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Growth hormone (GH), a master regulator of somatic growth, also regulates carbohydrate
and lipid metabolism via complex interactions with insulin and insulin-like growth factor-1
(IGF-1). Data from human and rodent studies reveal the importance of GH in insulin syn-
thesis and secretion, lipid metabolism and body fat remodeling. In this review, we will
summarize the tissue-specific metabolic effects of GH, with emphasis on recent targets
identified to mediate these effects. Furthermore, we will discuss what role GH plays in
obesity and present possible mechanisms by which this may occur.
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INTRODUCTION
Growth hormone (GH) is an anabolic hormone that has important
functions in regulating somatic growth either directly or indirectly
via effectors such as insulin-like growth factor-1 (IGF-1). How-
ever, another facet of the biological effects exerted by GH includes
its ability to modulate metabolism and energy homeostasis. The
metabolic actions of GH are diverse and tissue-specific, thus com-
plicating our ability to understand them. Here we will describe the
process of GH secretion and its regulation, signal transduction via
the GH receptor (GHR), followed by a review of the available liter-
ature on the metabolic actions of GH in various tissues, including
the liver, adipose tissue, skeletal muscle, and pancreas.

GH SECRETION AND ITS REGULATION
The human GH gene cluster is located on chromosome 17 and it
includes five GH variants, amongst which is the pituitary GH-N
(or GH-1) variant and four placental GH-V (or GH-2) variants.
While the GH variants are expressed in a temporal manner during
development, they all generate similar 22 kDa protein products.
The pituitary GH-N transcript undergoes alternative splicing to
yield two isoforms which are 22 and 20 kDa respectively, the for-
mer being the more predominant isoform in circulation, as has
been reviewed elsewhere (Baumann, 2009).

GH is primarily expressed, synthesized, stored within secretory
granules in the somatotrophic cells located in the anterior pituitary
gland. Transcription of the GH gene is regulated by several tran-
scription factors including Pit-1 (pituitary-specific transcription
factor-1), Sp1 (specificity protein 1), activator protein 2, nuclear
factor-1, and upstream stimulating factor. Glucocorticoids have
been shown to increase GH transcription as well as mRNA stabil-
ity; while thyroid hormone suppresses GH transcription (Strobl
and Thomas, 1994).

GH is secreted in response to a rise in intracellular cyclic AMP
(cAMP) or Ca2+ levels which result in membrane depolarization,
translocation of GH granules to the membrane and the subsequent

release of GH into circulation (Strobl and Thomas, 1994). GH
secretion occurs in a pulsatile manner that is primarily regu-
lated by the 180˚ out-of-phase secretion of two neuroendocrine
hormones from the hypothalamus, namely, the GH releasing
hormone (GHRH) and somatostatin that stimulate and repress
GH secretion respectively. GHRH and somatostatin interact with
their respective membrane-bound G-protein coupled receptors
(GPCRs) on the somatotrophs and exert their biological effects
via multiple mechanisms which are reviewed elsewhere (Anderson
et al., 2004; Ben-Shlomo and Melmed, 2010), Ghrelin, identified
in 1999 as a potent endogenous GH secretagogue, exerts its effects,
independent of GHRH, and somatostatin, via the GH secreta-
gogue receptor 1a (GHSR1a), which is also a GPCR (Anderson
et al., 2004). Since its discovery, a wide range of effects on energy
homeostasis and food intake have been identified for ghrelin, but
these are out of the scope for this review (Pazos et al., 2008).
GH secretion also exhibits sexual dimorphism which seems to be
exerted by the differential effects of androgens and estrogens in
the hypothalamus (Ohlsson et al., 2009).

Once in the circulation, GH binds to GH binding proteins
(GHBPs), of which there are two classes. The high affinity GHBP
is a soluble truncated form of the GHR and it preferentially binds
the 22-kDa GH isoform; while the low affinity GHBP which is
structurally unrelated to the GHR binds the 20-kDa GH isoform.
The high affinity GHBP is generated by proteolytic cleavage of
the extracellular domain (ECD) of the GHR in humans; while in
rodents it is generated by alternative splicing of the GHR transcript
resulting in a short-length GHR. The GHBPs are hypothesized to
have two roles; one is to stabilize and prevent GH from degradation
when in circulation, and the other is to control GH bioavailability
by competing with the GHR for binding to GH (Baumann et al.,
1994; Tuggle and Trenkle, 1996).

