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Abstract

Innate immune cells, such as macrophages, respond to pathogen-associated molecular
patterns, such as a lipopolysaccharide (LPS), to secrete various inflammatory mediators.
Recent studies have suggested that damage-associated molecular patterns (DAMPs),
released extracellularly from damaged or immune cells, also play a role in the activation of
inflammatory responses. In this study, to prevent excess inflammation, we focused on
DAMPs-mediated signaling that promotes LPS-stimulated inflammatory responses, espe-
cially adenosine 5'-triphosphate (ATP)-triggered signaling through the ionotropic purinergic
receptor 7 (P2X7R), as a potential new anti-inflammatory target of natural polyphenols. We
focused on the phenomenon that ATP accelerates the production of inflammatory media-
tors, such as nitric oxide, in LPS-stimulated J774.1 mouse macrophages. Using an siRNA-
mediated knockdown and specific antagonist, it was found that the ATP-induced enhanced
inflammatory responses were mediated through P2X7R. We then screened 42 polyphenols
for inhibiting the ATP/P2X7R-induced calcium influx, and found that several polyphenols
exhibited significant inhibitory effects. Especially, a flavonoid baicalein significantly inhibited
ATP-induced inflammation, including interleukin-1 secretion, through inhibition of the ATP/
P2X7R signaling. These findings suggest that ATP/P2X7R signaling plays an important role
in excess inflammatory responses and could be a potential anti-inflammatory target of natu-
ral polyphenolic compounds.

Introduction

Inflammation is an essential immune response that enables survival during infection or injury
and maintains tissue homeostasis. Under noxious or abnormal conditions, several inflamma-
tory mediators, including cytokines, chemokines, reactive gases, and eicosanoids, produced by
immune cells attract other leukocytes to the injured and/or infected tissues to exclude foreign
substances through phagocytosis, killing effects, and cell death induction [1-3]. Therefore,
inflammation is important for host defense or tissue remodeling. However, abnormal inflam-
mation with over or persistent expression of mediators could lead to the initiation and
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progression of various diseases, such as type 2 diabetes [4], cardiovascular diseases [5-7],
neurodegenerative diseases [8,9], and cancers [10]. Inflammation is triggered not only by path-
ogen-associated molecular pattern molecules (PAMPs) derived from microorganisms, such as
a lipopolysaccharide (LPS), but also by damage-associated molecular patterns (DAMPs), either
actively or passively released from damaged or immune cells, such as uric acid crystals, nucleo-
tides, and the chromatin-associated protein HMGBI. Recent studies have suggested that
DAMPs could be implicated in excessive inflammation which plays a key role in the pathogen-
esis of several diseases, and therefore targeting DAMPs or their receptors might be beneficial
[11,12]. In addition, Yang et al. reported the importance of therapeutic approaches to selec-
tively target DAMPs-mediated inflammation while preserving physiological protective
immune responses, such as PAMPs-elicited inflammatory responses [13].

Adenosine-5’-triphosphate (ATP) is present at high levels (5-8 mM) in the cytoplasm for
cellular homeostasis [14,15], and is released through multiple pathways, including the mem-
brane degradation of necrotic cells, connexin hemichannels from immune cells, pannexin
hemichannels from apoptotic cells [16], lysosomal exocytosis from dying cells depending on
autophagy [17], and vesicular exocytosis from epithelial cells and osteoblasts and nerves [14].
It is suggested that released extracellular ATP has important and diverse effects on many bio-
logical processes including inflammasome formation, promoting cytokine release, pain, defec-
tive phagocytic clearance, smooth muscle contraction, and neurotransmission [18-20]. These
effects are mediated by plasma membrane purinergic receptors comprised of ATP-gated iono-
tropic P2Xs and guanine nucleotide-binding protein-coupled P2Ys. On the other hand, many
researchers have pointed out that extracellular ATP, released from injured or damaged cells
under abnormal conditions, causes undesirable responses to the surrounding cells. For exam-
ple, the ATP levels of bronchoalveolar lavage fluid are increased by smoking, and the extracel-
lular ATP contributes to the pathogenesis of chronic obstructive pulmonary disease [21], lung
fibrosis [22], and allergic asthma [23]. Studies using knockout or antagonists of the ionotropic
purinergic receptor 7 (P2X7R), preferentially expressed in immune cells, suggested that
P2X7R activation by extracellular ATP is linked to colitis [24], systemic lupus erythematosus
and rheumatoid arthritis [25], coronary artery diseases [26], short survival during infection
[27], and the progression of brain tumors [28]. Recent findings also suggest that P2X7R-medi-
ated ATP signaling may represent a potential therapeutic target to improve health and that
natural products or synthetic compounds inhibiting P2X7R could be useful in clinical trials
[29,30].

