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Abstract

Challenges arise in researching health effects associated with chemical mixtures. Several

methods have recently been proposed for estimating the association between health out-

comes and exposure to chemical mixtures, but a formal simulation study comparing broad-

ranging methods is lacking. We select five recently developed methods and evaluate their

performance in estimating the exposure-response function, identifying active mixture com-

ponents, and identifying interactions in a simulation study. Bayesian kernel machine regres-

sion (BKMR) and nonparametric Bayes shrinkage (NPB) were top-performing methods in

our simulation study. BKMR and NPB outperformed other contemporary methods and tradi-

tional linear models in estimating the exposure-response function and identifying active mix-

ture components. BKMR and NPB produced similar results in a data analysis of the effects

of multipollutant exposure on lung function in children with asthma.

Introduction

Individuals are continuously exposed to complex mixtures of environmental chemicals.

Mounting evidence from epidemiological studies links environmental exposures to increased

morbidity and mortality [1–5]. Traditional epidemiological studies have focused on a single

pollutant and additive models with a small number of exposures; however, studying pollutants

in isolation can lead to biased estimates [6, 7] and does not reflect the reality that people are

jointly exposed to mixtures of pollutants. Hence, interest is rapidly growing in studying health

outcomes associated with simultaneous exposure to mixtures of pollutants [8, 9]. The National

Institute for Environmental Health Sciences (NIEHS) identified the study of mixtures as a goal

in its 2012-2017 strategic plan while noting that this will require novel quantitative approaches

[10]. As such, numerous statistical methods have been proposed. There is a need to identify

the most appropriate statistical methods currently available for estimating health outcomes

associated with exposure to mixtures [11, 12].
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Studying health outcomes associated with exposure to mixtures is complicated by small

effect sizes, highly correlated exposures, possible nonlinear and interaction effects, and often

small sample sizes. In this context, traditional regression methods are often inadequate as they

may yield biased or unstable estimates [13] and have low power to detect effects, especially in

the case of nonlinear associations and interactions. Common methods designed for variable

selection tend to incorrectly select predictors when many predictors are highly correlated [14]

and classical model selection techniques ignore uncertainty in both the selected model and

selected mixture components when estimating the exposure-response function [15, 16].

In a broad literature review, Davalos et al. [17] identified five classes of methods currently

used in mixtures analyses: additive main effects (AME), effect measure modification (EMM),

unsupervised dimension reduction (UDR), supervised dimension reduction (SDR), and non-

parametric (NP). AME and EMM methods are typically regression based. AME allows only

additive effects, while EMM includes multiplicative interactions. Hierarchical and penalized

regression methods have been applied to AME and EMM models to identify important mix-

ture components and improve precision [18–22]. The next two groups are dimension reduc-

tion techniques (UDR and SDR) that transform exposure data to reduce the dimension of the

predictor and, therefore, the required parameter space. UDR methods such as k-means [23,

24] transform exposure data without regard to the health outcome [25–28]. SDR methods,

including supervised principle components analysis [29], let the outcome inform exposure

data transformation [30–35]. Finally, NP methods like Bayesian kernel machine regression

[36] are flexible data-driven techniques for estimating a complex exposure-response function

that may include interactions and nonlinear effects [37, 38].

Choosing an appropriate statistical model depends on the research objectives [11, 39] and

requires understanding the empirical performance of methods. Recent studies have compared

several methods in subsets of the model classes proposed. Among those evaluated include

linear regression AME [40] and EMM methods [14], principle components analysis [34],

structural equation models [41], Bayesian kernel machine regression [41], and Bayesian semi-

parametric regression [42]. These studies highlight challenges induced by highly correlated

data in estimating complex exposure-response functions and characterizing uncertainty. To

our knowledge, there has been no formal evaluation of methods from all five classes identified

by Davalos et al. [17] in a single simulation study.

Evaluating the empirical performance of methods across a wide spectrum of model classes

is important as it guides researchers in choosing across classes of models and aids in interpret-

ing results and understanding the limitations of epidemiological studies using these methods.

In addition, the existing literature is sparse with regards to a comparison among Bayesian

methods, which are favorable in the multipollutant setting as they can incorporate prior infor-

mation and fully characterize uncertainty [12, 34, 43]. To this end, we focus on a comparison

of Bayesian methods across a variety of model classes in this paper. By comparing performance

across classes of models, researchers can also gain insight into promising future directions for

statistical methods development.