Growth hormone acts on the liver to stimulate the production
and secretion of IGF-1 which is one of the most characterized
targets of GH. The liver is the predominant source of circulating
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IGF-1; however, liver-specific igf-1 deficient (LID) mice display
only a 75% reduction in circulating IGF-1 levels suggesting that
extra-hepatic tissues contributed to the remaining 25% of the cir-
culating IGF-1 pool (Liu et al., 1998). Circulating IGF-1 exists in
a ternary complex with IGF binding proteins (IGFBPs), mainly
IGFBP-3 and -5, and acid labile sub-unit (ALS). The ternary IGF-
1-ALS-IGFBP-3 complex modulates the bioavailability of IGF-1,
and also stabilizes IGF-1 in circulation (LeRoith, 1996). Interest-
ingly, GH also regulates the expression of ALS and IGFBP-3 and
thus, IGF-1 stability in serum (Elliott et al., 1992). Apart from the
endocrine/circulating IGF-1, IGF-1 is also produced locally by tis-
sues and exerts its effects in an autocrine/paracrine manner. IGF-1
plays a critical role in inhibiting GH secretion by feedback mech-
anisms by stimulating somatostatin and inhibiting GHRH release
from the hypothalamus (Ohlsson et al., 2009). Furthermore, a
recent study by Romero et al. (2010) using somatotroph-specific
IGF-1 receptor (IGF-1R) knockout mice demonstrated that IGF-1
also has direct effects on GH secretion from the somatotrophs,
independent of GHRH, and somatostatin.

GHR AND SIGNAL TRANSDUCTION
GH mediates its intracellular effects via the GHR which is a one-
pass transmembrane receptor belonging to the class 1 cytokine
receptor family. It has an ECD which is connected to an intra-
cellular/cytoplasmic domain (ICD) via a flexible linker. The GHR
has no intrinsic kinase activity but the cytoplasmic kinase, Janus
kinase 2 (Jak2) is constitutively associated with a Box1 region
in the ICD of the GHR. In the inactive state, the Jak2 catalytic
domain is masked by its pseudokinase domain. GH binding to
pre-formed GHR dimers results in a conformational change in
the receptors and associated Jak2 molecules. This event unmasks
the catalytic domain of Jak2 and allows the adjacent Jak2 mol-
ecules to activate each other by transphosphorylation. Activated
Jak2 then phosphorylates the cytoplasmic regions of the GHR
which then recruits several downstream proteins (Lanning and
Carter-Su, 2006).

The signal transducer and activator of transcription (STAT)
family of transcription factors is a well-characterized downstream
target recruited to the GHR. Once recruited to the GHR, STAT
proteins are phosphorylated by Jak2 resulting in their dissociation
from the receptor, homo- or hetero- dimerization, and translo-
cation to the nucleus. Of the various STAT proteins, STAT5, and
particularly STAT5b, mediates a majority of the biological effects
of GH, including the transcription of IGF-1, and ALS. STAT5b has
also been implicated in exerting the sexually dimorphic pattern
of gene expression induced by GH (Holloway et al., 2007). Apart
from STAT5, the GHR also recruits and activates STATs-1 and 3 in
a Jak2-dependent manner (Ram et al., 1996; Smit et al., 1996).

Apart from Jak2, the GHR also interacts with Src kinase in
a Jak2-independent manner, and can also activate the mitogen
activated protein kinase (MAPK; or, extracellular signal regulated
kinase, Erk) pathway downstream of both Jak2 and Src (Lanning
and Carter-Su, 2006). Moreover, GHR localization to the lipid
raft preferentially activates the MAPK pathway while cytosolic
GHR localization activates the STAT5 pathway. Lipid raft targeted
insulin receptor substrate-1 (IRS-1), an adaptor protein critical for
insulin-and IGF-1- mediated signal transduction, seems to play a

critical role in GHR-induced MAPK activation (Liang et al., 2000;
Brooks et al., 2008; Ohlsson et al., 2009; Wang et al., 2009). Lastly,
GHR signaling has also been associated with activation of the
phosphatidylinositol-3 kinase (PI3K)/Akt pathway in a Jak2/IRS-1
dependent manner (Liang et al., 2000).

Down-regulation of GHR activation is mediated by the sup-
pressors of cytokine signaling (SOCS) family of proteins, which
include SOCS-1, -2, -3, -6, and cytokine-inducible SH2 contain-
ing protein (CIS), which are induced by the Jak/STAT pathway.
GH itself has been shown to induce SOCS -2, and -3 (Greenhalgh
et al., 2005; Nielsen et al., 2008). Moreover, the SOCS proteins
can terminate GHR signaling via different mechanisms including
inhibition of Jak2 kinase activity and competing with STAT5 for
binding to GHR (Ram and Waxman, 1999; Dominici et al., 2005).
Additionally, protein tyrosine phosphatases (PTPs) have also been
implicated in terminating the GHR signal cascade (Pasquali et al.,
2003; Choi et al., 2006; Pilecka et al., 2007). Furthermore, GHR
can be desensitized by proteolysis. Jak2 seems to play a dual role in
this process. On the one hand, GHR binding to Jak2 stabilizes the
receptor and prevents it from degradation (He et al., 2005; Deng
et al., 2007; Loesch et al., 2007). On the other hand, GH can induce
desensitization of the GHR and this requires Jak2 kinase activity
(Loesch et al., 2006; Deng et al., 2007).