Many reports have suggested that natural polyphenols, present in vegetables or fruits, have
potential health-beneficial effects including anti-inflammatory effects through a variety of bio-
logical activities, such as antioxidant and radical scavenging activities, regulation of intracellu-
lar signaling cascades or transcriptional networks, and improvements of the endothelial
structure or function [31,32]. It has been reported that natural polyphenols down-regulate
PAMPs-induced inflammatory mediators, such as LPS-induced pro-inflammatory cytokines,
both in vitro and in vivo [32,33]. Toll-like receptor 4 (TLR4) and other pathogens recognition
receptors-induced mitogen-activated protein kinases (MAPKSs) and nuclear factor kB (NF-kB)
pathways were shown to be important targets for polyphenols, such as quercetin [34], epigallo-
catechin gallate (EGCG) [35], luteolin [36], apigenin [37], and others [38,39]. However, it still
remains unknown whether DAMPs-mediated excess inflammatory responses could be the tar-
get of natural compounds including polyphenols.

In this study, to develop a new strategy for the prevention of inflammatory diseases, we
investigated the molecular actions of extracellular ATP on the LPS-induced macrophage
inflammation and carried out screening of natural polyphenols for the inhibition of ATP
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signaling. We propose that P2X7R-mediated ATP signaling could be a potential anti-inflam-
matory target of natural polyphenols.

Materials and methods
Reagents

Dulbecco’s modified eagle medium (DMEM, 4.5 g/l glucose, liquid), penicillin-streptomycin
mixed solution (Stabilized), ATP disodium salt hydrate from yeast, adenosine-5’-diphosphate
(ADP) sodium salt from a bacterial source, adenosine-5-monophosphate (AMP) sodium salt
from yeast, apyrase from potato, protease inhibitor cocktail, phosphatase inhibitor cocktail,
bovine serum albumin (BSA, F-V), and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium
bromide (MTT) were obtained from Nacalai Tesque, Inc. (Kyoto, Japan). Fetal bovine serum
(FBS) and LPS from Escherichia coli O127:B8 were obtained from the Sigma-Aldrich

(St. Louis, USA). DMEM without phenol red (4.5 g/1 glucose, liquid), sulfanilamide, N-
(1-naphthyl)ethylenediamine dihydrochloride, sodium nitrite, and rabbit IgG were obtained
from Wako Pure Chemical Industries (Osaka, Japan). Rabbit polyclonal antibody to inducible
nitric oxide synthase (iNOS) (sc-650) and mouse monoclonal antibody to -actin (sc-47778)
were obtained from Santa Cruz Biotechnology, Inc. (Texas, USA). Rabbit polyclonal antibody
to P2X7R was obtained from GeneTex, Inc. (LA, USA). Rabbit monoclonal antibodies to phos-
pho-signal transducer and activator of transcription (STAT) 1 (Tyr701) (58D6), phospho-
interferon regulatory factor (IRF)-3 (Ser396) (4D4G), phospho-p38 MAPK (Thr180/Tyr182)
(D3F9) XP, phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP, rabbit poly-
clonal antibody to phospho-stress-activated protein kinases (SAPKs)/c-jun N-terminal kinases
(JNKs) (Thr183/Tyr185), and mouse monoclonal antibody to inhibitor kB (IxB)-a were
obtained from Cell Signaling Technology, Inc. (MA, USA). Rabbit polyclonal antibody to
mouse interferon (IFN)-p for neutralization was obtained from Pestka Biomedical Laborato-
ries, Inc. (NJ, USA). BAPTA-AM was obtained from Invitrogen (CA, USA). Fluo 4-AM was
obtained from Dojindo Laboratories (Kumamoto, Japan). 4-(N,N-Dipropylsulfamoyl) benzoic
acid (probenecid) was obtained from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan).
Pluronic F-127 was obtained from Life Technologies Japan, Ltd. (Tokyo, Japan). All other
chemicals were commercially available analytical grade reagents. TAK-242 was obtained from
Merck.

Cell culture

Murine macrophage-like J774.1 cells were obtained from American Tissue Culture Collection,
and cultured in DMEM, which contains glucose (4.5 mg/ml) and L-glutamine (584 pug/ml),
supplemented with 10% heat-inactivated FBS, penicillin (100 units/ml), and streptomycin
(100 pg/ml) at 37°C under 5% CO,.

