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Germinal matrix-intraventricular hemorrhage (GM-IVH) is a common intracranial complication in preterm infants, especially
those born before 32 weeks of gestation and very-low-birth-weight infants. Hemorrhage originates in the fragile capillary
network of the subependymal germinal matrix of the developing brain and may disrupt the ependymal lining and progress into
the lateral cerebral ventricle. GM-IVH is associated with increased mortality and abnormal neurodevelopmental outcomes such
as posthemorrhagic hydrocephalus, cerebral palsy, epilepsy, severe cognitive impairment, and visual and hearing impairment.
Most affected neonates are asymptomatic, and thus, diagnosis is usually made using real-time transfontanellar ultrasound. The
present review provides a synopsis of the pathogenesis, grading, incidence, risk factors, and diagnosis of GM-IVH in preterm
neonates. We explore brief literature related to outcomes, management interventions, and pharmacological and

nonpharmacological prevention strategies for GM-IVH and posthemorrhagic hydrocephalus.

1. Introduction

Germinal matrix-intraventricular hemorrhage (GM-IVH)
remains a devastating neurological complication with con-
siderable mortality [1] and neurodevelopmental disability
[2]. Hemorrhage originates in the capillary network of the
subependymal germinal matrix (GM) of the developing brain
and may disrupt the ependymal lining and progress into the
lateral cerebral ventricle [3, 4]. Although significant strides in
obstetrics and neonatal medicine have led to improved sur-
vival of preterm infants with lower gestational age and birth
weight [5-7], we seem to have reached the nib of our ability
to ensure morbidity-free survival of very-low-birth-weight
(VLBW) infants in advanced care settings [8, 9]. In the
United States, for example, Fanaroff and colleagues [10]

found no significant improvement in survival without neona-
tal and long-term morbidity among VLBW infants between
1997 and 2002.

2. Anatomy and Pathogenesis of GM-IVH

The GM is located in the subependyma of the ventricular
walls. It gives origin to the cerebral neuroblasts and glia, is
highly cellular and gelatinous, and is richly vascularized by
capillaries that are poorly supported by muscle or collagen
[11]. Vascularization of the GM is prominent from 7-8
weeks of gestation and persists into the beginning of the
third trimester [12, 13]. The thickness of the GM decreases
after 24 weeks of gestation and almost disappears by 36-37
weeks [11]. Animal studies showed that the characteristic
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architecture of the subependymal matrix as the border zone
between cerebral arteries and the collection zone of the
deep cerebral veins makes it susceptible to focal hypoxic
changes [13].

The pathogenesis of GM-IVH is intricate and multifacto-
rial, but mostly attributed to the combined fragility of the
primitive GM vasculature, fluctuations in cerebral blood flow
(CBF) due to low mean arterial pressure, and impaired cere-
bral autoregulation in clinically unstable preterm neonates
[12, 14, 15] which increases the likelihood of vascular rup-
ture, resulting in hemorrhage that may either be restricted
to the GM or extends to the adjacent lateral ventricle. Hyp-
oxia in the GM triggers upregulation and expression of
growth factors VEGF and angiopoietin-2 which induce
angiogenesis. This consequently leads to formation of fragile
nascent vessels that lack pericytes, display immature basal
lamina low in fibronectin, and have astrocyte end-feet cover-
age that is deficient in glial fibrillary acidic protein [11, 16]. In
addition, platelet or coagulation disorders may accentuate
the hemorrhage [11]. Hemorrhagic parenchymal infarction
is thought to occur when venous occlusion from a hematoma
impairs perfusion in the periventricular white matter [17].

3. Grading of GM-IVH

Grading systems developed by Papile et al. [18] and Volpe are
the most widely accepted, although several others exist [19].
Using computed tomography scan, Papile et al. [18] devel-
oped a four-grade classification of GM-IVH based on the
location and severity of hemorrhage. Grade I is defined by
hemorrhage that is confined to the GM, grade II by extension
of hemorrhage into lateral ventricles without ventricular dila-
tation, grade III when ventricular hemorrhage is present in
addition to ventricular dilatation, whereas grade IV is defined
by the presence of parenchymal hemorrhage [18]. A similar
grading system by Volpe is based on cranial ultrasound scan
(CUS). Grade I refers to hemorrhage confined to the sube-
pendymal GM, and grade II as hemorrhage within the lateral
ventricle without ventricular dilation and/or hemorrhage
occupying less than 50% of the ventricle. Grade III hemor-
rhage is defined by ventricular dilation and/or hemorrhage
occupying more than 50% of the ventricle, while grade IV
is ventricular hemorrhage extending into the surrounding
parenchyma [20]. This is illustrated in Figure 1. Mild
GM-IVH refers to grade I and II hemorrhage, while severe
GM-IVH is a term used to refer to grade III and IV hem-
orrhage [21].

