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REVIEW

New insights into M1/M2 macrophages: key 
modulators in cancer progression
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Abstract 

Infiltration of macrophages in and around tumor nest represents one of the most crucial hallmarks during tumor pro-
gression. The mutual interactions with tumor cells and stromal microenvironment contribute to phenotypically polari-
zation of tumor associated macrophages. Macrophages consist of at least two subgroups, M1 and M2. M1 phenotype 
macrophages are tumor-resistant due to intrinsic phagocytosis and enhanced antitumor inflammatory reactions. 
Contrastingly, M2 are endowed with a repertoire of tumor-promoting capabilities involving immuno-suppression, 
angiogenesis and neovascularization, as well as stromal activation and remodeling. The functional signature of M2 
incorporates location-related, mutually connected, and cascade-like reactions, thereby accelerating paces of tumor 
aggressiveness and metastasis. In this review, mechanisms underlying the distinct functional characterization of M1 
and M2 macrophages are demonstrated to make sense of M1 and M2 as key regulators during cancer progression.
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Introduction
Tumor, to some extent, could be defined as a systemic 
disease of immuno-imbalance [1]. Malignant tumor is 
characterized by uncontrolled cell proliferation due to 
the unbalance between the mutations of oncogenes and 
tumor suppressor genes [2]. Once the mutation has been 
detected by host immune system, various lymphocytic 
infiltrates would accumulate in and around tumor zones 
to harbor intrinsic and adaptive immunities [3]. In this 
case, the tumoral immune microenvironment plays cru-
cial roles during the multi-stage  processes of tumorigen-
esis and progression.

Within the immune microenvironment, resident 
and recruited macrophages act as first lines of immu-
noregulatory functions and key modulators during 
tumor progression. In response to tumor-derived or 

microenvironmental signals, macrophages undergo phe-
notypically polarization to a universe of activation states 
[4]. Extremely, the macrophages plasticity could be sum-
marized as M1 (classically activated) and M2 (alterna-
tively activated) phenotypes, for better understandings 
of their distinct cellular and molecular mechanisms [5]. 
Both of M1 and M2 macrophages are involved in the 
affection of tumor-related inflammatory [6], whereas 
M2 is prone to promote angiogenesis and neovasculari-
zation, as well as stromal activation and remolding [7, 
8], thereby impacting cancer progression positively and 
patient’ prognosis negatively [9]. Consequently, the inter-
play between host immune system and tumor cells could 
be representatively indicated from the aspect of M1/M2 
macrophages.

For long momentum studies have emphasized the 
significance of M1/M2 macrophages. Some questions 
remain to be debated. Whether phenotypical polariza-
tions explain pleiotropic but opposed activities of TAM? 
To what extent M1 and M2 differ considering functional 
properties under the framework of tumor microenviron-
ment? Do spatial locations of macrophages especially M2 
contribute largely to tumor progression? After describing 
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the origination and differentiation of macrophages, this 
review would focus on the distinct functional character-
istics of M1/M2 in terms of three major aspects, includ-
ing immunoediting, angiogenesis and neovascularization, 
and stromal orchestration.

Origination and differentiation of macrophages
Origination and maturation of macrophages
Macrophages populated within tissues are grouped 
resident macrophages and recruited macrophages. For 
long resident macrophages are proved to be replaced by 
migrated circulating peripheral blood monocytes, which 
acted as precursors of macrophages [5]. Recent studies 
have found a fact that resident macrophages are endowed 
with self-renewal capacity especially under inflammatory 
conditions. Meanwhile, these studies imply a new origi-
nation from hematopoiesis in the yolk sac before birth 
[10]. Recruited macrophages are mainly derived from 
monocytes in circulation and bone marrow derived cells 
(BMDC) [11]. Homeostatic control of monocyte/mac-
rophage development is majorly driven by colony stimu-
lating factor-1 (CSF-1, also known as M-CSF) [12]. New 
evidence has identified the cytokine IL-34 as a new CSF-
1R ligand that influences maturation of macrophages, 
which is restricted to the epidermis and central nervous 
system [13].