Transfection of siRNA

Stealth RNAi siRNA against P2X7R (P2rx7 MSS276199) and a negative control (low GC) were
obtained from Invitrogen (CA, USA). The transfection of siRNA was performed using the
Neon Transfection System (Life Technologies Japan, Ltd., Tokyo, Japan). J774.1 cells (2 x 10°
cells) were resuspended in 100 pl resuspension buffer R containing 50 nM siRNA against
P2X7R or control siRNA and transfected in 100 pl Neon tip using two pulses (1720 V input
pulse voltage, 10 ms input pulse width). The transfected cells were seeded into 24-well plates (5
x10° cells/well) and cultured in antibiotic-free DMEM for 24-36 h, then used for each
experiment.
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Measurement of nitric oxide production

Nitric oxide (NO) production was evaluated by measuring the metabolite nitrite (NO,") using
the Griess assay. J774.1 cells were seeded into 48-well plates and cultured overnight. After
washing with phosphate-buffered saline (PBS), the medium was replaced with phenol red-free
DMEM containing LPS (1 pg/ml) and adenosine analogs (1 mM). After incubation for 24 h,
each cultured medium (100 pl) was mixed with 100 pl of Griess reagent [1% (w/v) sulfanil-
amide in 5% (w/w) phosphoric acid and 0.1% (w/v) N-(1-naphthyl)ethylenediamine dihy-
drochloride in water]. The optical density was then measured at 550 nm. The nitrite levels
were calculated using a standard curve derived from authentic sodium nitrite.

Western blotting

J774.1 cells were seeded into 24-well plates and cultured overnight. After treatment with each
agent for the indicated times, the cells were washed with PBS and lysed with a radio-immuno-
precipitation assay buffer [50 mM Tris-HCI (pH 7.4), 150 mM NaCl, 0.25% deoxycholic acid,
1% NP-40, 0.1% sodium dodecyl sulfate (SDS), 1 mM ethylenediaminetetraacetic acid] supple-
mented with both protease and phosphatase inhibitor cocktails. The protein concentrations
were determined by a Protein Assay Bicinchoninate Kit (Nacalai Tesque, Kyoto, Japan). The
protein samples were denatured by heating at 95°C for 5 min in the presence of SDS (2%) and
2-mercaptoethanol (5%), then separated using 10% SDS-polyacrylamide gels followed by a
semi-dry blotting onto a polyvinylidene difluoride membrane (Hybond P, GE Healthcare).
After blocking with EzBlock Chemi (Atto Corp., Tokyo, Japan) in Tris-buffered saline contain-
ing 0.05% Tween 20 (TTBS) at room temperature for 30 min, the membrane was washed with
TTBS, then incubated overnight with a primary antibody (1:1000) in TTBS containing 5%
BSA at 4°C. After washing, the membrane was incubated with horseradish peroxidase-conju-
gated secondary antibody (1:2000) in TTBS containing 5% skim milk at room temperature for
1 h. After washing, chemiluminescent detection was performed using Chemi-Lumi One L or
Chemi-Lumi One Super (Nacalai Tesque, Kyoto, Japan) and visualized by Ez-Capture MG
(Atto Corp., Tokyo, Japan).

Real-time reverse transcription-polymerase chain reaction

The total RNA was extracted from the cells using Sepasol-RNA I Super G (Nacalai Tesque,
Kyoto, Japan). cDNA was synthesized using ReverTra Ace qQPCR RT Master Mix with gDNA
Remover (Code No. FSQ-301, Toyobo Co., Ltd., Osaka, Japan). PCR amplification was per-
formed with THUNDERBIRD SYBR qPCR Mix (Code No. QPS-201, Toyobo Co., Ltd.,
Osaka, Japan) using the LightCycler Nano System (Roche Diagnostics K.K., Tokyo, Japan).
The relative expression of each mRNA was calculated according to the 2" method and nor-
malized to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression. The primer
sequences are listed in the S1 Table.

Measurement of calcium influx

Cells were seeded into 48-well plates and cultured overnight. After washing with PBS, the
medium was replaced with phenol red-free DMEM containing Fluo 4-AM (5 pg/ml), Pluronic
F-127 (0.02%), and probenecid (1.25 mM). After incubation for 1 h, the medium was replaced
with phenol red-free DMEM containing each polyphenol (50 uM) and probenecid (1.25 mM).
After incubation for 10 min, an equal volume of phenol red-free DMEM containing ATP (4
mM) and the corresponding polyphenol (50 pM) was added to each well. After incubation for
10 min, the cell plates were scanned using Typhoon FLA 9500 at the following settings: 473
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nm blue LD laser, BPB1 emission filter, 500 V photomultiplier, 100-um pixel size. The fluores-
cence intensity of each well was measured using Image Quant TL ver. 8.1.