Liver
It is well established that GH can stimulate hepatic glucose produc-
tion which has two arms, gluconeogenesis (conversion of amino
acids and intermediates of glucose metabolism to glucose) and
glycogenolysis (breakdown of glycogen to glucose; Brooks et al.,
2007; Lindberg-Larsen et al., 2007; Sakharova et al., 2008). How-
ever, it is still unclear whether GH preferentially stimulates glu-
coneogenesis or glycogenolysis and there is data to support either
theory. High dose GH infusion (40 ng/kg/min for 4 h) into healthy
individuals in a pituitary clamp study increased glycogenolysis
but had no effect on gluconeogenesis (Ghanaat and Tayek, 2005).
Also, pituitary microsurgery in acromegalic men resulted in a
significant reduction in glycogenolysis with no impact on gluco-
neogenesis (Hoybye et al., 2008). In contrast to this, sub-cutaneous
injections of recombinant human GH (rhGH; 0.05 mg/kg/day)
in fasted nursing women for a week increased gluconeogenesis,
but not glycogenolysis (Kaplan et al., 2008). 3 mg/day of rhGH
administration for 6 months to HIV patients, who demonstrate
significant visceral obesity, increased fasting gluconeogenesis but
not glycogenolysis (Schwarz et al., 2002). Additionally, conditional
deletion of the GHR in mouse livers did not result in differences
in the mRNA expression of gluconeogenic genes compared to the
control mice (Fan et al., 2009). Thus, the data seem to suggest
that GH has a preferential effect on glycogenolysis compared to
gluconeogenesis.

The impact of GH on liver glucose uptake and utilization is
not clear. Over-expression of the human GH (hGH) gene in rats
increased basal hepatic glucose uptake and glycogen storage (Cho
et al., 2006). Four week GHR antagonist (pegvisomant) treatment
in acromegalic patients increased non-oxidative glucose disposal
(Lindberg-Larsen et al., 2007). Thus, the main role of GH in the
liver seems to be increasing hepatic glucose production while its
role in glucose uptake is minor.
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Growth hormone plays a major role in liver lipid metabolism.
Sterol regulatory element-binding proteins (SREBPs) are a class
of transcription factors that play a key role in lipid and choles-
terol synthesis. In the human hepatocyte HepG2 cell line, GH was
shown to phosphorylate SREBP-1a in a MAPK-dependent man-
ner which resulted in increased transcription activity (Kotzka et al.,
2010). Furthermore, GH also promotes triglyceride (TG) uptake
into the liver by increasing lipoprotein lipase (LPL) and/or hepatic
lipase expression and/or activity. GH deficiency is associated with
decreased hepatic lipase mRNA expression and/or activity which
are significantly improved with GH supplementation (Hooger-
brugge et al., 1993; Oscarsson et al., 1996; Neve et al., 1997).
Additionally, mice over-expressing bovine GH (bGH) either in
the whole-body (via the metallothionein promoter) or the liver
(via the phosphoenolpyruvate carboxykinase, PEPCK promoter)
have increased hepatic LPL expression (Frick et al., 2001; Wang
et al., 2007).

In addition to TG uptake, data suggest that GH signaling also
stimulates TG secretion. The GHRLD mice develop hepatic steato-
sis and have reduced TG secretion. Moreover adenoviral expres-
sion of IGF-1 in the GHRLD mice did not correct the hepatic
steatosis, suggesting that GH modulates TG secretion in an IGF-
1-independent manner (Fan et al., 2009). Further, liver-specific
STAT5 knockout (STAT5LKO) mice also develop hepatic steatosis
despite increased basal hepatic STAT1 and STAT3 phosphorylation
suggesting that GH mediates TG secretion in a STAT5-dependent
manner (Cui et al., 2007). Additionally, bGH transgenic mice have
decreased TG secretion rate with lower serum TG levels (Frick
et al., 2001; Wang et al., 2007). Loss of GH-induced STAT5 signal-
ing in 391−/− mice increased liver TG levels under both lean and
diet-induced obesity states. This was associated with an increase in
the expression of the fatty acid transporter (CD36), and the per-
oxisome proliferator–activator receptor-γ (PPAR-γ). Moreover,
over-expression of a dominant-negative STAT5 in hepatocytes
also resulted in increased CD36, as well as fatty acid synthase
expression. These suggest that loss of GH-induced STAT5 signal-
ing increases TG accumulation in the liver by up-regulation of TG
uptake as well as de novo lipogenesis (Barclay et al., 2011). Thus,
while GH plays important roles in TG uptake and secretion in a
STAT5-dependent manner, the underlying mechanisms and target
genes involved in the process remain to be defined.