4. Incidence of GM-IVH

The global incidence of GM-IVH among preterm infants
ranges from 14.7% to 44.7% [22-25], with considerable vari-
ation across gestational age groups, neonatal intensive care
units, and countries [6, 22, 25, 26]. Hefti et al. [27] examined
for GM-IVH in 345 preterm neonates autopsied from 1914
to 2015 at Boston Children’s Hospital in the United States
of America. The incidence of GM-IVH was 4.7% before the
1960s and increased to 50% from 1975 to 1980 following
the introduction of novel positive pressure mechanical venti-
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lation in neonatal intensive care units (NICUs), later declin-
ing by three quarters to 12.5% in 2005, probably as a result of
improvements in ventilators, and the introduction of surfac-
tant and corticosteroids. Based on age at onset, almost 40.6%
of low-birth-weight (<2.5 kg) preterm neonates develop GM-
IVH within the first 3 days of life, 50% by day 5, and 71.5% by
day 7 [28].

5. Risk Factors for Development and
Progression of GM-IVH

Various pre-, peri-, and postnatal factors have been impli-
cated as independent risk factors for GM-IVH in preterm
neonates. These include in vitro fertilization, absence of ante-
natal care, lack of maternal prenatal steroid administration,
chorioamnionitis, multiple gestation, HIV exposure, fetal
distress, vaginal delivery, outborn status, male gender, lower
gestational age and birth weight, resuscitation at birth, deliv-
ery room intubation, anemia (low hematocrit), and blood
transfusion [22, 25, 26, 28-35]. Other risk factors include
clinically significant patent ductus arteriosus [36], pneumo-
thorax [33, 37], higher fraction of inspired oxygen (FiO,)
during the first 24 hours, early- and late-onset sepsis [31,
33], postnatal hydrocortisone administration for hypoten-
sion, inotrope use [29, 34, 38], respiratory distress syndrome
requiring mechanical ventilation, hyponatremia, hyperglyce-
mia [32], hypercapnia [36, 38], and severe metabolic acidosis
[34, 39]. Studies have also indicated that preterm neonates
born at lower health facilities [34] and those transferred to
another hospital after birth [25, 40] are more likely to develop
GM-IVH. As such, women in preterm labor should be trans-
ported to a tertiary health facility that specializes in high-risk
deliveries [38]. Equally significant are genetic risk factors such
as factor V Leiden (Arg506Gln), prothrombin (G20210A)
gene mutations, and methylenetetrahydrofolate reductase
(MTHEFR 1298A>C) polymorphism [24, 41, 42]. These risk
factors are summarized in Table 1.

A proportion of preterm neonates with previously diag-
nosed mild GM-IVH may deteriorate to severe GM-IVH.
Several risk factors including maternal lower genital tract
infection, lower gestational age [43], necrotizing enterocolitis
(NEC), and thrombocytopenia [44] have been documented.

6. Clinical and Laboratory
Characteristics of GM-IVH

The majority of cases of GM-IVH are clinically silent [23, 45]
and only detectable by routine brain imaging. Symptomatic
neonates may manifest with convulsions, bulging fontanel,
recurrent apnea, unexplained pallor, respiratory distress,
and temperature instability [46, 47]. Clinically identifiable
seizures are reported more often among neonates with grade
IV GM-IVH [48].

A significant reduction in the hematocrit may occur in
the presence of a large hemorrhage [17]. Biomarkers for early
prediction and detection of neuronal injury in neonates have
gained clinical value in recent decades. This is because early
diagnosis may provide a crucial window for implementation
of neuroprotective interventions which may translate into
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F1GURE 1: Grades of GM-IVH.

TaBLE 1: Risk factors for GM-IVH in preterm infants.

(1) In vitro fertilization [30, 33]
(ii) No antenatal care [31, 32]
(iii) Lack of prenatal corticosteroid administration [25, 29, 31, 33, 34]
(iv) Chorioamnionitis [35, 36]
(v) Multiple gestation [30]
(vi) Low gestation age [32]
(vii) Maternal HIV [28]
(viii) Inherited coagulation abnormalities [24, 41, 42]

(i) Fetal distress [22]
(ii) Vaginal delivery [25, 38]
(iii) Extreme prematurity [25, 28, 36]
Perinatal (iv) Very low birth weight [28, 36]
(v) Low 5-minute APGAR score and resuscitation at birth [25, 31, 36, 38]
(vi) Intubation and mechanical ventilation [25, 31, 32, 38]
(vii) Male sex [22, 26]
(i) Neonatal transfer after birth [22, 25, 28, 34, 38, 40]
(ii) Medication (e.g., inotropes, hydrocortisone, sodium bicarbonate, normal saline boluses, and opioids) [29, 36, 38]
(iii) Anemia [29]
(iv) Blood transfusion [28, 32]
(v) Neonatal sepsis [31, 33, 36]
(vi) Patent ductus arteriosus [29, 31, 36]
(vii) Respiratory distress syndrome [32, 36]
(viii) Hypercapnia [36, 38]
(ix) High fraction of inspired oxygen during the first 24 hours [33]