Cytotoxicity assay

Cells were seeded into 48-well plates and cultured overnight. After each stimulation, the
medium was replaced with DMEM containing MTT (0.2 mg/ml) and incubated for 30 min.
After removing the medium, the formazan was dissolved in dimethyl sulfoxide (200 ul/well)
and the optical density was measured at 550 nm. The relative cell viability was calculated using
the following formula: relative cell viability (%) = optical density of experimental groups / opti-
cal density of the control group x 100.

ELISA for murine interleukin-1f

The amount of interleukin-1 (IL-1B) was determined according to the recommended proto-
col for the ELISA Development Kit for murine IL-1B (Peprotech, USA). Colorimetric detec-
tion was performed using the TMB Substrate Reagent Set (BD Biosciences, USA). The reaction
was terminated by adding 2N sulfuric acid and the optical density was measured at 450 nm.

Statistics

The data represent means + S.D. of triplicate determinations. All the statistical analyses were
performed by Tukey-Kramer method. The asterisks indicate statistical significance (P < 0.05).

Results

ATP accelerates NO production in LPS-stimulated J774.1 mouse
macrophages

To examine the effects of ATP on the macrophage inflammation, J774.1 cells were treated with
LPS in the presence or absence of ATP for 12-36 h. We observed that the LPS-induced NO
production was enhanced after 24 h in the presence of ATP, although NO production was not
induced by ATP alone (Fig 1A and Figure A in S1 Fig). The cell viability was not affected by
the ATP (Figure B in S1 Fig). Both the protein and mRNA expressions of iNOS, a key enzyme
generating NO, were also up-regulated by the addition of ATP (Fig 1B and 1C), but not by
ATP alone (Figure C in S1 Fig). Given that the extracellular ATP is rapidly degraded by ecto-
nucleotidases, such as CD39 [40,41], we investigated whether the NO production could cer-
tainly be enhanced by ATP, or the degradation products. As shown in Fig 1D, the enhanced
NO production by ATP was abolished by the treatment with apyrase, an enzyme that hydro-
lyzes ATP into AMP. We also confirmed that ADP and AMP did not enhance the LPS-
induced NO production (Figure D in S1 Fig).

ATP facilitates IFN-§ expression to enhance the NO production

To investigate the molecular mechanisms of the ATP-enhanced NO production, we analyzed
the upstream signaling pathway regulating the iNOS transcription. As it is reported that
secreted interferons are necessary for full expression of the iNOS mRNA [42,43], we evaluated
the involvement of IFN-, expressed strongly in J774.1 cells, in the LPS/ATP-induced expres-
sion of INOS. As shown in Fig 2A, the addition of anti-IFN-f neutralizing antibody almost
completely suppressed the LPS-induced iNOS protein expression in both presence and
absence of ATP, suggesting the involvement of autocrine/paracrine signaling of IFN-f in LPS-
induced iNOS expression. Indeed, consistent with the induction of iNOS, ATP enhanced the
LPS-induced IFN-B mRNA expression and phosphorylation of STAT1, downstream of the
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IFN-B signaling (Figs 2B and 2C). In addition, the phosphorylation of IRF-3, the essential tran-
scription factor of IFN-B [44], was also up-regulated by the addition of ATP (Fig 2D).

P2X7R activation up-regulates IFN- expression and NO production

It has been reported that P2X7R, expressed on most immune cells, such as macrophages, is
activated through millimolar concentrations of extracellular ATP (0.1-4 mM) and participates
in inflammation and pain mechanisms [30,45-48]. Therefore, we next examined the involve-
ment of P2X7R in the enhancement of the LPS-induced inflammation by ATP. As shown in
Fig 3A, LPS-induced NO production, especially in the presence of ATP, was significantly
reduced in the P2X7R knockdown cells, showing the effects of ATP through P2X7R activation.
Since the activated P2X7R has been shown to facilitate the influx of extracellular cations,
including calcium ions (Ca**) [48,49], we next investigated the roles of the Ca”" influx in the
LPS/ATP-induced IFN-B expression. As shown in Fig 3B, BAPTA-AM, an intracellular Ca**
chelator, significantly inhibited the LPS/ATP-induced IFN-B expression. In addition, A23187,
a Ca”* ionophore, also reproduced the enhancing effect of ATP on the IFN-B expression (Fig
3C). We confirmed that the Ca** influx, monitored using Fluo 4-AM, was induced by the
treatment of ATP for 10 min and was abrogated in the P2X7R knockdown cells (Fig 3D).
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These results strongly suggest that the ATP/P2X7R-mediated Ca** influx contributes to the
LPS/ATP-induced IFN-f expression.

