (Figures 5c and d).
Notably, Arc-dVenus+ and Arc-dVenus− neurons showed similar
paired-pulse ratios across all interstimulus intervals examined,
making it unlikely that the learning-induced synaptic potentiation
of Arc-dVenus+ neurons was presynaptic in origin.
Alternatively, we measured the ratio of AMPA to NMDA

currents, a widely used measure that is highly sensitive to
postsynaptically mediated plasticity of glutamatergic transmission,
including long-term potentiation.6,51 Indeed, consistent with a
postsynaptic locus of plasticity, fear conditioning induced a
significant increase in the AMPA/NMDA current ratio in Arc-
dVenus+ neurons compared with their Arc-dVenus− neighbors
(Figures 5e and f). Taken together, our findings demonstrate that
learning-induced synaptic potentiation is postsynaptically
mediated and selectively localized onto the sparse population of
Arc-expressing neurons.

DISCUSSION
The elucidation of the physiological mechanisms underlying
memory encoding remains a considerable technical challenge,
owing to the sparseness of neuronal representations. Therefore,
we used a novel Arc reporter mouse32,45,52 to permit visual
identification and neurophysiological interrogation of neurons
with recent activation. Using this powerful approach for exploring
learning-specific alterations in neuronal physiology, we now
demonstrate that fear-conditioning-induced glutamatergic synap-
tic potentiation in the LA is preferentially localized to Arc+

neurons, thereby confirming the sparse encoding hypothesis
and identifying Arc as a bona fide molecular marker of the
LA fear memory trace. Furthermore, we show that baseline
differences in neuronal excitability are highly predictive of
the ensemble of neurons selectively recruited into the fear
memory trace.
We found that the potentiation of glutamatergic synaptic

transmission from the thalamic input pathway was postsynapti-
cally mediated, given the highly significant enhancement in
AMPA/NMDA ratio from mice receiving paired training, in the
absence of changes in the presynaptically mediated paired-pulse
ratio. These findings are consistent with the comprehensive series
of previous studies reporting a postsynaptically mediated
plasticity of the thalamic input pathway,5,6,9,53 although a minority
of reports have also suggested the contribution of a presynaptic
mechanism.54 Nonaka et al.52 recently used the Arc::dVenus mice
to examine neuronal recruitment and synaptic plasticity following
contextual conditioning in the basolateral amygdala. Similar to our
findings, they observed a preferential recruitment of Arc-dVenus+

neurons evident in both the learning and non-associative
conditions. Moreover, a presynaptically mediated potentiation
of cortical-basolateral amygdala synaptic transmission was
observed selectively in Arc-dVenus+ neurons, as evidenced by
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an increase in mEPSC frequency and a decrease in paired-pulse
ratio. Taken together, these findings demonstrate that the
induction of Arc IEG activation is a highly reliable marker for
identifying the limited subset of neurons recruited to the fear
memory trace and defined by pathway-specific alterations in
synaptic transmission.
Previous studies demonstrating postsynaptically mediated

plasticity of the thalamic input pathway to the LA using whole-
cell patch-clamp recordings were performed in randomly chosen
LA neurons without knowledge of their Arc expression.5,6 Our
findings now extend these results by demonstrating that
potentiation of glutamatergic synaptic transmission occurs
disproportionately onto Arc+ neurons. However, this also raises
an important question regarding the Arc− population, which
presumably constitute a substantial proportion of the recorded
neurons. Notably, although not statistically significant, there was a
strong trend for increased synaptic transmission within the Arc−

population in mice receiving paired training, compared with the
unpaired and naïve groups (Figure 5b). Moreover, there are two
notable aspects of our experimental design that may also be
important to consider. First, we performed the electrophysiologi-
cal recordings directly following training without intervening
memory testing, given the increasing literature demonstrating
that retrieval of newly learned associations modifies synaptic
physiology.12,55–58 Given the highly divergent CS-evoked freezing
responses between the paired and unpaired groups, electro-
physiological recordings would have always been confounded by
the impact of their differential fear responses during the
intervening test session.
Second, we chose a behavioral training protocol that did not