Motivated by research linking mixtures of air pollutant and pesticide exposures to child

respiratory health, we conducted a simulation study to compare contemporary methods devel-

oped for estimating the association between health outcomes and exposure to mixtures. We

considered one method from each of the five classes identified by Davalos et al. [17] and evalu-

ated each method in three data-generating scenarios. The data-generating scenarios cover a

range of linear to nonlinear functions of multiple pollutants with synergistic effects on the

response in order to test each method in its ability to estimate both simple and complex expo-

sure-response functions that may be encountered in practice.
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In contrast to many recent studies that have compared methods from a conceptual stand-

point or compared their performance in the analysis of a single data set, the primary contribu-

tion of our work is to compare diverse methods in a simulation study addressing a variety of

research questions. Specifically, we quantified four aspects of model performance correspond-

ing to previously identified epidemiological questions of interest: 1) how well does the model

estimate the exposure-response function, 2) can the model identify important mixture compo-

nents, 3) can the model identify components not associated with the outcome, and 4) can the

model identify interactions among exposures [39].

A secondary contribution of our work is to provide software for the tested methods that

currently lack software. Our simulation study describes the strengths and weaknesses of each

method and available software encourages practitioners to use the most appropriate methods

in a given application. Software is available in the form of the R package mmpack [44] to

reproduce the simulation. Further, the software allows researchers to easily conduct a simula-

tion study using the same methods and simulated exposure-response functions but substitut-

ing in their own exposure data which will have a different correlation structure and may result

in different model performance. Hence, researchers can determine which methods are most

appropriate for their own study. Finally, we applied each method to a data analysis of a cohort

study investigating the relationship between air pollutant and pesticide exposures and lung

function in children with asthma. We describe the differences in results among the methods,

highlighting the importance of model choice.

Materials and methods

Data

Health data. This study was approved by the Institutional Review Board of Colorado

State University, Protocol Number 19-9437H. This was a secondary data analysis from a closed

cohort with all personal identifying information stripped from the database. We used data

from Fresno Asthmatic Children’s Environment Study (FACES). The study design, including

recruitment, eligibility criteria, and measurement procedures, is described elsewhere [45–50].

FACES includes data for children aged 6-11 years with asthma symptoms at the time of enroll-

ment and living within a 20 kilometer radius of one of Fresno‘s EPA air quality monitoring

sites. The health outcome of interest was baseline forced expiratory volume in the first second

(FEV1) measured via spirometry. We regressed FEV1 on age, sex, height and ethnicity and

used the residuals as the outcome in our data analysis [51–53]. Age, sex, height, and ethnicity

are well-known predictors of FEV1 so we remove all variation from these predictors before

looking into the effects of air pollution and pesticide exposure on FEV1. Other covariates have

not been as well studied regarding their association with FEV1 and are including the model as

potential confounding variables. Complete exposure, health, and covariate data were available

for 153 children.

The data contain information on covariates and potential confounding variables (S1

Table in S1 File). We included average temperature and precipitation over three months, the

temporal scale of the pesticide exposure data, prior to baseline as covariates. Subject-specific

covariates include body mass index (BMI, kg/m2) and indicators for: self-reported residence

within one block of a freeway, any smoking in the home, positive atopy or allergy test, modi-

fied Global Initiative for Asthma (GINA) score� 3 at baseline, household income greater than

$30K/year, mother having post-secondary education, child not covered by insurance, and sea-

son of baseline spirometry test. Temperature, precipitation, and BMI were scaled to have

mean 0 and variance 1. Approximately 1% of the covariate data was missing, including any

smoking in the home (16%), household income (3%), and mother having post-secondary
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education (1%). As all covariates with missing data were binary variables, we singly imputed

the missing values with 0 and then added a dummy variable for each covariate with any miss-

ing data that indicated which values of that covariate were missing.

Air pollution and pesticide data. We obtained air pollution data from the EPA Air Qual-

ity System Data Mart. Air pollutant concentrations were calculated as 24-hour averages for

particles� 2.5 μm in aerodynamic diameter (PM2.5) and particles� 10 μm in aerodynamic

diameter (PM10), 8-hour daily maximum levels for ozone (O3) and one-hour daily maximum

levels for nitrogen dioxide (NO2) [47]. Concentrations were taken from the air monitoring site

closest to each child’s residence and exposure levels were summarized as averages over three

months prior to baseline spirometry tests to be consistent with available pesticide exposure

data. Due to right-skewed distributions, air pollutant exposures were square-root transformed

and then scaled to have mean 0 and variance 1.