In addition to its effects on TG secretion, data suggest that
GH may also stimulate hepatic fatty acid oxidation by regulating
the expression of the adiponectin receptor 2 (AdipoR2) which is
the predominant adiponectin receptor expressed in the liver. The
biological actions of adiponectin include increased fatty acid oxi-
dation, activation of the AMPK pathway, and glucose uptake (Kad-
owaki et al., 2006). Tail vein injection of a recombinant adenoviral
vector containing GH into male mice increased AdipoR2 expres-
sion in the liver (Qin and Tian, 2010b). Similar adenoviral GH
administration to obese rats, as well as mice with experimentally
induced alcoholic hepatic steatosis prevented the development of
hepatic steatosis which was associated with increased AdipoR2
expression, reduced inflammation, and increased PPARα phos-
phorylation (Qin and Tian, 2010a,c). Male lit/lit mice, which are
a model of GH deficiency owing to a mutation in the GHRH
receptor, have increased hepatic AdipoR1 expression (Arumugam

et al., 2007). However, contrary to the data regarding the AdipoR2,
studies have reported a repression of PPARα expression by GH.
Hypophysectomy increased hepatic PPAR-α expression which was
reversed with continuous GH infusion in both male and female
rats (Jalouli et al., 2003). GHR knockout mice (GHRKO) also show
an up-regulation of all three PPAR isoforms (PPAR-α, β/δ, and
γ) in the liver (Masternak et al., 2005). GH treatment of PPARα

knockout mice resulted in a higher TG secretion rate than the
GH-treated control mice, suggesting that suppression of PPARα

function may facilitate the ability of GH to enhance TG secretion
(Ljungberg et al., 2007).

In summary, GH stimulates hepatic glucose production, while
it has modest effects on liver glucose uptake, utilization, or storage.
GH plays a crucial role in TG secretion from the liver via as yet
unknown mechanisms. Whether this is associated with changes
in β-oxidation and liver TG uptake is still unclear. However, two
factors must be considered while analyzing the metabolic effects
of GH in the liver. The first is that there is convincing data that
implicates GH signaling in proliferation of hepatocytes. Loss of
GH signaling in multiple models decreases the rate of liver regen-
eration following partial hepatectomy (Pennisi et al., 2004; Cui
et al., 2007; Zerrad-Saadi et al., 2011). Thus, altered cellular pro-
file could also affect hepatic metabolism. Secondly, the metabolic
effects of GH in the liver could also be secondary to GH-induced
insulin resistance. Modulation of GH action in the liver results
in decreased IGF-1 production and subsequently increased GH
secretion which is further associated with insulin resistance. Thus,
it is extremely difficult to tease apart the direct effects of GH on
liver metabolism from its indirect effects via opposition of insulin
action.

Adipose tissue
GH stimulates lipolysis in the adipose tissue, and particularly the
visceral and sub-cutaneous depots (Chen et al., 2001; Nam et al.,
2001; Berryman et al., 2004; Pasarica et al., 2007; Freda et al., 2008).
Hormone-sensitive lipase (HSL or LIPE) is a crucial hormone
implicated in this process. Activation of HSL in the adipose tis-
sue occurs downstream of the Gs-coupled β-adrenergic receptors
by activation of PKA/cAMP pathway. GH increases HSL activity
in the adipose tissue both in humans (Samra et al., 1999) and
rodents (Ng et al., 2000; Johansen et al., 2003), possibly by activat-
ing the β-adrenergic receptor (Yip and Goodman, 1999; Yang et al.,
2004); however its effect on HSL gene expression is still unclear
(Richelsen et al., 2000; Khalfallah et al., 2001). Moreover, stud-
ies have reported either a suppressive or no effect of GH on LPL
expression and activity (Richelsen et al., 2000; Frick et al., 2001;
Johansen et al., 2003) suggesting that GH has minimal effects on
adipose tissue TG uptake.

GH may also modulate the expression of the lipid droplet asso-
ciating protein, CIDE-A (cell-death-inducing DFF45-like effec-
tor). Loss of CIDE-A in mice results in increased metabolic rate
and glucose disposal and protection from diet-induced obesity and
insulin resistance (Lin and Li, 2004). CIDE proteins have also been
associated with lipid droplets where they facilitate lipid accumu-
lation and inhibit lipolysis. However, the data on GH regulation
of CIDE-A are controversial. Treatment of GH-deficient (GHD)
individuals with rhGH resulted in a down-regulation of CIDE-A
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expression in the sub-cutaneous adipose tissue (Zhao et al., 2011),
while GHRKO mice had decreased expression of CIDE-A in the
sub-cutaneous adipose tissue (Kelder et al., 2007). The reasons
for the discrepancy in the data are not clear and bear further
investigation.

Ten-month-old GH-resistant GHRKO and GH antagonist
(GHa) mice have increased size of the brown adipose tissue (BAT)
suggesting that GH also regulates BAT metabolism (Li et al., 2003).
While the mechanisms by which GH affects the BAT are not well
known, studies in the GHa mice suggest that GH increases uncou-
pling protein -1 (UCP-1) expression in the BAT (Li et al., 2003).
Interestingly, CIDE-A is also expressed in high levels in the BAT
where it localizes to the mitochondria, interacts with and modu-
lates UCP-1 activity, and ultimately adaptive thermogenesis (Lin
and Li, 2004). Thus, understanding the mechanism by which GH
regulates CIDE-A not only in the white adipose tissue but also the
BAT could be important for understanding how GH modulates
lipid metabolism.