(x) Pneumothorax [33, 37]
(xi) Hypotension [34, 38]
(xii) Hyponatremia [32]
(xiii) Hyperglycemia [32]

(xiv) Metabolic acidosis [34, 39]

Prenatal

Postnatal




improved outcomes. Investigators have proposed several bio-
markers including S100, activin A, adrenomedullin, eryth-
ropoietin, neuron-specific enolase, oxidative stress markers,
glial fibrillary acidic protein, and creatine phosphokinase
BB (CPK-BB). Among these metabolites, elevated S1003
levels in the blood and urine and activin A levels in the blood
are the most promising [49, 50].

7. Cranial Ultrasound

7.1. The Role of CUS. Since the late 1970s, high-resolution
real-time cranial ultrasound (CUS) has been the cornerstone
for diagnosis of GMH-IVH [51], with a sensitivity and spec-
ificity of 96% and 94%, respectively, for detecting intracranial
hemorrhage [52]. Worldwide, CUS remains the most readily
available and widely used neuroimaging modality in NICUs
[53, 54]. Most importantly, CUS is portable, reliable, cost-
effective, noninvasive, and radiation-free, and does not
require any special preparation [53, 55, 56]. However, the
findings are operator-dependent, and subtle lesions may be
missed [53]. The anterior fontanelle is the most commonly
used site, but an acoustic window through the posterior and
mastoid fontanelles can significantly augment the findings
[57, 58]. CUS can be performed at the bedside and in the
incubator, within less than 5 minutes and without significant
manipulation of the infant [55].

Sonographic abnormalities should be correlated on both
coronal and parasagittal views, and findings on the left and
right sides should be graded separately, and the location, size,
and extent of the lesions are noted [59]. Interpretation of
ventricular width should be done with consideration of the
gestational age-specific reference ranges, as determined by
Levene in 1981 [60].

7.2. When Should CUS Be Performed? The timing of screen-
ing varies depending on the protocol adopted, although con-
sensus seems to have been reached regarding the screening of
all preterm neonates born before 32 weeks of gestation
and/or those with VLBW [53, 58]. Nonetheless, most cases
of GM-IVH occur during the first week of life [23, 28], which
guides the timing of serial CUS screening. It is important to
note that GM-IVH may be progressive [28], and the grade
may change over time, justifying the need for CUS screening
over multiple time points. In the 1980s, the initial CUS was
performed during the first 3 days of life, often within 24
hours, repeated a week later among survivors, and weekly
thereafter as indicated [54]. In Europe, diagnosis of GM-
IVH is made by performing a bedside real-time CUS, usually
on day 1, 3, 7, 14, and 28, although regular scanning may be
indicated [59]. Recent Canadian guidelines recommend rou-
tine CUS for all neonates born at <32 weeks between days 4
and 7 of life or earlier depending on the clinical state of the
preterm infant. Neonates born at >32 to <37 weeks are sim-
ilarly investigated only if additional risk factors such as com-
plicated monochorionic twin gestation, microcephaly, need
for critical care, sepsis, NEC, major surgery, and/or abnormal
neurological symptoms are present. Repeat imaging is per-
formed at 4 to 6 weeks of life for all neonates born at <32
weeks and for >32 to <37 weeks of gestation if the first
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CUS result was abnormal [53]. In 2020, the American Acad-
emy of Pediatrics [58] recommended CUS for all preterm
infants born at <30 weeks or >30 weeks of gestation with sig-
nificant risk factors. The initial CUS should be performed
within the first 7-10 days, with subsequent scans at 4-6 weeks
of life and at term corrected age or prior to discharge. Serial
CUS should be performed for infants with abnormal CUS
findings, adjusted according to the clinical state.

8. Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is superior to ultrasound
at detecting white matter abnormalities, hemorrhagic, and
cystic lesions [61]. Although MRI is increasingly being uti-
lized, it is not readily available, requires the neonate to be
sedated, and may be unsuitable for unstable severely ill
infants. Nonetheless, some institutions have demonstrated
that MRIs may be performed without sedation of the neonate
at term equivalent age [62, 63]. MRI may be performed at
term corrected age for infants whose CUS reveals moderate
to severe abnormalities such as grade III/IV GM-IVH, post-
hemorrhagic ventricular dilatation (PHVD), or grade III/IV
periventricular leukomalacia (PVL), when clinical risk for
white matter infarction (WMI) is increased or when parental
reassurance is needed [12, 53].