We obtained data on the date, location, and amount (kilograms) of applied agricultural pes-

ticides from the California Pesticide Use Report (PUR) [54]. Based on previous evidence link-

ing pesticide exposure to respiratory illness [55, 56], we considered three pesticide classes:

carbamates (C), methyl bromide (MeBr), and organophosphates (OP). Pesticide exposures

were estimated using the purexposure [57] package in R. We applied inverse distance

weighting to the total reported pesticide amount over three months prior to baseline spirome-

try tests (as PUR reports are aggregated quarterly) to estimate exposures within a 3km buffer

of each child’s residence. Pesticide exposures were also highly skewed and so were square-root

transformed and then scaled to have mean 0 and variance 1.

Exposure data summary statistics are shown in Table 1. Strong Spearman correlation

existed between NO2 and PM2.5 (ρ = 0.88) and between NO2 and PM10 (ρ = 0.72). Moderate

Spearman correlation existed between PM2.5 and PM10 (ρ = 0.67), O3 and NO2 (ρ = -0.63), O3

and PM2.5 (ρ = -0.54), O3 and OP (ρ = 0.53), and OP and NO2 (ρ = -0.53) (Table 2).

Table 1. Pesticide and air pollutant exposure data summary statistics. Table shows mean, standard deviation (SD), minimum, 25th percentile, median, 75th percentile,

and maximum concentration for each exposure.

mean SD min 25th median 75th max

C × 106 (kg/3km2) 0.15 0.33 0.00 0.00 0.00 0.15 2.35

MeBr × 106 (kg/3km2) 3.88 9.90 0.00 0.00 0.00 0.00 48.92

OP × 106 (kg/3km2) 0.93 1.08 0.00 0.00 1.11 1.17 5.40

O3 (ppb) 0.04 0.01 0.01 0.03 0.04 0.04 0.06

NO2 (ppb) 15.48 3.26 9.49 12.64 14.42 17.96 23.07

PM2.5 (μg/m3) 16.35 9.80 6.66 10.14 11.23 18.20 40.21

PM10 (μg/m3) 37.89 10.68 19.55 30.30 32.49 47.23 65.94

https://doi.org/10.1371/journal.pone.0249236.t001

Table 2. Spearman correlation among all pairs of air pollutant and pesticide exposures.

MeBr OP O3 NO2 PM2.5 PM10

C 0.27 0.12 0.09 0.08 0.06 0.01

MeBr -0.08 0.02 0.07 -0.03 -0.13

OP 0.53 -0.53 -0.38 -0.24

O3 -0.63 -0.54 -0.22

NO2 0.88 0.72

PM2.5 0.67

https://doi.org/10.1371/journal.pone.0249236.t002
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Statistical methods

Our primary interest was to estimate the association between exposures to p pollutants xi =

(xi1, . . ., xip)T and a continuous outcome yi, while controlling for q potential confounders wi =

(wi1, . . ., wiq)
T in a sample i = 1, . . ., n. We considered five recently proposed methods. The

first two are the AME model nonparametric Bayes shrinkage with main effects only (NPBr)

and the EMM model nonparametric Bayes shrinkage with main effects and all pairwise multi-

plicative interactions (NPB) as proposed by Herring [19]. The next two models are unsuper-

vised (UPR) and supervised Bayesian profile regression (SPR) as proposed by Molitor et al.

[58]. The fifth is the NP model Bayesian kernel machine regression (BKMR) [36]. We chose

these methods since they represent the five classes identified by Davalos et al. [17] and are

recently developed Bayesian methods for estimating health outcomes associated with exposure

to mixtures. These five methods cover a variety of exposure-response function shapes, handle

multicollinearity in various ways, and include options for variable selection. BKMR is pre-

sented exactly as proposed by Bobb et al. [36]; NPB and SPR have been modified to accommo-

date the continuous outcome with normal residuals rather than the logistic model originally

proposed by Herring [19] and Molitor et al. [58], respectively; and NPBr and UPR are further

modifications of those previously introduced methods. For a baseline comparison, we also

included a normal linear model with main effects only (LM) and with all pairwise interactions

(LM-int), both estimated with least squares. All models considered in this paper have the form

yi ¼ hðxiÞ þ wT
i gþ �i; ð1Þ

where �i are independent N(0, σ2) and h(xi) represents the exposure-response function. All

models were fit in R version 3.6.0 [59].