GH may also modulate glucocorticoid action in the adipose tis-
sue. Recent studies have shown that GH down-regulates 11βHSD1
(11β-hydroxysteroid dehydrogenase type 1) expression in the adi-
pose tissue (Morita et al., 2009; Zhao et al., 2011). 11βHSD1
amplifies glucocorticoid action by stimulating the conversion of
inactive dehydrocorticosterone to active corticosterone. Activity
of 11βHSD1 is increased in obesity. Rodents with adipose tissue-
specific over-expression of 11βHSD1 are more insulin resistant;
while knockout of 11βHSD1 protects mice from diet-induced obe-
sity and insulin resistance (Kotelevtsev et al., 1997; Morton et al.,
2001, 2004).

In rodents models, GH deficiency has been associated with ele-
vated adiponectin levels and GH excess with lower adiponectin
levels (Berryman et al., 2004; Nilsson et al., 2005; del Rincon et al.,
2007;Wang et al., 2007). However, the reports of adiponectin status
in GHD or acromegalic patients have been inconsistent resulting
from variabilities in the duration of GH deficiency, age of the
subjects, dose of GH treatment, and low sample number (Ciresi
et al., 2007; Joaquin et al., 2008; Andersson et al., 2009; Oliveira
et al., 2010; Ueland et al., 2010). Circulating adiponectin levels in
obese laron syndrome adults and young girls, who have a loss-
of-function mutation in the GHR rendering them GH-resistant,
is two- to five-fold higher than obese controls. Moreover, IGF-
1 replacement in one sub-set of these patients did not affect
adiponectin levels suggesting that regulation of adiponectin is an
IGF-1-independent effect of GH (Kanety et al., 2009). Indeed,
GH stimulated adiponectin secretion from differentiated 3T3-L1
adipocytes under normal and high glucose conditions (Wolfing
et al., 2008). However, human adipocytes incubated with GH
demonstrated decreased adiponectin secretion (Nilsson et al.,
2005). Thus, the exact nature of GH regulation of adiponectin
secretion and/or function remains to be determined.

bGH transgenic mice have increased adipose tissue expression
of the p85α regulatory sub-unit of the PI3K while the opposite was
found in lit/lit mice (del Rincon et al., 2007). The expression of the
p85α sub-unit is believed to play an important role in the patho-
genesis of obesity. Within the cell, the p85α sub-unit is in excess
when compared to the p110 catalytic sub-unit of PI3K. Conse-
quently there is a greater pool of p85α homodimers compared

to the p85α–p110 heterodimers. The p85α homodimers can bind
and sequester IRS-1, thereby preventing the activation of the PI3K
(Mauvais-Jarvis et al., 2002; Ueki et al., 2002). GH-induced p85α in
the 3T3-F442A adipocyte cell line (del Rincon et al., 2007). How-
ever, it is still unclear whether GH directly affects p85a expression
in vivo. Moreover, it is also possible that the increased p85α expres-
sion in the bGH mice could be a manifestation of insulin resistance.
Mice lacking all isoforms of p85 do not survive due to severe
hypoglycemia (Fruman et al., 2000). Furthermore, heterozygous
knockout of p85α in mice results in improved insulin sensitivity
(Mauvais-Jarvis et al., 2002), and administration of antisense p85
oligonucleotide to diet-induced obese and ob/ob mice, that harbor
a mutation in the leptin gene, improved their insulin sensitivity
(Moriarty et al., 2009). Nevertheless, increased expression of p85α

in the adipose tissue in GH excess could account for GH-induced
insulin resistance.

In summary, the predominant effect of GH in the adipose tissue
is the stimulation of lipolysis. This may occur by activation of HSL,
a critical enzyme for lipolysis, or, as recent studies suggest by mod-
ulation of the expression of lipid droplet proteins such as CIDE-A.
Other new targets for GH action include 11βHSD1 which is a key
regulator of glucocorticoid action. Changes in GH action are also
associated with alterations in adipokine profile which could arise
due to direct effects of GH on the adipocyte or indirectly due to
other biological effects of GH.