Differentiation and phenotypes of macrophages
In normal tissues, macrophages could be differentiated 
into microglial cells in the brain, Kupffer cells in the liver, 
and Langerhans cells in the skin [14, 15]. In the similar 
manner, the phenotypes of macrophages within tumor 
tissues (tumor associated macrophages, TAM) also rep-
resent of innate and adaptive immune responses. Tumor 
related inflammation represents one of the complex 
hallmarks of cancer especially due to an enrichment 
with monocyte-derived macrophages [16]. Theoreti-
cally, in response to various stimuli, TAM could be dif-
ferentiated into distinct functional subsets, extremely 
into M1 phenotype macrophages by Th1 (IFN-γ, TNFα, 
and LPS et al.), and into M2 by Th2 (IL-4, IL-10, TGFβ1, 
and PGE2 et  al.) cytokines and immunocomplexes [17] 
(Fig.  1). M1 phenotype macrophages are characterized 
by the expression of HLA-DR and CD197, whereas M2 is 
typical for the high expression of CD163, CD209, CD206, 
and CCL2 et  al. [18, 19]. In addition, potential roles of 
IRF4 in M1-like polarization [20] and Trib1 in tissue-
resident M2-like macrophages [21] have been demon-
strated, which further confirms that macrophages consist 
of more than two subgroups. Underlying mechanisms 
of TAM polarization has been demonstrated to be cor-
related with several major signaling pathways, including 
C-Jun N-terminal kinase (JNK) signaling pathway, PI3K/

Akt signaling pathway, Notch signaling pathway, JAK/
STAT signaling pathway, et al. [22].

Pleiotropic but opposed activities of TAM
Herein, we would focus on the location-related distinct 
functional properties instead of these pathways. In nor-
mal tissues, macrophages contribute to maintaining tis-
sue homeostasis through phases-depending mechanisms. 
In the initiation phase of host immune response, mac-
rophages could generally be served as tissue sentinels via 
phagocytosis. Then the damaged cells and debris could 
be eliminated by macrophages in the phase of full inflam-
mation. In the recovery phase, macrophages participate 
in the re-establishment of tissue integrity [23]. As known, 
tumor is partially a disease of homeostatic imbalance. 
Some mechanisms involved in keeping normal tissues 
homeostasis might also be utilized by TAM to acquire 
different functional phenotypes, thereafter influencing 
adaptive immunity towards different directions [24].

In this perspective, momentum TAM accumulated in 
and around tumor organs to monitor the abnormal tissue 
architecture, cellular compositions, and functional states 
[25], whereas TAM could finally be trained to perform 
key homeostatic functions in the maintenance of tumoral 
growth and progression [26]. Reasons could be offered 
by the issue of heterogeneity in the M1/M2. M1 pheno-
type macrophages are tumor-resistant due to intrinsic 
phagocytosis and enhanced antitumor inflammatory 
reactions. Contrastingly, M2 are endowed with a reper-
toire of tumor-promoting capabilities involving immuno-
suppression, angiogenesis and neovascularization, as well 
as stromal activation and remodeling [27]. Functional 
properties of M1 and M2 would be discussed later in this 
review. Due to ignorance of distinct polarization of TAM, 
researches on exact prognostic values of TAM during 
cancer progression still failed to reach a consensus and 
remained contradictory [28]. In addition, histological dis-
tribution of TAM within cancer tissue has been analyzed 
and studied [29, 30], further proven to be related with 
corresponding functional potentials and overall influence 
on cancer outcomes [31, 32]. 

Major functional properties of M1 phenotype
M1phenotype macrophages have intrinsic function to 
trap, phagocytose, and lyse tumor cells [33]. In addi-
tion, enhanced tumor antigen presenting ability of M1 
would promote other leukocytes cytotoxic functions. For 
instance, CD8 + T cells and NK cells could be strength-
ened by immuno-stimulatory cytokines (IL-6, IL-12, TNF 
et al.) from M1 phenotype macrophages [34]. As a result, 
tumor cells apoptosis would be induced at this stage. 
Tumor stem cells have fewer immunogenic antigens, but 
more vigorous proliferative and differentiative abilities. 
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Considering the heterogeneity and tumor-intrinsic 
mechanisms of immune escape [35], tumor stem cells 
might use M1 phenotype macrophages as a natural filter 
to avoid being destroyed and survived to next stage [36] 
(Fig. 2a).