Nonparametric Bayes shrinkage. Nonparametric Bayes shrinkage [19] was originally

introduced as a logistic regression EMM model and was adapted to the linear regression set-

ting used here. We consider two variations. NPB, originally proposed by Herring [19] is an

EMM model including main effects and all pairwise interactions, where

hðxiÞ ¼
Xp

j¼1

xijbj þ
Xp� 1

j¼1

Xp

k¼jþ1

xijxikzjk: ð2Þ

NPBr is a reduced AME model not originally proposed in Herring [19] that includes only

main effects:

hðxiÞ ¼
Xp

j¼1

xijbj: ð3Þ

Both models place a Dirichlet Process (DP) prior on regression coefficients. The base distri-

bution of the DP is a finite mixture of a normal distribution and a point mass at 0 to induce

sparsity in the model. Hence, some coefficients are set exactly to 0, effectively selecting out var-

iables that do not contribute to the health outcome. Correlated exposures can be clustered and

assigned equal regression coefficients to reduce variance [19, 60]. This effectively reparame-

terizes the model to have a single effect for the sum of two correlated predictors and is particu-

larly advantageous in situations where it is difficult to differentiate the effects of two highly
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correlated predictors. The DP prior for main effects is constructed as:

bjjD1 � D1; j ¼ 1; . . . p ð4Þ

D1ja1;D01 � DPða1D01Þ

D01jp01;G1 ¼ p01d0 þ ð1 � p01ÞG1

G1jm1; �
2

1
� Nðm1; �

2

1
Þ;

where δ0 represents the Dirac delta function at 0. The model is completed with standard

hyperpriors α1 * Gamma(αα1, βα1), π01 * Beta(απ1, βπ1), m1 � Nð0; s2
m1
Þ, and

�
� 2

1
� Gammaða�1; b�1Þ. The DP prior for interactions is similarly constructed. Specifically,

zjkjD2 � D2; j ¼ 1; . . . p � 1 & k ¼ jþ 1; . . . ; p ð5Þ

D2ja2;D02 � DPða2D02Þ

D02jp02;G2 ¼ p02d0 þ ð1 � p02ÞG2

G2jm2; �
2

2
� Nðm2; �

2

2
Þ:

The hyperpriors on α2, π02, μ2, and �
� 2

2
come from the same families specified for the main

effects. The distributions on the main effects and interactions are independent a priori.

Posterior inclusion probabilities (PIPs) are calculated for each mixture component as the

posterior probability of the regression coefficient being assigned a non-zero value. Both NPBr

and NPB were fit using the R package mmpack [44].

Bayesian profile regression. Bayesian profile regression is a dimension reduction

approach that classifies pollutant exposure profiles, xi, into a parsimonious set of clusters using

a DP mixture model (DPMM) [58, 61]. Each cluster represents a group of observations with

similar exposure levels across the vector of pollutants. The health outcome is regressed on clus-

ter indicators to estimate

hðxiÞ ¼ yc ð6Þ

if profile xi is assigned to cluster c. We introduce a latent variable zi = c if exposure profile i is

assigned to cluster c. Conditional on cluster assignment, the model for an individual exposure

profile is

xijzi ¼ c; mc;Sc � Nðmc;ScÞ ð7Þ

mc � Nðn0;L0Þ

S� 1

c � WishpðR; rÞ:

The DPMM for cluster assignment places a truncated stick-breaking prior on the assignment
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probabilities to each cluster. The stick-breaking process and cluster assignment model are

V1; . . . ;VC� 1ja � Betað1; aÞ; VC ¼ 1 ð8Þ

a � Gammaðaa; baÞ

Pðzi ¼ cÞ ¼ cc ¼ Vc

Yc� 1

h¼1

ð1 � VhÞ

zi � CategoricalðcÞ:

Subject to a maximum of C clusters, the DPMM allows the number of non-empty clusters to

be estimated from the data. To identify the most optimal partitioning of the data, we follow the

approach described in Dahl [62] and Molitor et al [58]. First, we construct an n × n score

matrix at each iteration with a 1 in the i, j location if individuals i and j belong to the same clus-

ter and a 0 otherwise. Then we calculate a probability matrix S by averaging the score matrices.

The most optimal clustering is the clustering from the MCMC iteration that has a score matrix

with minimum least squared distance to the probability matrix S. We calculate model averaged

estimates of the cluster-specific parameters θc to incorporate the uncertainty present in the

best clustering [58].