P2X7R-mediated ATP signaling affects TLR4 signaling to enhance IFN-§
expression and NO production

Next, to understand the actions of ATP on enhanced inflammation, we examined the timing
of the ATP stimulation for enhancing LPS-induced NO production. As shown in Fig 4A, we
found that the LPS-induced NO production was enhanced only when cells were co-treated
with LPS and ATP, but hardly affected when ATP was added a few hours after the LPS stimula-
tion. This result suggested that the P2X7R-mediated ATP signaling stimulated upstream of the
LPS-induced TLR4 signaling. As shown in Fig 4B, ATP-enhanced NO production in LPS-
treated cells was not observed in the presence of a specific TLR4 inhibitor TAK-242, showing
the effects of ATP on the TLR4 signaling. We then investigated whether ATP could activate
the LPS/TLR4 signaling pathways, such as NF-xB and MAPKs pathways. As shown in Fig 4C,
the LPS-induced degradation of IkxB-o and phosphorylation of ERK and JNK at 30 min were
up-regulated by ATP. Phosphorylation of p38 was not affected by ATP. The phosphorylation
of ERK was also induced by ATP alone. It was reported that the activation of these pathways
results in the activation of the downstream transcription factors, such as NF-«xB and activator
protein-1, to induce the IFN-B and iNOS mRNA expression [42,43,50]. In addition, it has
been reported that the P2X7R activation induces ERK phosphorylation via Ca®*-dependent or
-independent activation of the upstream kinases [51-53]. We then investigated the involve-
ment of the ERK phosphorylation on the effects of ATP. As shown in Fig 4D, PD98059, an
inhibitor of the MEK1/2-ERK pathway, attenuated the enhancing effects of ATP on the IFN-f
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expression. It was also confirmed that the ATP-induced ERK phosphorylation was indeed
inhibited in the presence of PD98059 (Fig 4E). Furthermore, the ATP-induced ERK phosphor-
ylation was reduced in the P2X7R knockdown cells and also inhibited by BAPTA-AM (Fig 4F
and 4G). These results suggest that ATP sensing by P2X7R and the following Ca** influx and
ERK phosphorylation may be potential pathways for enhancing the LPS-induced IFN-§
expression, leading to the increased iNOS expression and NO production.

Inhibitory effects of polyphenols on ATP/P2X7R signaling

We next investigated the inhibitory effects of natural polyphenols on the ATP/P2X7R signaling
by measuring the Ca®" influx as an indicator of the P2X7R activation. Among the 42 polyphe-
nols (listed in S2 Table), we found that, as well as brilliant blue G (BBG), a P2X7R antagonist
[54], baicalein and resveratrol exhibited the most significant inhibitory effects on the ATP-
induced Ca®" influx (Fig 5A). It was also confirmed that these two polyphenols inhibited the
P2X7R activation in dose-dependent manners (Fig 5B). On the other hand, inhibitory effects of
these polyphenols on the ATP-induced ERK phosphorylation could not be observed (Figure A
in S2 Fig). This may be due to the fact that these polyphenols induced ERK phosphorylation
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https://doi.org/10.1371/journal.pone.0204229.g005

regardless of the presence or absence of ATP. These results suggest that specific polyphenols could
target the ATP/P2X7R signaling, probably by antagonizing ATP and suppressing the Ca** influx.

Anti-inflammatory effects of baicalein through interfering ATP/P2X7R
signaling

The results shown above indicated that ATP facilitates inflammatory responses through
P2X7R, and that several polyphenols, such as baicalein and resveratrol, inhibit ATP/P2X7R
signaling. We next investigated whether these polyphenols could indeed attenuate inflamma-
tion through inhibiting ATP/P2X7R signaling. Pre-treatment of baicalein or resveratrol inhib-
ited the LPS/ATP-induced NO production in dose-dependent manners (Fig 6A). We
confirmed that these polyphenols did not affect the cell viability under this experimental con-
dition (Figure B in S2 Fig). As reported in many papers, polyphenols could inhibit the LPS/
TLR4 signaling [32,38]. Therefore, the inhibitory effects of these polyphenols on NO produc-
tion were conceivably due to the inhibition of not only the ATP/P2X7R signaling but also the
LPS/TLR4 signaling. Thus, to investigate whether the inhibition of the ATP/P2X7R signaling
by these polyphenols definitely confers the anti-inflammatory effects, we examined the effects
of baicalein and resveratrol on the IFN-f expression, more upstream than the NO production.
As shown in Fig 6B, baicalein inhibited the ATP-enhanced IFN-f expression at a lower con-
centration that did not affect the expression induced by LPS alone, whereas resveratrol rather
induced IFN-f expression under this condition.
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https://doi.org/10.1371/journal.pone.0204229.g006