Skeletal muscle
Unlike in the adipose tissue, GH induces free fatty acid (FFA)
uptake into skeletal muscle by up-regulation of LPL expression
(Oscarsson et al., 1999; Khalfallah et al., 2001). There is also evi-
dence suggesting that GH induces skeletal muscle HSL expression
in GHD individuals (Trepp et al., 2008). GH treatment of lit/lit
mice resulted in significant increase in PPAR-β/δ expression which
is an important mediator of lipid metabolism in the skeletal mus-
cle (Kim et al., 2008; Ehrenborg and Krook, 2009). The lit/lit mice
also demonstrated an increase in the expression of the insulin-
responsive transcription factor FOXO1 that has been previously
shown to increase lipid uptake and oxidation in the C2C12 skele-
tal muscle cell line (Bastie et al., 2005; Kim et al., 2008). GH has
also been shown to induce lipid accumulation in the muscle (Freda
et al., 2008; Krag et al., 2008; Szendroedi et al., 2008; Trepp et al.,
2008). The re-esterification of TG from FFAs results in generation
of intermediates such as diacylglycerol and ceramides that acti-
vate PKC isoforms. PKC can down-regulate insulin signaling by
several mechanisms (Samuel et al., 2010). Thus, in this manner,
GH-induced increase in FFA uptake and TG synthesis could result
in insulin resistance. These data also suggest that GH induces a
shift in substrate utilization from glucose to lipids in the skeletal
muscle.

A recent study using mice with skeletal muscle-specific knock-
out of the GHR reported worsening of glucose tolerance which
was associated with decreased 2-deoxyglucose uptake in primary
myoblast cultures and increased adipose tissue mass. Moreover,
primary myoblasts isolated from these muscle-GHRKO mice
demonstrated reduced IR protein content as well as increased ser-
ine phosphorylation of IRS-1 when compared to control myoblast
cultures (Mavalli et al., 2010). These effects seem to be mediated by
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STAT5 as skeletal muscle-specific knockout of the STAT5 in mice
results in slight increase in adiposity and worsening of insulin sen-
sitivity (Klover and Hennighausen, 2007). These data, however, do
not fit with the traditional view of GH antagonizing insulin action
and in fact suggest that GH facilitates insulin signaling in the skele-
tal muscle. However, it should be mentioned that the promoters
used to drive Cre recombinase expression in both these studies
(the Mef2C and Myf5 promoters respectively) are active in the
developing somite before differentiation of the myotome occurs
(Ott et al., 1991; Naya et al., 1999). Thus, it is possible that early
deletion of the GHR in regions other than the developing muscle
could influence the phenotype of the mice. Additionally, there is
also no convincing evidence to show that GH influences Glut4
translocation and subsequently glucose uptake (Khalfallah et al.,
2001; Cho et al., 2006; Short et al., 2008) or glycogen synthase
expression (Khalfallah et al., 2001) in the skeletal muscle.

Similar to the adipose tissue, states of GH excess have been asso-
ciated with increased muscle expression of the regulatory p85α

sub-unit of the PI3K (Barbour et al., 2004, 2005). LID mice have
high circulating GH levels and are insulin resistant; they also have
increased p85α expression in the skeletal muscle. Treatment of the
LID mice with a GHRH antagonist normalized GH levels, amelio-
rated the insulin resistance, and also normalized p85α expression
in the muscle (Barbour et al., 2005). Thus, increased muscle p85α

expression could also account for GH-induced insulin resistance.
Thus, GH regulation of skeletal muscle metabolism is yet to be

defined. Data suggest that GH induces lipid uptake and mobiliza-
tion in the muscle; however whether and how it affects glucose
uptake and metabolism remains unanswered.

Pancreas
While on the face of it, it may seem that the effects of GH on the
pancreas may be secondary to its effects on peripheral insulin sen-
sitivity, there is a lot of evidence to suggest that GH exerts direct
effects in the pancreas and, especially in the β-cell which is the site
of insulin synthesis and secretion.

The GHR and the closely similar prolactin receptor (PRLR) are
expressed in the pancreatic β-cells where upon ligand stimulation
they can stimulate insulin synthesis (Nielsen, 1982; Nielsen et al.,
1989, 1990; Brelje et al., 1993, 2004). Moreover, the GHRKO mice
have only 45% of the islet cell mass as normal mice (Robertson
et al.,2006). Additionally,β-cell-specific GHRKO mice (βGHRKO)
mice fail to demonstrate β-cell compensation when fed a HFD;
this was also associated with reduced expression of cyclin D2
and Ki-67 (Wu et al., 2011). Accordingly, STAT5 stimulated cyclin
D2 expression and thus, β-cell proliferation in the rat pancre-
atic β-cell line, the INS-1 cells (Friedrichsen et al., 2003). Simi-
larly, GH down-regulated cytokine-induced β-cell apoptosis in a
STAT5-dependent manner in the INS-1 cells (Jensen et al., 2005).