The model has been extended to include variable selection to identify mixture components

actively contributing to cluster assignment [63–65]. Briefly, binary random variables are intro-

duced that indicate whether the mean for a mixture component within a cluster is unique to

that cluster or common among all clusters. Hence, mixture components that are selected into

the model are interpreted as being informative in partitioning the exposure data into clusters,

but are not necessarily related to the health outcome.

We consider two variations of profile regression. The first, supervised profile regression

(SPR), originally introduced by Molitor et al. [58] belongs to the SDR class of methods since

cluster assignments are influenced by the health outcome. The second is an unsupervised

adaptation (UPR) not originally proposed by Molitor et al. [58] that belongs to the UDR class.

The difference between the two variations manifests when the latent cluster assignment vari-

able zi is updated. In the supervised case, we jointly model the response and estimate cluster

assignments. Hence, there is feedback between the health outcome model and the profile

assignment model where the health outcomes can influence cluster assignment. The full condi-

tional for zi depends on both the likelihood of exposures xi and the likelihood of the response

yi:

Pðzi ¼ cjxi; yi; �Þ ¼
ccf ðxijzi ¼ c; mc;ScÞf ðyijzi ¼ c; yc; b;s2Þ

PC
c¼1
cc f ðxijzi ¼ c; mc;ScÞf ðyijzi ¼ c; yc; b;s2Þ

: ð9Þ

Hence, in SPR, individuals with similar exposure profiles but different health outcomes

may be assigned to different clusters depending on their responses.

The unsupervised case involves a two-step procedure where we first estimate cluster assign-

ments independently of the response and then model the response conditional on cluster

assignment. Here, zi depends only on the exposure likelihood:

Pðzi ¼ cjxi; �Þ ¼
ccf ðxijzi ¼ c;mc;ScÞ

PC
c¼1
ccf ðxijzi ¼ c; mc;ScÞ

: ð10Þ

Since the response does not inform cluster assignment in UPR, there may be high uncertainty
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in the estimates of the cluster indicators θc if individuals with similar exposure profiles have

very different health outcomes.

We fit SPR using the R package PReMiuM [65] and UPR using the R package mmpack
developed for this paper [44].

Bayesian kernel machine regression. Bayesian kernel machine regression (BKMR) [36]

belongs to the NP class of methods and flexibly models the exposure-response function to

allow for nonlinear associations and higher order interactions. In BKMR, h(x) is a smooth

function represented using a Gaussian kernel. The response is modeled as

yi � Nðhi þ wT
i g; s

2Þ ð11Þ

h � ðh1; . . . ; hnÞ
T
� Nð0; tKÞ;

where K is the kernel matrix with (i, i0) element Kðxi; xi0 Þ ¼ expf�
Pp

j¼1
rjðxij � xi0 jÞ

2
g, τ is a

hyperparameter, and r = (r1, . . ., rp)T are variable selection parameters. Estimated health out-

comes for individuals with similar exposure levels across the p predictors are shrunk towards

each other, resulting in a smooth but flexible exposure-response function.

BKMR allows for both component-wise and hierarchical variable selection (HVS) to iden-

tify important mixture components. In our simulation and data analysis, we implemented

component-wise variable selection and calculated PIPs for each exposure. We also imple-

mented HVS in our data analysis to address sensitivity of results. We partitioned the mixture

components into groups of air pollutants (PM2.5, PM10, NO2, and O3) and pesticides (C,

MeBr, and OP) and calculated PIPs for each group (group PIPs) and each component within a

group, conditional on group inclusion (conditional PIPs). We fit BKMR using the R package

bkmr [66].

Simulation study design

We evaluated the proposed methods in a simulation study. We ensure a realistic correlation

structure among the pollutants by using the observed exposure data from 153 individuals in

the FACES data set in our simulation study. We also use the observed covariate data in our

simulation study. Health responses were simulated for three exposure-response scenarios,

denoted hk, k = 1, 2, 3, as yi ¼ hkðxiÞ þ wT
i gþ εi, with εi*N(0, 1). The covariate coefficients

γ1, . . ., γq were simulated as independent N(0, 1).