To further propose that the polyphenols could attenuate the ATP/P2X7R signaling, we then
examined the inhibitory effects of baicalein and resveratrol on the secretion of IL-1f, an LPS-
induced pro-inflammatory cytokine, the production of which is tightly regulated and specifi-
cally triggered by ATP as secondary stimuli [55]. As shown in Fig 6C, IL-1B was hardly detect-
able in cultured supernatants of the cells treated with the vehicle and LPS alone. On the other
hand, the secretion of IL-1B was significantly induced upon ATP treatment 4 h after the LPS
treatment. The secretion was significantly inhibited in the presence of BBG, showing that ATP
sensing by P2X7R specifically contributes to IL-1f secretion. Under this experimental condi-
tion, the IL-1p secretion was significantly inhibited by pre-treatment with baicalein for 10 min
before the ATP stimulation. On the other hand, similar to the results on IFN-f expression,
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resveratrol did not inhibit the IL-1B secretion. These results demonstrated that baicalein could
be a potential candidate as a natural inhibitor of the ATP/P2X7R signaling.

Discussion

Inflammation is an important defense response in noxious conditions, such as infection,
whereas abnormal inflammatory responses are shown to cause various diseases. LPS-induced
inflammation is a well-studied model of infection and diseases, therefore, the molecular signal-
ing through the TLR4 receptor could be a target for therapy. Recent studies have shown that
released endogenous molecules from damaged or immune cells, called DAMPs, are also impli-
cated in the activation of inflammatory responses. In this study, we investigated the molecular
actions of extracellular ATP, considered as one of the prototypical DAMP molecules [56,57],
on the LPS-induced macrophage inflammation. Based on the molecular actions of ATP, to
develop a new strategy for the prevention of inflammatory diseases, we evaluated the inhibi-
tory effects of natural polyphenols on ATP signaling. We first observed that NO production
and iNOS expression in the LPS-stimulated J774.1 macrophages were enhanced by ATP (Fig
1A-1C). It has been reported that the extracellular ATP is rapidly degraded to ADP and AMP,
whereas the LPS-induced NO production was not enhanced by these degradation products
(Figure D in S1 Fig). Although we did not examine the actual enzyme activity of ectonucleoti-
dases in J774.1 cells, we scarcely detected the degradation products of ATP by a liquid chroma-
tography-tandem mass spectrometry in culture supernatants of J774.1 treated with 1 mM
ATP, strongly suggesting that the effects of ATP in this study reflect the action of ATP itself.
NO has been recognized not only as a vasodilator and a neurotransmitter, but also as anti-
microbial, anti-tumor, tissue-damaging, and immune-modulating products in the immune
system. NO plays a dual role during inflammation by exerting protective and toxic effects in
parallel, and this dual effect has been explained as being dependent on the NO concentration
[58-60]. Although we did not investigate the phenotypic consequences of the up-regulated
NO production, we speculated that LPS/ATP-enhanced NO production might lead to disor-
ders and diseases associated with excess inflammation.

We then investigated the activation of the transcription factors and signal transduction
pathways involved in the LPS/ATP-induced iNOS expression. We observed that the LPS-
induced IFN-f expression and the downstream STAT1 phosphorylation were up-regulated by
ATP. STAT1 has been reported to be an essential transcription factor for the iNOS expression
[43]. In addition, we found that ATP facilitated the LPS-induced TLR4 signaling, such as the
NF-kB and MAPK pathways, and the phosphorylation of IRF-3, the transcription factor for
IFN-B. TLR4 signaling is generally separated into the myeloid differentiation primary response
gene 88 (MyD88)-dependent pathway for expression of the pro-inflammatory cytokines and
the TIR domain-containing adaptor protein-inducing IFN-B (TRIF)-dependent pathway for
expression of the Type I IFNs. It has been suggested that NF-xB and MAPK could be activated
through both pathways and that IRF-3 could be through the TRIF-dependent pathway [61,62].
Our results indicated that ATP accelerated both pathways, leading to the activation of the
iNOS transcription factors. We also found that the mRNA expression of other LPS-induced
inflammatory mediators, such as tumor necrosis factor-a (TNF-a), cyclooxygenase-2 (COX-
2), IL-6, IL-10, and IL-1P, were also affected in the presence of ATP (S3 Fig). These results sug-
gested that ATP accelerated upstream pathways in the LPS/TLR4 signaling resulting in pertur-
bation of the downstream mRNA expression of iNOS and other inflammatory mediators.