9. Clinical Outcomes

According to Wu et al. [43], 8.2% of preterm neonates (<32
weeks) with grade II/IIl GM-IVH deteriorate within 7 days
to grade III/IV GM-IVH. Moreover, the mortality associated
with GM-IVH remains unacceptably high, even within
NICUs manned by neonatologists. At least one-fifth to one-
third of preterm neonates with GM-IVH die during hospital-
ization [24, 64], with almost 86% to 100% of deaths occurring
within the first postnatal week [23, 65]. Generally, mortality
increases exponentially with increasing grades [23], given
that 4%, 10%, 18%, and 40% of preterm neonates with grades
I-1V, respectively, die during the first hospital admission
[66]. Survivors are more likely to have a prolonged duration
of hospital stay, which imposes a significant financial burden
to the health system [66].

Recent evidence shows that any grade of hemorrhage
may be associated with abnormal neurodevelopmental out-
comes, although adverse outcomes have often been linked
to severe GM-IVH [2, 67-70] and lower gestational age [6,
68]. Survivors are likely to develop neurodevelopmental
problems such as PHVD ([71], visual and hearing impair-
ment, severe cognitive impairment, cerebral palsy (CP), neu-
rodevelopmental delay, and epilepsy [2, 67, 68, 70, 72, 73].
According to Christian et al. [66], 9% of preterm neonates
with GM-IVH develop posthemorrhagic hydrocephalus
(PHH). Among these, 1%, 4%, 25%, and 28% of patients with
grades I-IV hemorrhage develop PHH, respectively. Com-
municating PHH accounts for most cases, thought to occur
due to mechanisms such as impaired CSF reabsorption
which accompanies obliteration of the arachnoid villi by
microthrombi with subsequent inflammation and fibrosis
[74]. Noncommunicating hydrocephalus is theorized to
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occur due to acute obstruction of the foramen of Monro or the
aqueduct by a blood clot or due to subependymal scarring [75].

10. Management of GM-IVH

10.1. General Strategies. Management of GM-IVH is focused
on addressing systemic issues of the neonate such as blood
pressure and respiratory status, which might influence pro-
gression of hemorrhage. Screening for sequelae of GM-IVH
should be performed, and necessary interventions are
done, including management of hypotension, shock, ane-
mia, and metabolic acidosis through judicious use of intra-
venous fluids and blood transfusion. Continuous EEG or
amplitude-integrated EEG monitoring is indicated in the
presence of seizures [17].

10.2. Mesenchymal Stem Cell Therapy. Animal models [76]
and phase I randomized controlled trials (RCTs) involving
extremely preterm infants [77] have documented the promis-
ing therapeutic potential of intraventricular transplantation
of allogenic mesenchymal stem cells (MSCs) in severe GM-
IVH. This novel therapy is thought to attenuate brain injury
following GM-IVH and prevent the development of PHH.
Current evidence is weak, and thus, more human clinical tri-
als are needed to provide a stronger body of evidence regard-
ing the therapeutic benefits and harms of MSCs [78].
Nevertheless, a phase 2 RCT [79] to evaluate the efficacy
and safety of umbilical cord blood-derived MSCs (Pneumos-
tem®) in 23 to <34 weeks’ gestation preterm neonates with
severe GM-IVH is ongoing. The primary outcomes of the
study are death or shunt operation up to a postmenstrual
age of 40 weeks.

11. Management of PHVD and PHH

Due to lack of strong evidence at the moment, there are no
standardised protocols for treatment of PHVD and PHH
[80], and optimal timing of interventions is still contentious
[81]. Nonetheless, a low threshold for intervention has been
linked to lower odds of death and poor neurodevelopmental
outcomes [82]. Management of PHVD generally is aimed at
preventing secondary damage due to raised intracranial pres-
sure (ICP) and avoiding the need for a permanent shunt
which may be associated with complications such as blockage
and infection [71]. Several therapeutic options have been
studied over decades, including conservative management,
diuretic therapy, repeated cerebrospinal fluid (CSF) tapping
to control excessive expansion, and drainage, irrigation, and
fibrinolytic therapy (DRIFT) [72, 83].

11.1. Nonsurgical Strategies

11.1.1. Diuretics. Available evidence has proven that medical
therapy with diuretics such as furosemide and acetazolamide
is inefficient, because it is associated with increased mortality
and neurologic outcomes, and does not reduce the need for
shunt placement [72, 84].

11.1.2. Repeated Tapping of CSF. A Cochrane review of three
randomized controlled trials (RCT's) and a quasi-RCT found

no difference between conservative management and serial
tapping of CSF via lumbar puncture or ventricular tapping
as regards to reduced risk of major disability, multiple dis-
ability, death, or need for permanent shunt placement [85].
Needless to say, repeated ventricular punctures inflict a new
injury to the frontal lobe with each puncture and may
increase infection risk [86].