The first scenario, h1 (linear), is an EMM model. For exposures xj, j = 1, . . ., 4, the expo-

sure-response function is

h1ðxÞ ¼ x1 � x2 þ x3 � x4 þ 0:7x1x2 � 0:5x3x4: ð12Þ

Second, h2 (nonlinear) includes nonlinear sigmoidal functions of three pollutants and a multi-

plicative interaction between two of those pollutants:

h2ðxÞ ¼
2

1þ exp ð� 3x1Þ
þ

2

1þ exp ð� 5x2Þ
�

2

1þ exp ð� 5x3Þ
� 0:4x1x2: ð13Þ

Last, h3 (fixed profiles) groups individuals into four distinct clusters based on dichotomous

cut-offs for two pollutants. We assign a constant health effect to individuals in the same
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cluster:

h3ðxÞ ¼

� 2; x1 � medianðx1Þ and x2 � medianðx2Þ

� 1; x1 � medianðx1Þ and x2 > medianðx2Þ

0; x1 > medianðx1Þ and x2 � medianðx2Þ

2; x1 > medianðx1Þ and x2 > medianðx2Þ:

8
>>>>>>><

>>>>>>>:

ð14Þ

We selected these three exposure-response scenarios to cater to different methods in our

simulation study. The linear scenario plays to NPBr and NPB, the nonlinear scenario plays to

BKMR, and the fixed profiles scenario plays to UPR and SPR. We hypothesize that the meth-

ods to which each scenario caters will perform best in that scenario. We are interested in evalu-

ating how methods perform in exposure-response scenarios for which they were not explicitly

developed.

We simulated 200 data sets for each scenario and fit all five Bayesian methods plus LM and

LM-int. As results can be sensitive to which pollutants, xj, j = 1, . . ., 4, are included in h(x), we

randomly selected pollutants to be the active components in each simulated data set. All pol-

lutants, even those not selected as one of the active components, are included as inputs in the

estimated models. By randomly selecting which exposures are the active components of the

mixture, each simulated data set has a different correlation structure among the active expo-

sures, which adds robustness to our simulation study results. We calculated the Calinski-Hara-

basz index [67], the silhouette statistic [68], and the number of clusters to maximize the gap

width [69] to measure the grouping structure of the data generated by the fixed profiles sce-

nario. Although the exposure data remains the same for each data set, the exposures used in

the exposure-response function differ for each data set; hence the clustering in the fixed pro-

files scenario, which is based on the response, differs for each data set. Across the 200 data sets

used in our simulation study, the median Calinski-Harabasz index was 22.54, the median sil-

houette was 0.15, and the median number of clusters to maximize the gap width was 6. The

distribution of each of these statistics can be found in S2 Table in S1 File. In general, the fixed

profiles scenario did not always generate a strong grouping structure with this data, but instead

represents a wide variety of clustering schemes.

We evaluated exposure-response function estimation using root mean squared error

(RMSE) and interval coverage (Cvg). RMSE was calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Pn
i¼1
½hðxiÞ � ĥðxiÞ�

2

q

and

coverage was calculated as the percent of h(xi)’s covered by 95% credible or confidence inter-

vals. RMSE measures the variation between estimated and true values of the exposure-response

function. Coverage measures how often the 95% credible or confidence intervals for the esti-

mated exposure-response function capture the true mixture effect. A method with high RMSE

and low coverage fails to capture the overall mixture effect. In this way, RMSE and coverage

measure the ability of each method to capture the overall mixture effect.

We summarized variable selection through true and false selection rates. In the Bayesian

methods, we consider a variable with a PIP above 0.5 as selected into the model [70]. In LM

and LM-int, a variable is selected if the 95% confidence interval for the respective regression

coefficient does not contain 0. We calculated true selection rate (TSR) as the proportion of

mixture components active in the exposure-response function as main effects that were

selected into the model as main effects, and false selection rate (FSR) as the proportion of mix-

ture components not in the exposure-response function as main effects that were selected into

the model as main effects. All seven exposures are included in the models as inputs, but the

active mixture components are those that define the exposure-response function for each
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simulated data set. For scenario 1, the active main effects are the randomly selected exposures

denoted by x1, x2, x3, and x4; for scenario 2, the active main effects are x1, x2, and x3; and for

scenario 3 the active main effects are x1 and x2. In most methods (NPBr, UPR, SPR, BKMR,

and LM), TSR and FSR are calculated only for main effects. In NPB we can calculate PIPs for

interactions and in LM-int we can calculate confidence intervals for the interaction effects.

Hence, we also evaluate variable selection rates for interactions in NPB and LM-int. We

calculate true selection rate for interactions (TSRint) as the proportion of the exact pairwise

interactions active in the exposure response function that were selected into the model as

interactions, and false selection rate for interactions (FSRint) as the proportion of interactions

that were not active in the exposure-response function that were selected into the model as

interactions. In scenario 1, the true active interactions are x1 x2 and x3 x4 and in scenarios 2

and 3 the only active interaction is x1 x2.