The GHRKO mice have low circulating insulin levels, reduced
pancreatic insulin content and have a blunted glucose-stimulated
insulin secretion (GSIS) response. Re-expression of IGF-1 in the
pancreas alone did not improve insulin content but normalized
islet area in the GHRKO mice (Guo et al., 2005). Similarly, inves-
tigators observed reduced pancreatic insulin content and lower
circulating insulin levels in a mouse model of adult-onset of
GH deficiency (Luque et al., 2011). We have recently shown that

the βGHRKO mice have diminished GSIS response when fed a
standard diet; this defect is exaggerated when the mice were chal-
lenged with a HFD making them insulin resistant. However, while
GSIS was impaired in the βGHRKO mice, arginine stimulated
insulin secretion was intact. Moreover, isolated islets from the
obese βGHRKO mice responded to K+-channel blockers in a sim-
ilar manner as islets isolated from the obese control mice. These
data suggest that GH plays a role in insulin secretion, particu-
larly in response to exogenous glucose. Indeed, we found that the
βGHRKO mice had reduced expression of glucokinase which is the
rate-limiting enzyme for glycolysis in the β-cell (Wu et al., 2011).
Islet-specific knockout of STAT5 using the Cre recombinase dri-
ven by the rat insulin promoter (RIP) resulted in mice that were
insulin resistant, and had diminished GSIS. However, mice lack-
ing STAT5 in the β-cells via the Pdx-1 promoter did not display
insulin resistance at 10 weeks of age, but aging and pregnancy were
associated with worsening of glucose tolerance. Insulin secretion
was not evaluated in the Pdx-1-STAT5 knockout mice. (Lee et al.,
2007). The discrepancies between the two models was suggested
to arise from the differential expression pattern of the RIP and
Pdx -1 promoter; while the latter is localized only to the β-cell, the
former is also expressed in certain regions of the brain. Another
link between glucose metabolism and GH signaling comes from
a study conducted with INS-1 cells, which showed that glucose
stimulation results in cleavage and nuclear translocation of the
cytoplasmic tail of the inactive phosphatase ICA512 which then
binds to STAT5 and mediates the transcription of secretory granule
genes (Mziaut et al., 2006). Thus, while these studies demonstrate
an undeniable role of GH in GSIS, the underlying mechanisms,
and role of STAT5 in this process remain to be clarified.

Another mechanism by which GH may affect insulin secretion
is by modulating Ca2+ fluxes in the β-cell. In insulin secreting
cells GH increased intracellular Ca2+ levels by up-regulating the
ryanodine receptors (Zhang et al., 2004). Moreover, treatment of
BRIN-BD11 β-cells with rhGH also increased intracellular Ca2+
levels in a Jak2 and Src-dependent manner. However, these effects
were hypothesized to be acting through the PRLR rather than the
GHR as ovine prolactin and not bGH mimicked the effects of the
hGH (Zhang et al., 2006).

Thus, the data presented herein make an undeniable argument
for the role of GH in insulin synthesis and secretion. Insulin secre-
tion in response to exogenous glucose is dysregulated in insulin
resistance and diabetes. Identifying the mechanisms by which
GH affects β-cell function could help identify potentially new
candidates to improve β-cell function in diabetes.

REDUCED GH PRODUCTION AND ACTION IN OBESITY
GH secretion is consistently reduced in obesity (Makimura et al.,
2008; Weltman et al., 2008). As a consequence, low GH secretion
could further contribute to accumulation of abdominal fat. In fact,
in a study with healthy volunteers 2 week over-eating resulted in
significantly lower GH levels despite no changes in body weight
suggesting that the reduction in GH secretion occurs prior to the
manifestation of obesity (Cornford et al., 2011). However, despite
the severe reduction in GH levels in obesity, there does not seem
to be a proportional decrease in IGF-1 levels. In fact, most studies
report either no change or only a modest change in total IGF-1
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levels in obesity (Utz et al., 2008; Frystyk et al., 2009; Cornford
et al., 2011). This has resulted in the hypothesis that the main-
tenance of IGF-1 levels can further reduce GH secretion by the
negative feedback loop previously described. Additionally, it is also
believed that free IGF-1 is elevated in obesity and this could fur-
ther activate the negative feedback loop to suppress GH secretion.
However, free IGF-1 levels measured in obese subjects are incon-
clusive (Rasmussen et al., 2006, 2007; Utz et al., 2008; Frystyk et al.,
2009; Cornford et al., 2011). Moreover, reduced IGFBP-1 expres-
sion has also been reported in obese subjects, which could result
in increased IGF-1 bioactivity (Frystyk et al., 2009; Cornford et al.,
2011).

Increased circulating FFA levels in obesity may also have a
suppressive effect on GH secretion. In GH3 rat pituitary tumor
cells, incubation with cis-unsaturated fatty acids such as oleic acid
reduced GH secretion. FFA interference with GH secretion was
shown to occur by suppression of adenylate cyclase/cAMP/PKA
pathway and impedance of Ca2+ influx which is critical for mem-
brane depolarization (Perez et al., 1997, 1998). Indeed, acute
lowering of FFA levels by administration of the lipolysis inhibitor
acipimox in obese subjects increased GH secretion, both sponta-
neous and in response to treatment with GHRH (Cordido et al.,
1996, 1998; Maccario et al., 1996; Kok et al., 2004; Koutkia et al.,
2004; Scacchi et al., 2010).