11.2. Surgical Strategies

11.2.1. DRIFT. DRIFT involves the insertion of right frontal
and left occipital catheters, with intraventricular injection of
tissue plasminogen activator (e.g., urokinase) that is insuffi-
cient to produce a systemic effect [87, 88]. After 8 hours of
TPA injection, irrigation with artificial CSF is commenced
at a rate of 20 ml/hour, under ICP monitoring, with the goal
of maintaining a pressure < 7mmHg. The drainage fluid
clears over about 72 hours, from a dark-colored thick fluid
to straw-colored CSF [87]. The DRIFT approach is associated
with secondary hemorrhage and does not reduce mortality
neither does it alter the need for permanent shunt placement
[89, 90]. Contrastingly, studies have shown a reduction in
severe cognitive disability among survivors at 2 years of life
[90] and at 10 years of life [91]. When performed within
three weeks of IVH onset in extremely-low-birth-weight
(ELBW) neonates, fibrinolytic therapy followed by external
ventricular drainage may significantly reduce the need for
permanent shunt surgery, without increasing the risk of
secondary hemorrhage and infections [88]. Despite the
shortcomings, DRIFT is cost-effective [91] and remains a
suitable therapy [83].

11.2.2. Shunts. Neurosurgical intervention criteria, choice,
and timing of temporizing CSF diversion techniques for
PHH vary across centers [81, 92]. Children with shunts from
prematurity have been observed to require one or more shunt
revisions and to develop slit ventricle syndrome, loculated
hydrocephalus, and shunt infections more often than chil-
dren with hydrocephalus due to other etiologies [93, 94].

(1) Ventricular Reservoir. A ventricular reservoir (VR), also
known as a ventricular access device (e.g., Ommaya reservoir
and McComb reservoir), is a temporizing treatment for PHH
in preterm infants [86, 93, 95] that may even eliminate the
need for a permanent shunt in some cases [96-98]. It
involves the placement of a ventricular catheter into the right
lateral ventricle that is then connected to a subcutaneous res-
ervoir from which CSF is intermittently aspirated percutane-
ously to remove CSF and maintain a stable clinical state
which includes normal increase of head circumference, soft
fontanel, and CUS [86, 97]. As described by Kuo [86], aspira-
tion of the reservoir is accomplished using a scalp needle of
25-gauge or smaller, with the infant in the supine position.
How often and how much CSF is aspirated depends on the
opening and closing pressures, respectively. VR was per-
formed as the initial procedure in 50 (54.9%) of the 91 pre-
term neonates who were surgically treated for PHH at
Children’s Hospital Los Angeles between 1997 and 2012
[93]. As many as 57% of patients experience complications
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TABLE 2: Strategies for prevention of GM-IVH in preterm neonates.
Prenatal Perinatal Postnatal

Delivery at a tertiary hospital
Prompt delivery upon recognition
of fetal distress
Delayed cord clamping

Prevent preterm birth
Corticosteroids

Avoid interhospital transport
Elevated midline head positioning
Minimize handling and stimulation
Fluid therapy for hypotension
Near-infrared spectroscopy monitoring of cerebral oxygenation
Prevent and treat NEC and sepsis
Erythropoiesis stimulation agents
(e.g., erythropoietin and darbepoetin)

such as skin breakdown, ventricular hemorrhage, CSF infec-
tion, and leak [99]. Apnea and ventriculitis have also been
documented [98]. Repeated tapping from a VR has been
shown not to increase the risk of reservoir infection [95]. A
prospective multicenter cohort of VLBW neonates with
severe GM-IVH observed no difference in infection rates
between VR and ventriculosubgaleal shunts (17% versus
14%, p =0.71) [92].

(2) Ventriculosubgaleal Shunt. Ventriculosubgaleal shunt
(VSGS) placement provides a temporary treatment of PHH
in medically unstable infants and also averts the need for
repeated tapping of CSF [100]. Through a small scalp inci-
sion near the anterior fontanelle, under local anesthesia and
mild sedation, a ventricular catheter is carefully placed into
the lateral ventricle and anchored to the dura. Blunt dissec-
tion is performed to create a pouch between the periosteum
and galea, creating a subgaleal pouch where the outermost
(proximal) end of the ventricular catheter is placed to allow
for CSF drainage [86, 101, 102]. The procedure is described
in a recent publication by Kuo [86] and can be safely accom-
plished in the NICU or the operating theatre [101, 103]. Col-
lection of CSF in the subgaleal space can result in a
cosmetically unappealing scalp swelling [104]. VSGS has
been associated with recurrent meningitis, subgaleal adhe-
sions, shunt obstruction requiring ventricular catheter revi-
sion or renewal, CSF leakage, and slippage of the catheter
into or out of the ventricle [101, 102, 105]. It is estimated that
12% of patients with VSGS require a permanent ventriculo-
peritoneal shunt [101], which if needed is often placed when
the CSF protein content decreases to <2 g/1, with a cell count
<100 cells/ul and negative CSF culture for bacteria [102].