result in overtraining (Supplementary Figure 2). In contrast,
previous studies of thalamic-LA synaptic transmission demonstrat-
ing postsynaptically mediated plasticity have used stronger
conditioning protocols. With more robust training, it is possible
that changes in thalamic-LA synaptic transmission might have
occurred outside the Arc+ population. Alternatively, in the setting
of more robust training the Arc+ population might have
constituted a significantly larger proportion of LA neurons than
we have observed, for which random sampling would have yielded
the previously reported effects yet consistent with learning-specific
changes in thalamic-LA synaptic transmission being largely
restricted to the Arc+ population. Importantly however, this latter
possibility is inconsistent with our finding of an asymptotic
percentage of Arc+ neurons beyond 3 CS-US pairings.
In addition to learning-induced plasticity, we also observed that

neurons with baseline elevation of intrinsic excitability are
preferentially recruited into the fear memory trace. Previous
studies using viral-mediated overexpression of CREB have
proposed intrinsic excitability as a candidate cellular mechanism
for neuronal selection during fear learning in the LA.15–17,59

However, it remained unknown to what extent these findings
recapitulated the endogenous physiological mechanism. Our
present results add compelling evidence that intrinsic excitability
is indeed a highly influential cellular mechanism underlying
recruitment of individual LA neurons during fear memory
encoding. Interestingly, studies in both vertebrate and inverte-
brate species have demonstrated robust and enduring learning-
induced alterations in neuronal excitability.60–67 Our findings
provide strong support for the hypothesis that neurons with
baseline elevation of intrinsic excitability are preferentially
recruited into the memory trace, and may serve to bind together
experiences acquired closely together in time. Moreover, we
speculate that the recent elegant studies using targeted
manipulations of IEG-defined memory traces are influencing
neuronal selection during learning precisely through modulation
of neuronal excitability.30,31

We observed an asymptotic percentage of Arc-dVenus+ neurons
beyond 3 CS-US pairings, despite a further increase in dVenus

fluorescence intensity in mice receiving 9 CS-US pairings. Therefore,
neuronal selection during fear learning appears to be constrained
by the intrinsic microcircuitry of the LA, leading to re-activation of a
similar neuronal subpopulation upon successive CS-US pairings
throughout the training session. Given the extensive inhibitory
network within the LA, a feed-forward inhibitory microcircuitry is a
well-suited candidate for mediating this outcome.68,69 Previous
studies have demonstrated unique mechanisms of inhibitory
interneuron plasticity within the LA that are likely to function
critically in both neuronal selection and fear memory
encoding.17,68–72 Future studies using multicellular recordings will
be required to more precisely define the local microcircuit
connectivity and cell-type-specific mechanisms of plasticity.
Our experiments utilized two independent control groups: (i)

Unpaired: mice receiving explicitly unpaired CS and US presenta-
tions but matched with the paired condition regarding the
number and specifications of the CS and US, context exposure and
handling; and (ii) Naïve: mice that were truly naïve to any
experimental manipulations in that they had no context
exposures, nor any handling beyond their standard housing
conditions. Our rationale for this design was that the unpaired
condition would provide the ideal control for handling, context
exposure and the influence of CS and US stimuli independent of
auditory fear conditioning. However, any differences observed
between the naïve and unpaired groups remain difficult to
precisely attribute etiologically, as these effects could be due to
the handling, context exposure, CS and/or US stimuli. Moreover,
mice receiving unpaired training undergo contextual condition-
ing. Differences in the naïve and unpaired groups were observed
exclusively in experiments examining dVenus fluorescence
intensity (Figures 2c and d) and neuronal recruitment (Figure 3),
in which the effect size was, in both cases, smaller than observed
in the paired condition. No differences were observed in
electrophysiological recordings comparing dVenus+ and dVenus−

neurons between the naïve and unpaired conditions. Rather, the
only electrophysiological difference observed between naïve and
unpaired mice regarded AP threshold (Supplementary Table 1), an
effect that was independent of dVenus status. Therefore, learning-
specific changes in synaptic plasticity cannot be accounted for by
handling, context exposure or the unpaired presentation of CS
and US stimuli. In contrast, neuronal recruitment in the LA appears
to occur independently of auditory fear learning, and mediated by
one or more of the stimuli distinguishing the unpaired and naïve
groups. Given the function of the LA in assigning emotional
valence, we would hypothesize that the strong recruitment in the
unpaired condition likely results from the stress sensitization of
the US stimuli, but future studies will be required to examine this
in further detail.
Taken together with previous findings, we propose a model of

fear learning in which non-associative neuronal selection and
Hebbian synaptic encoding of the learned association are distinct
physiological processes: intrinsic excitability determines neuronal
selection, whereas learning-related encoding is governed by
synaptic plasticity.
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