Major functional properties of M2 phenotype
Immuno‑modulation basing on immunoediting theory
In contrast to M1, most macrophages are switched to M2 
phenotype followed by the interactions with tumor cells, 
which is prone to show immunosuppression potentials. 
Contrary, M2 act as immune-suppressor in tumor nest. 
On one hand, the pro-inflammatory potential of M2 phe-
notype macrophages are dramatically descended, due to 
weakened tumor antigen presenting ability [37] and the 
secretions of suppressor factors such as IL-12 [38]. On 
the other hand, M2 phenotype macrophages are educated 
to be tumor-promoting by releasing growth factors like 
PDGF, TGFβ1, HGF, and bFGF et  al. [4, 39], forming a 

positive feed-back loop in accordance with cytokines and 
factors of tumor cells (IL-4, IL-6, IL-10, MDF, TGFβ1, 
PGE2, et  al.) [40] (Fig.  2b). In fact, all macrophages are 
crucial for tumor proliferation at primary tumor nest, 
and intrigue subsequent tumor metastasis. Therefore, 
tumor progression could be hypothesized as stages of 
immune elimination, equilibrium and escape basing on 
M1/M2 ratios and reactions according to immunoediting 
theory [41].

Angiogenesis and neovascularization
For long it has been a consensus that angiogenesis and 
neovascularization are essential for tumor growth and 
metastasis [42]. Many studies have shown that M2 phe-
notype macrophages are crucial to support the evolution 
of tumor-related vasculature, a process in which neo-ves-
sel sprout from existing blood vessels or by proliferation, 
motility and accumulation of vascular endothelial cells 
[43]. Recent studies have emphasized the significant cor-
relation between M2 and tumor neo-vessels with focus 
on perivascular and peri-necrotic areas [44]. Addition-
ally, morphological studies have demonstrated a disor-
ganized and collapsed characteristic of tumor neo-vessels 
[45]. This reason, combined with over-rapid growth of 
tumor cells, coordinately contribute to hypoxia zones, 
especially in tumor center and peri-necrotic regions. 
Hypoxia in these areas induces the expression of inflam-
matory molecules (IL-4, IL-10 et al.), thus promoting the 
recruitment of macrophages followed by conversion to 
the M2 phenotype [46]. In this case, M2 participates in 
a “angiogenesis cascade”, which is capable to affect the 
onset and maintenance of the angiogenic process, includ-
ing degradation of the extracellular matrix, endothelial 
cell proliferation and migration, and neovascularization 
[47]. Molecular mechanisms underlying each phase could 
resulted from a variety of pro-angiogenetic cytokines and 
growth factors, including VEGF, TNFα, IL-8, and bFGF, 
as well as angiogenesis-regulating enzymes like MMP 
and COX-2 [48] (Fig. 2c).

Stromal orchestration
Emerging evidence has also illustrated the significance 
of tumor stromal transformation in tumor progression. 
Herein, M2 is discussed in terms of intimate correlations 
with other stromal components. Actually, stromal cells 
around incipient tumors have a futile attempt to “destroy 
and repair” tumor tissues [49]. However, M2 could assist 
tumor cells to gain a hallmark to activate and remodel 
stromal features to support tumors [50].

For instance, fibroblasts differentiated from mesen-
chymal cells are important to tissue-repair, whereas 
transformed to cancer-associated fibroblasts (CAFs). In 
turn, CAFs also promote tumor growth and metastasis 

Fig. 1    Origination and maturation of macrophages. Resident and 
recruited macrophages are derived from YCPC, BMDC, as well as 
from circulating monocytes. CSF plays crucial role in macrophages 
origination. Macrophages in tumor zone intimately interact with 
tumor cells, thereby undergoing phenotypically polarization to 
extremely M1 (due to the effect of IFN-γ, TNF-α and LPS, et al.) and M2 
(due to the effect of IL-4, IL-10, TGFβ-1 and PGE2, et al.)
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by recruiting and reprogramming macrophages into 
M2 phenotype [51]. In addition, M2-related enzymes 
promote ECM digestion and deposition, as well as the 
proteolysis of basement membrane (BM) and collagens 
surrounding tumor nests [52]. In this case, intrinsic 

defensive abilities of collagens are dramatically reduced. 
The principal factors accounted for this transformation 
include cathepsin B, TNFα, MMPs et al. [53].