(3) Permanent Ventriculoperitoneal and Ventriculoatrial
Shunt. Permanent ventriculoperitoneal shunt (VPS) or ven-
triculoatrial shunt (VAS) placement is often performed after
failure of the initial temporizing measures discussed earlier
[96, 106]. Of the 21% to 36% of preterm LBW neonates with
GM-IVH who subsequently develop PHH [107-109], up to
18% to 39% require permanent VPS placement [64, 66,
109]. Whitelaw and Aquilina [110] suggested VPS placement
when ventricular enlargement continues at a body weight of
around 2.5 kg and cerebrospinal fluid protein levels are below
1.5g/l. On the other hand, complications associated with
shunts are not uncommon, often leading to prolonged hospi-
talization. These include overdrainage, shunt blockage often
requiring one or more shunt revisions or replacement, and

infection [96, 106] predominantly caused by Staphylococcus
species [105].

12. Prevention of GM-IVH

To protect the preterm brain from GM-IVH, a multifaceted
approach addressing specific antenatal, delivery room, post-
natal, and NICU factors should be implemented (Table 2)
[111, 112]. Since GM-IVH is primarily linked to increased
vascular fragility and disturbance in CBF, strategies are
directed to strengthening the GM microvasculature and to
stabilizing the CBF.

12.1. Prevent Preterm Birth. Measures that target prevention
of preterm birth are the most important strategies for mini-
mizing the occurrence of GM-IVH [21]. Preterm birth may
be spontaneous or induced in situations such as eclampsia.
Unless medically indicated, preterm birth can be delayed by
evidence-based approaches such as antenatal progesterone
supplementation from 16 to 24 weeks through 34 weeks of
gestation in women with a current singleton pregnancy and
previous spontaneous delivery, and those with a short cervi-
cal length (<20 mm before 24 weeks’ gestation). Other inter-
ventions such as avoidance of tobacco smoking during
pregnancy, cervical cerclage for cervical incompetence, toco-
Iytics for preterm labour, and dedicated preterm birth pre-
vention clinics have been utilized [113, 114].

12.2. Prenatal Corticosteroids. The World Health Organiza-
tion [115] strongly recommends prenatal corticosteroid use
for all women at 24 to 34 weeks’ gestation for whom preterm
birth is imminent. Several studies have shown that the inci-
dence of GM-IVH and white matter injury can be signifi-
cantly reduced by the administration of a short course of
prenatal corticosteroids such as betamethasone or dexameth-
asone [22, 31, 33, 38, 116, 117]. This protective effect may be
linked to a reduction in the incidence and severity of RDS
[118] and NEC [119]. Prenatal corticosteroids have also been
observed to stabilize the GM vasculature through suppres-
sion of vascular endothelial growth factor and increased
transforming growth factor-f (TGF-) levels in animal stud-
ies. This results in angiogenic inhibition, trimming of neovas-
culature, and enhanced pericyte coverage, and consequently, a
reduced propensity for hemorrhage [120].

12.3. Prenatal Magnesium Sulphate. Magnesium sulphate
(MgSO,) is widely used for the prevention and management
of eclampsia. A meta-analysis of 6 RCT's and 5 cohort studies
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conducted between 1995 and 2004 provided evidence that
MgSO, administered to women at high risk of preterm
labor provides significant neuroprotection against moderate
to severe CP, without causing adverse effects on the infants
[121]. The World Health Organization, American College
of Obstetricians and Gynecologists (ACOG), and the Soci-
ety for Maternal-Fetal Medicine currently recommend the
use of MgSO, for women at risk of imminent preterm birth
before 32 weeks of gestation for prevention of cerebral
palsy during infancy and childhood [122, 123]. Compared
to controls, MgSO, has not been found to reduce the rates
of GM-IVH [124].

12.4. Delivery at Tertiary Center and Avoidance of
Interhospital Transport. Evidence from a large retrospective
analysis of 67,596 VLBW preterm neonates found a correla-
tion between interhospital transport and increased incidence
and severity of GM-IVH [40], which has been linked to
increased head and torso vibrations during neonatal trans-
port [125]. A cohort study of 5,712 infants born at 24-30
weeks in the Australian and New Zealand Neonatal Network
from 1995-97 found that infants transferred to another hos-
pital after birth had 1.60 times higher odds of developing
severe GM-IVH (95% CI: 1.15 to 2.21, p < 0.01) [22]. There-
fore, when high-risk preterm delivery is anticipated, it should
be conducted in a tertiary center [38, 126].