We assessed convergence for a few simulated data sets by visualizing trace plots and com-

paring results from multiple chains. We found evidence of convergence by 20,000 iterations

for all methods. To ensure convergence across all simulated data sets, we based inference on

25,000 samples after a burn-in of 25,000 samples.

We conducted three additional simulation studies to further assess method performance.

First, we considered a null scenario, h4(x), where none of the exposures are associated with the

response. Second, we considered a complex mixture scenario, h5(x), where we simulated data

for seven additional pollutants to have a total of 14 mixture components. Third, we applied

our original simulation study design to a larger sample of size n = 1000 for each data set.

Details on the additional simulations can be found in S1 Appendix in S1 File.

Data analysis

We conducted a data analysis on 153 individuals with complete data in the FACES data set.

We used regression-adjusted FEV1 as the outcome. S1 Table in S1 File summarizes the charac-

teristics of the sample. Pesticide and air pollutant exposures and covariate data were identical

to that in our simulation study (Tables 1, 2, and S1 Table in S1 File). We fit the same models as

in the simulation study. Prior specification for the Bayesian models is listed in S2 Appendix in

S1 File.

Results

Simulation study results

Simulation results are shown in Table 3. Standard errors are shown in S3–S5 Tables in S1 File.

We show the computational time for each method to run for 5000 iterations in Table 4.

Overall BKMR and NPB were the best performing methods with BKMR performing slightly

better in the nonlinear and fixed profiles scenarios. Regarding RMSE for the exposure-

response function, BKMR (RMSE = 0.55) and NPB (RMSE = 0.54) tied for lowest in the linear

scenario. In the nonlinear scenario, BKMR (RMSE = 0.59) pulled slightly ahead of NPB

(RMSE = 0.69), while in the fixed profiles scenario, BKMR (RMSE = 0.69) outperformed all

other methods by a substantial margin. UPR had the highest RMSE in all three scenarios with

SPR having the second highest RMSE.

In addition to having the lowest RMSE in all three scenarios, BKMR consistently had inter-

val coverage closest to the nominal level. LM-int also had interval coverage near the nominal

level in all three scenarios and NPB performed well in the linear scenario. BKMR (Cvg = 0.96),

NPB (Cvg = 0.95), and LM-int (Cvg = 0.95) all achieved the nominal coverage level (0.95) in

the linear scenario. In the nonlinear scenario, BKMR (Cvg = 0.92) and LM-int (Cvg = 0.91)

came closest to the nominal level, with NPB next best but trailing behind (Cvg = 0.86). BKMR
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(Cvg = 0.91) and LM-int (Cvg = 0.91) had the highest coverage by far in the fixed profiles sce-

nario. Again, UPR and SPR performed poorly with the lowest coverage in all three scenarios.

The story is more complex when it comes to variable selection. While BKMR had the high-

est TSR in all three scenarios, it also had the highest FSR. Again, NPB performed very well in

the linear scenario but not as well in the other scenarios, while UPR and SPR had consistently

poor selection rates. Regarding TSR, BKMR (TSR = 1.00) and NPB (TSR = 0.92) performed

best in the linear scenario. BKMR had the highest TSR in the nonlinear scenario (TSR = 0.96),

where the next best methods, NPBr, NPB, and LM, all had mean TSR just under 0.80. BKMR

is singled out with the best TSR in the fixed profiles scenario (TSR = 0.97). UPR, SPR, and

LM-int tended to have low TSR in all three scenarios.

Table 3. Summary of method performance in three data-generating scenarios. Table shows means across all data sets for: root mean squared error (RMSE), coverage

(Cvg), true selection rate for main effects (TSR), false selection rate for main effects (FSR), true selection rate for interactions (TSRint), and false selection rate for interac-

tions (FSRint). Top-performing methods will have low RSME, coverage near the nominal level (0.95), high TSR and low FSR. For each measure and exposure-response sce-

nario, results from the top-performing method(s) are listed in bold.