Subsequently, degraded BM and collagen frag-
ments may serve as chemotactic stimuli to circulating 

Fig. 2    Functional characterization of M1 and M2 macrophages. a Generally, M1 is tumor-resistant by directly lysing tumor cells after phagocytosis, 
and pro-inflammatory by enhanced tumor antigen-presenting ability or by indirectly promote the proliferation of immune cells like CD8 + T cells 
and NK cells (due to the effect of IL-6, IL-12 and TNF, et al.). b–d Whist and however, M2 is tumor-promoting through a repertoire of mechanisms, 
typically summarized as immunosuppression, tumor angiogenesis and neo-vascularization, and stromal activation and remodeling. b In contrast 
to M1-related immune response, M2 obstacles host immune states (Function 1). In tumor center (defined as Location 1) growth factors (including 
PDGF, TGFβ, HGF, and bFGF et al.) secreted by M2 would induce proliferation and metastasis of tumor cells. As a feed-back loop, cytokines and 
factors (including IL-4, IL-6, IL-10, MDF, TGF-β1 and PGE2 et al.) secreted by tumor cells enhance this effect in turn. c In avascular and peri-necrotic 
areas (defined as Location 2), HIF1α induced by hypoxia or low oxygen tension, in accordance with cytokines and factors (including VEGF, TNFα, 
IL-8 and bFGF et al.), and angiogenesis-modulating enzymes (including MMP and COX-2 et al.) would promote neo-vascularization and induce 
angiogenesis (Function 2). d In stromal areas (defined as Location 3), M2 actively impact on CAFs differentiation, BM breakdown, and collagen 
degradation and re-arrangement (Function 3). These combined stromal remodeling signatures would correspondingly induce tumor neo-vessels 
formation and maturation, as well as tumor invasion capability. The distinct tumor-related potentials of M1/M2 should be further investigated from 
known mechanisms illustrated in this figure
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monocytes. These recruited macrophages, especially M2, 
could further induce the degradation and re-arrange-
ment, enhance the stiffness of collagens, and co-orches-
trate angiogenesis [54]. Thus, all these have uncovered a 
positive feed-back transformation displayed among M2 
and other representative stromal constitutions (Fig. 2d).

New insights into distribution pattern of macrophages
The specialization of macrophages in particular micro-
environments explains their heterogeneity. In addition, 
the heterogeneous functional properties of macrophages 
would result from their location in tumor tissues [55]. 
There are three typical locations including tumor center, 
invasive front (the interface between tumor cells and 
stroma), and tumor stroma [56]. It has been documented 
that macrophages seem to be “hijacked” to perform dis-
tinct functions according to the location-related sig-
nals [22]. Briefly, M2 phenotype macrophages would be 
preferentially endowed with potentials to promote the 
motility of cancer cells in invasion areas [57], to promote 
metastasis in stromal and perivascular areas [31], and 
to stimulate angiogenesis in avascular and peri-necrotic 
hypoxic areas [54]. In other words, the distribution pat-
tern of macrophages might be correlated with different 
cancer progression mechanisms.

  Notably, we have recently found a timely novel result 
that the distribution pattern of macrophages could be 
an independent prognostic factor in gastric cancer [30]. 
According to relative macrophages densities in tumor 
nest or tumor stroma, gastric cases could be divided into 
nest-dominant pattern and stroma-dominant pattern. As 
a phenomenon, stroma-dominant pattern cases tended 
to have poorer survival and higher malignancy. In theory, 
accumulation of macrophages in tumor stroma might 
participate more actively in the process of stroma activa-
tion [58] and ECM remodeling, together with other stro-
mal components including lysyl oxidase, MMP9, type IV 
collagen, which has been emphasized by Peng et al. [59]. 
In addition, Yang et  al. [60] preliminarily elucidated the 
prognostic value of CD163+/CD68+ ratio in colorec-
tal cancer invasive front. To make sense of macrophages 
polarization in different distribution patterns, studies 
could be conducted around macrophages phenotypes 
and ratios, tumor locations and biological functions in 
the future.

Conclusions
In summary, M1 and M2 macrophages are function-
ally distinct and key modulators in host immune sys-
tem against tumors. In contrast to M1, M2 mechanisms 
incorporate location-related, mutually connected, and 
cascade-like reactions. A better understanding of mac-
rophage polarization, especially in distinct locations 

could make sense for tumor progression and guide ther-
apy in the future.
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