12.5. Delayed Cord Clumping. Delayed cord clamping (DCC)
results in a higher hematocrit [127-129], superior vena cava
blood flow, right ventricle output, and right ventricular
stroke volume [130], higher blood pressure and admission
temperature [127], less delivery room resuscitation [128],
and reduced early red blood cell transfusion [131, 132].
DCC has been shown to be beneficial in preventing GM-
IVH [129, 131, 132], NEC [133], and mortality [131], and
can be safely implemented in singleton and monochorionic,
dichorionic, and trichorionic multiple preterm gestations
[134]. The optimal duration for cord clamping remains con-
troversial. For preterm and term neonates not requiring
resuscitation at birth, the American College of Obstetricians
and Gynecologists, American Academy of Pediatrics, and
American College of Nurse-Midwives recommend at least a
30-60-second delay to clamp the cord [135], whereas the
World Health Organization strongly recommends a 60-
180-second delay [136].

12.6. Postnatal Indomethacin or Ibuprofen. Studies per-
formed on beagle pups [137] suggested that postnatal intra-
venous administration of indomethacin may confer
protection against GM-IVH by stimulating basement mem-
brane deposition in the GM microvasculature. Although
early low-dose prophylactic indomethacin in VLBW preterm
infants has not been independently associated with adverse
neurodevelopmental function [73, 138], evidence regarding
a reduction in the incidence of GM-IVH has been controver-
sial [139-141]. One multinational RCT of extremely-low-
birth-weight neonates found that early indomethacin-
prophylaxis reduces the incidence of patent ductus arteriosus
and severe GM-IVH [142]. Compared to the placebo group,

there was no difference in adverse neurosensory outcomes at
18 months of life. In addition, a multicenter double-blind
RCT showed that administration of prophylactic ibuprofen
within the first 6 hours of birth was ineffective against pre-
venting grade II to IV GM-IVH [143]. Therefore, both indo-
methacin and ibuprofen are not recommended for
prevention of GM-IVH, but are reserved for treatment of
patent ductus arteriosus.

12.7. Midline Head Positioning and Head Tilting. Midline
(neutral) head positioning is thought to optimize cerebral
venous drainage through the internal jugular veins, which
are the major outflow paths for cranial blood. Head rotation
to either side may result in ipsilateral occlusion or obstruc-
tion of the jugular venous drainage system [144]. Near-
infrared spectroscopy (NIRS) shows that midline head
position and head tilting (elevating the head of the incubator
upwards by 15-30°) facilitates hydrostatic cerebral venous
outflow in preterm infants [145, 146]. Moreover, Doppler
ultrasonography studies showed that occlusion of the jugular
venous system by changes in head position results in large
alterations in blood flow velocities in the superior sagittal
sinus, increased cerebral blood volume, and ICP [145, 147,
148] which may result in GM-IVH. Head positioning and
tilting has been reported to have no effect on cerebral hemo-
dynamics and oxygenation in preterm infants [149] which
contrasts the findings of other studies [148]. Recent system-
atic reviews and meta-analyses [149, 150] reported inconclu-
sive evidence that head positioning prevents the occurrence
and extension of GM-IVH. However, a single-center study
[151] found that placing <28 weeks’ gestation infants in the
elevated midline head position for the first 96 h of life is asso-
ciated with a reduced risk of grade IV GM-IVH and mortality
during hospitalization.

12.8. Preventing Necrotizing Enterocolitis. NEC is associated
with persistently lower cerebral tissue oxygenation [152].
There is established evidence that human breast milk
[153], probiotics [154], and bovine lactoferrin supplemen-
tation [155, 156] reduce the risk of NEC. The precise
effects of the latter on the incidence of NEC are being stud-
ied by large multicenter RCTs such as the lactoferrin infant
feeding trial (LIFT) in New Zealand, Australia [157], and
Canada [158].

12.9. Near-Infrared Spectroscopy Monitoring of Cerebral
Oxygenation. NIRS is a real-time, continuous, and noninva-
sive technique similar to pulse oximetry. The device uses
infrared light to penetrate living tissue and estimate brain tis-
sue oxygenation by measuring the absorption of infrared
light, according to Beer-Lambert law [159, 160]. Cerebral
oxygen saturation monitoring using NIRS has become a clin-
ically useful practice because systemic arterial oxygenation
does not always reflect cerebral oxygenation [161]. In a
recent multicenter study of 103 neonates born at a mean ges-
tational age of 26 weeks and birth weight < 1250 g, Chock
and associates [162] found a clinically significant association
between low cerebral oxygen saturation using NIRS in the
first 96 hours of life and abnormal cranial ultrasonographic



findings. Thus, cerebral oximetry can be used to monitor
high-risk infants such that timely interventions are taken to
improve cerebral oxygenation [162].