The hyperinsulinemia associated with insulin resistance in obe-
sity may also contribute to reduced GH secretion. Circulating
insulin levels in lean, ob/ob, and diet-induced obese mice nega-
tively correlated with pituitary mRNA expression of GH, GHRH
receptor, and GHSR. Further the skeletal muscle and adipose tis-
sue, but not the pituitaries, of obese mice demonstrated reduced
response to an acute insulin stimulation (Luque and Kineman,
2006). Additionally, incubation of GH3 rat pituitary tumor cells
with insulin suppressed GH secretion in a dose dependent man-
ner (Melmed, 1984). Moreover, administration of an oral glucose
challenge to healthy individuals or subjects with a non-functional
pituitary tumor resulted in a significant fall in GH levels within the
first hour (Kim et al., 2007; Verrua et al., 2011). Insulin treatment
also inhibited GH release and reduced mRNA expression of GH,
GHRH receptor and GHSR in primary pituitary cultures isolated
from non-human primates (Luque et al., 2006). Obesity is also
associated with hypoadiponectinemia and leptin resistance, both
of which have been implicated in regulating GH secretion (Ras-
mussen et al., 2006; Jurimae et al., 2009; Myers et al., 2010). GH
secretory cells in the pituitary gland express the adiponectin recep-
tors (Rodriguez-Pacheco et al., 2007; Psilopanagioti et al., 2009;
Steyn et al., 2009) and incubation of primary rat pituitary cells with
adiponectin increased GH secretion (Rodriguez-Pacheco et al.,
2007; Steyn et al., 2009). While selective deletion of leptin receptors
from somatotrophic cells in mice did not affect total cell number
in the somatotroph, there was a reduction in the number of cells
expressing GH and consequently GH secretion suggesting that
leptin affects GH expression and secretion, but not somatotroph
development (Childs et al., 2011). Leptin treatment, but not pair-
feeding, of ob/ob mice increased plasma GH levels, despite similar
decreases in body weights. The leptin treatment was associated
with an increase in ghrelin levels suggesting that leptin augmented
ghrelin action (Luque et al., 2007). Thus, these studies suggest that

FIGURE 1 | Possible mechanisms mediating reduced GH action in

obesity. Obesity-induced hyperinsulinemia, hypoadiponectinemia, leptin
resistance, and increased bioactive insulin-like growth factor-1 (IGF-1) and
free fatty acid (FFA) levels could suppress GH secretion from the pituitary
by various mechanisms (please refer to text). Reduced GH secretion further
increases fat accumulation and, thus exacerbates the obesity condition.
Moreover, reduced GH receptor (GHR) expression and increased expression
of truncated GHR (ΔGHR) in the adipose tissue results in a GH-resistant
state that also contributes to the complications associated with obesity.

obesity-induced changes in circulating levels of hormones and
adipokines can also contribute to decreased GH secretion.

In addition to lower GH secretion in obesity, reduced GHR
expression in the adipose tissue of obese subjects has also been
observed (Erman et al., 2011a). Obesity is associated with an
increase in systemic inflammation as seen with elevated circu-
lating levels of TNF-α, IL-6, and other cytokines. An in vitro
study reported that TNF-α decreased GHR expression in human
adipocytes and HEK293 cells. In the same cell lines, glucocor-
ticoids had a biphasic effect on GHR mRNA expression sug-
gesting that as intracellular glucocorticoid levels increase, GHR
mRNA expression decreases (Erman et al., 2011b). Alterna-
tive splicing of the GHR in the adipose tissue also results in
a truncated GHR (ΔGHR) that lacks the ICD. The ΔGHR
serves as a dominant-negative inhibitor of the functional full-
length GHR, thereby terminating GHR signaling. An increased
ratio of ΔGHR to full-length GHR in the omental and sub-
cutaneous adipose tissue of obese women has been reported,
providing another mechanism of GHR desensitization in obe-
sity (Erman et al., 2011a). Thus, local GH resistance in the
adipose tissue can also contribute to reduced GH action in
obesity.

Thus, a vicious circle starting from the hyperinsulinemia,
hypoadiponectinemia, leptin resistance, and increased free IGF-1
and FFA levels, associated with obesity, suppressing GH secretion
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which further results in fat accumulation could be an important
factor in the pathogenesis of obesity. Furthermore, local GH
resistance in the adipose tissue could further mediate fat accu-
mulation and exacerbate the condition (Figure 1).

CONCLUSION
GH exerts diverse effects on tissues. Many of the physiological
effects of GH are still unknown. New targets of GHR signaling are

steadily emerging, and the metabolic actions of GH may not be as
clear as was initially believed. While GH opposes insulin action in
peripheral tissues, it is also important for GSIS in the β-cells and
for the maintenance of lipid homeostasis. Decreased GH action
in obesity may in itself contribute to the associated metabolic
abnormalities. Understanding the role of GH in physiological and
pathological states could contribute to the development of new
therapeutic strategies.
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