We focused on the involvement of P2X7R regarding the effects of ATP because P2X7R is
highly expressed in immune cells and responds to higher ATP concentrations. Using the
siRNA-induced knockdown and antagonist of P2X7R, we demonstrated that P2X7R is indeed
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involved in the ATP-enhanced inflammatory responses. Our results that the LPS-induced NO
production without ATP addition was also reduced in the P2X7R knockdown cells (Fig 3A)
suggest the activation of the P2X7R signaling during stimulation with only LPS. Although sim-
ilar observations that ATP or the P2X7R agonist enhanced LPS-induced inflammatory
responses including IFN-f expression have been reported [63,64], our results clearly revealed
the molecular actions of ATP through P2X7R, leading to enhanced NO production. For exam-
ple, we demonstrated that ATP stimulated the Ca®" influx and activated intracellular signaling,
such as ERK phosphorylation, which subsequently enhanced the expression of the LPS-
induced IFN-f expression and NO production. In addition, the LPS/ATP-enhanced IFN-f
expression was reduced by BAPTA-AM and PD98059 (Figs 3 and 4), suggesting that the intra-
cellular Ca** and the activation of MEK/ERK are both important for the LPS/ATP-induced
inflammatory signaling. It has been reported that ATP binding to the extracellular loop of
P2X7R results in not only channel opening but also structural and/or functional changes of the
intracellular proteins or membrane lipids, such as calmodulin, heat shock proteins, cytoskele-
tal proteins, and phosphatidylinositol 4,5-phosphate, all of which bind to the C-terminal of
P2X7R [65-67]. Therefore, these observations suggest that both the Ca**-dependent and
-independent signals of P2X7R are potential pathways in the ATP-induced inflammatory
regulation.

Many studies, including the pre-clinical studies, have suggested that P2X7R could be thera-
peutically important targets because of the involvement in inflammatory diseases and pain.
Although various negative or positive modulators of the P2X7R activation including natural
products, synthetic molecules, and monoclonal antibodies, have been demonstrated, there is
no approved medicine in clinical use [30,68-70]. In addition, little is known about the benefi-
cial effects of dietary compounds targeting P2X7R [29]. Therefore, to prevent ATP/P2X7R-
mediated abnormal inflammation, we explored the inhibitory effects of polyphenols, the larg-
est group of phytochemicals, on the ATP/P2X7R signaling. We then found that a flavonoid
baicalein (5,6,7-trihydroxyflavone) and a stilbenoid resveratrol significantly inhibited the
ATP/P2X7R-mediated Ca** influx (Fig 5). We further investigated the effects of baicalein and
resveratrol on the LPS/ATP-induced inflammation, and found that, as expected, these poly-
phenols indeed inhibited the LPS/ATP-induced NO production (Fig 6A). However, at least
under this experimental condition, we could not distinguish whether these polyphenols modu
lated the LPS/TLR4 signaling or ATP/P2X7R signaling because many reports have demon-
strated the inhibitory effects of polyphenols on the TLR4 signaling. For instance, resveratrol
inhibits the kinase activity of TANK binding kinase 1 associating with TRIF, which is the
TLR4 downstream component, resulting in decreasing the NF-xB and IRF-3 activation
[71,72]. Another study also reported that quercetin inhibits the Src- and Syk-mediated PI3K
phosphorylation and subsequent TLR4/MyD88/PI3K complex formation, resulting in the
reduced activation of downstream signaling [73]. Therefore, to elucidate that the inhibition of
the ATP/P2X7R signaling by baicalein or resveratrol definitely contributes to the anti-inflam-
matory or therapeutic effects, we evaluated the effects of these polyphenols on IL-1f secretion.
In culture experiments, IL-1p is neither matured nor secreted by the treatment with only LPS.
It is generally recognized that ATP addition after a few hours of LPS stimulation triggered

inflammasome activation leading to the formation and secretion of the matured IL-1f [18,55].
We then examined the effects of two polyphenols on the ATP-triggered IL-1f secretion and
found that the IL-1f secretion was significantly inhibited by baicalein, but unfortunately, not
by resveratrol (Fig 6C). Although we did not investigate the activation of inflammasome in
this study, the result strongly suggested that baicalein reduced the maturation and secretion of
IL-1 through inhibition of the ATP/P2X7R signaling. Effects of antagonizing ATP/P2X7R
signaling by baicalein or other natural products on inflammatory responses in vivo have not
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yet been determined within this study. Utilization of P2X7R-deficient mice in the near future
will clarify the involvements of ATP in inflammatory responses and the possible interactions
between natural polyphenols and P2X7R in vivo.