12.10. Ethamsylate. Ethamsylate is thought to promote plate-
let adhesion and increase capillary basement membrane sta-
bility through hyaluronic acid polymerization [163]. A
Cochrane Database Systematic Review [164] of 1410 preterm
infants from seven trials showed that infants < 35 weeks of
gestation with ethamsylate are significantly less likely to
develop GM-IVH compared to controls. While a significant
reduction in severe GM-IVH was observed (RR 0.67, 95%
CI 0.49 to 0.94), the review did not show a significant differ-
ence in neonatal mortality or neurodevelopmental outcome
at two years between infants treated with ethamsylate and
controls. Thus, routine use of ethamsylate for prevention of
GM-IVH in preterm infants is not recommended.

12.11. Phenobarbitone. Earlier observations showed that phe-
nobarbitone may dampen fluctuations in systemic blood
pressure [165] and also protect the brain after hypoxia-
ischemia. A 2013 Cochrane review conducted by Smit et al.
[166] involved 12 controlled trials with a sample size of 982
preterm infants. In this study, the effect of phenobarbitone
on the incidence of GM-IVH was controversial, with three
trials reporting a significant decrease and one trial reporting
an increase. Meta-analysis showed that phenobarbitone does
not reduce the risk of all IVH, severe IVH, PHVD, severe
neurodevelopmental impairment, or in-hospital death. Sec-
ondly, there was an increased use of mechanical ventilation
in the phenobarbitone-treated group [166]. Based on this
strong evidence, postnatal phenobarbitone cannot be recom-
mended for prevention of GM-IVH.

12.12. Recombinant Human Erythropoietin. Early intrave-
nous administration of high-dose recombinant human eryth-
ropoietin (rhEpo) to very preterm infants (<32 weeks) is safe
and results in a significantly higher hematocrit, reticulocyte,
and white blood cell counts and a lower platelet count within
7-10 days [167]. Preliminary studies by Fauchere et al. [167,
168] observed no differences between the rhEpo and placebo
group with regard to the development of retinopathy of pre-
maturity, IVH, sepsis, NEC, bronchopulmonary dysplasia,
and mortality. On the other hand, studies suggest that rhEpo
provides neuroprotection to ELBW and very preterm infants
with IVH [169, 170].

12.13. Vitamin E. Vitamin E (tocopherol) is an oxidant that
scavenges free radicals [163]. In 2003, Brion and colleagues
[171] conducted a pooled analysis of twenty-six RCTs to
evaluate the effect of Vitamin E supplementation on morbid-
ity and mortality of preterm and LBW infants. Although vita-
min E was found to reduce the risk of GM-IVH, it
significantly increased the risk of sepsis in preterm infants.
Among VLBW infants, the risk of severe retinopathy was
reduced, whereas that of sepsis was increased, respectively.
However, authors advised caution while interpreting the
results, as data were heterogeneous and most included stud-
ies were conducted in the 1970s and 1980s, a time during
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which survival of smaller infants was low. As such, further
research is required, before a reccommendation can be made.

13. Follow-Up of Survivors of GM-IVH

Outpatient follow-up should be done to identify morbidities
and provide appropriate guidance and treatment through
comprehensive neurorehabilitation programs [102]. Given
the increased risk of PHH, head circumference should be
continually monitored [64, 72]. Children with neuropsycho-
logical deficits require special support while in school [73]
with regard to writing, reading, and mathematics.

14. Conclusion

In recent years, considerable advances in perinatal-neonatal
care have resulted in improved survival outcomes of babies
born at the threshold of viability. This has been paralleled
by a rising number of infants who develop complications
such as GM-IVH, a multifactorial neuropathology that exclu-
sively affects infants of <32 weeks’ gestation or those who
weigh <1500 g at birth. The GM is highly susceptible to hem-
orrhage due to the fragile capillary vasculature coupled with
sudden fluctuations in CBF as a result of low mean arterial
pressure and impaired cerebral autoregulatory mechanisms.
In light of the high incidence and devastating long-term neu-
rodevelopmental impairment associated with GM-IVH,
perinatal-neonatal practitioners should optimally utilize the
available evidence-based neuroprotective approaches to pre-
vent the occurrence and extension of hemorrhage. More
importantly, hospitals should adopt a protocolised schedule
using serial real-time CUS to facilitate timely diagnosis of
GM-IVH. Clinicians should be aware that temporary ventricu-
lar decompression can be achieved by VR and VSGS, although
each has its advantages and disadvantages. There is no evi-
dence to support the preference of one intervention technique
over another for the temporary management of PHH, which
highlights the need for high-quality collaborative research.
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