Baicalein and its glucuronide (baicalin), the major components of Scutellaria baicalensis
Georgi, a popular herb used in traditional Chinese herbal medicine, are shown to prevent can-
cer, inflammation, cardiovascular diseases, and hypertension [74]. He et al. reported that bai-
calein inhibited TLR4 expression, NF-kB, and MAPK signal pathways and subsequently
reduced the levels of pro-inflammatory cytokines [75]. Our current results also proposed a
new health-beneficial activity of baicalein through inhibition of ATP/P2X7R signaling.
Although the inhibitory effect of baicalin was not examined in this study, we previously
reported that the glucuronides of flavonoids could be deconjugated into the aglycones by mac-
rophages, resulting in increased anti-inflammatory activity as compared to the parent glucuro-
nides [76]. Therefore, interaction between macrophages and baicalin could result in the
inhibitory effect on the ATP/P2X7R signaling, similar to the action of the aglycone baicalein.
On the other hand, in spite of the inhibitory effect on ATP-induced Ca** influx, resveratrol
did not inhibit ATP-enhanced IFN-f expression and IL-1f secretion (Fig 6B and 6C). Resvera-
trol rather induced LPS/ATP-induced IFN- expression. Although we predicted that both bai-
calein and resveratrol could also inhibit the ATP/P2X7R-mediated ERK phosphorylation, as
well as Ca®" influx, these polyphenols, especially resveratrol, conversely enhanced the ATP-
induced ERK phosphorylation (Figure A in S2 Fig). Similarly, several papers also demon-
strated the ERK activation by polyphenols [77-80]. Within this study, it is still unclear how
tight the link between Ca>* influx and ERK phosphorylation is in the ATP signaling. Resvera-
trol, found in grape products such as red wine, has been shown to improve cardiovascular per-
formance and extend the lifespans of non-mammals and mice [81]. However, we could not
conclude that, at least from our observations, resveratrol is a potent inhibitor of ATP/P2X7R
signaling.

Opverall, our results indicated the potential preventive effects of baicalein on exacerbating
the ATP/P2X7R signaling, not only LPS signaling, under noxious or abnormal conditions. We
demonstrated the molecular actions of the extracellular ATP through P2X7R on the LPS sig-
naling, resulting in excess inflammation, and also proposed a new strategy for the prevention
of excess inflammation by inhibiting the ATP/P2X7R signaling using natural polyphenols,
such as baicalein. As well as ATP/P2X7R, involvements of other pairs of DAMPs/receptors
such as advanced glycation end-product/RAGEs and B-amyloid, in the inflammatory
responses have been suggested [82-83]. Therefore, our conclusion is that the ATP/P2X7R sig-
naling and other DAMPs signaling could be a new potential target of drugs and natural com-
pounds including polyphenols for the prevention of disorders and diseases associated with
excess inflammation.

Supporting information

S1 Fig. Effects of ATP on NO production and cell viability. (A) NO production in ]J774.1
cells was evaluated using the Griess assay. Cells were treated with LPS (1 pug/ml) in the presence
or absence of ATP (1 mM) for the indicated time periods (*P < 0.05 vs LPS-treated group).

(B) Cell viability (%) was analyzed by cytotoxicity assay after LPS/ATP stimulation at the indi-
cated time points. (C) Protein and mRNA expression of iNOS in LPS/ATP-stimulated ]J774.1
cells. Cells were treated with LPS (1 pg/ml) in the presence or absence of ATP (1 mM) or ATP
alone for the indicated time periods. iNOS protein expression (B-actin as a loading control)
was evaluated by immunoblotting. iNOS mRNA expression was determined by RT-qPCR
(GAPDH as endogenous control, duplicate determinations). (D) Effects of ATP, ADP, and

PLOS ONE | https://doi.org/10.1371/journal.pone.0204229 September 24, 2018 14/19


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204229.s001
https://doi.org/10.1371/journal.pone.0204229

@° PLOS | ONE

ATP/P2X7R signaling as a target of natural polyphenols

AMP on the LPS-induced NO production (*P < 0.05). All the data represent means + S.D. of
triplicate determinations.
(PDF)

S2 Fig. Effects of baicalein and resveratrol on ATP-induced ERK phosphorylation and cell
viability. (A) Dose-dependent effects of baicalein and resveratrol on ATP-induced ERK phos-
phorylation in J774.1 cells. Cells were pre-treated with each polyphenol for 1 h followed by
ATP (1 mM) stimulation for 1 h. (B) Cell viability (%) was analyzed by cytotoxicity assay after
treatment with each polyphenol for 24 h. Data represent means + S.D. of triplicate determina-
tions.

(PDF)

S3 Fig. Effects of ATP on the expression of LPS-induced inflammatory mediators. Relative
mRNA expression of TNF-a (A), COX-2 (B), IL-6 (C), IL-10 (D), and IL-1B (E) in J774.1 cells
were measured by quantitative RT-PCR after LPS/ATP treatment. All the data represent
means + S.D. of triplicate determinations (*P < 0.05, A, vs LPS + ATP-treated group; B-E, vs
LPS-treated group).

(PDF)

S1 Table. Primer sequences used for quantitative RT-PCR.
(PDF)

$2 Table. Chemical structures and names of selected polyphenols used in this study.
(PDF)
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