Method RMSE Cvg TSR FSR TSRint FSRint

h1(x): linear with multiplicative interactions

NPBr 1.02 0.73 0.85 0.35 – –

NPB 0.54 0.95 0.92 0.10 0.59 0.02

UPR 2.01 0.56 0.25 0.26 – –

SPR 1.59 0.54 0.63 0.53 – –

BKMR 0.55 0.96 1.00 0.39 – –

LM 1.01 0.73 0.84 0.29 – –

LM-int 0.73 0.95 0.68 0.04 0.32 0.04

h2(x): nonlinear with multiplicative interactions

NPBr 0.77 0.80 0.79 0.22 – –

NPB 0.69 0.86 0.78 0.16 0.25 0.01

UPR 1.42 0.56 0.27 0.24 – –

SPR 1.27 0.58 0.68 0.58 – –

BKMR 0.59 0.92 0.96 0.48 – –

LM 0.78 0.81 0.78 0.17 – –

LM-int 0.89 0.91 0.54 0.08 0.20 0.07

h3(x): constant function of fixed profiles

NPBr 1.11 0.66 0.66 0.11 – –

NPB 1.02 0.75 0.68 0.13 0.06 0.02

UPR 1.41 0.55 0.27 0.25 – –

SPR 1.38 0.54 0.68 0.59 – –

BKMR 0.69 0.91 0.97 0.64 – –

LM 1.13 0.70 0.69 0.14 – –

LM-int 0.99 0.91 0.56 0.14 0.12 0.11

https://doi.org/10.1371/journal.pone.0249236.t003

Table 4. Computational time for each method to run 5000 iterations on MacBook Pro in R version 3.6.1. Time is

reported in seconds. Results reflect 10 evaluations of each method.

method minimum mean maximum

NPBr 6.90 7.03 7.17

NPB 24.73 24.95 25.23

BKMR 219.43 222.96 235.41

UPR 57.82 58.66 59.50

SPR 90.34 92.47 98.65

https://doi.org/10.1371/journal.pone.0249236.t004
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A low false selection rate indicates a model does not erroneously classify exposures as asso-

ciated with the outcome when they are not. Here, BKMR had some of the highest FSR across

the three scenarios. In the linear scenario, LM-int (FSR = 0.04) and NPB (FSR = 0.10) had the

lowest FSR. LM-int also had the lowest FSR in the nonlinear scenario (FSR = 0.08). In the

fixed profiles scenario, NPBr, NPB, LM, LM-int all had similar FSR at or below 0.14. Along

with BKMR, SPR had high FSR in all three scenarios.

When considering overall variable selection performance, NPB takes the top spot in the lin-

ear scenario, with high TSR and low FSR. No method was able to simultaneously achieve dom-

inant TSR and FSR in the nonlinear or fixed profiles scenarios.

Only NPB and LM-int directly parameterized variable selection for interactions in an easily

interpretable manner. Interpretable variable selection for interactions is itself an advantage of

these approaches over the other methods. In the linear scenario, NPB (TSRint = 0.59) had

higher TSRint than LM-int (TSRint = 0.32). Both methods had poor TSRint in the nonlinear and

fixed profiles scenarios, with values at or below 0.25. Regarding FSRint, both methods per-

formed well in all three scenarios, with FSRint consistently at or below 0.11.

The additional simulations produced similar results, with NPB and BKMR being consis-

tently top-performing methods in terms of estimating the exposure-response function and

identifying active mixture components. In the null scenario, NPBr and NPB had lowest FSR,

meaning these methods were the best at not selecting any mixture components into the model

when none were associated with the response (S6 Table in S1 File). Results from the complex

mixture scenario largely mirrored those from the linear scenario (S7 Table in S1 File). BKMR

and NPB remained top-performing in the larger sample size simulation and TSR improved for

all methods. Here, UPR and SPR had high TSR and FSR, meaning they often selected all of the

mixture components into the model (S8 Table in S1 File).

Data analysis results

The results from our analysis of the FACES data set varied across the methods. First we con-

sider the traditional models LM and LM-int. LM showed evidence for main effects of NO2 (b̂:

-0.32, CI: -0.54, -0.10) and PM10 (b̂: 0.19, CI: 0.02, 0.35). LM-int showed evidence for main

effects of MeBr (b̂: 0.17, CI: 0.05, 0.29), NO2 (b̂: -0.68, CI: -1.10, -0.25), and PM10 (b̂: 0.50, CI:

0.08, 0.93) and an interaction between C and PM2.5 (b̂: 0.28, CI: 0.01, 0.54) (Table 5). The

Table 5. Results from analysis of FACES data set using LM and LM-int. Table includes effect estimates (b̂), 95% confidence intervals, and associated p-values for all

main effects in LM and LM-int plus the interaction effects in LM-int with p-values� 0.10. The regression coefficient b̂ is the expected change in FEV1 for a 1 standard

deviation increase in the square root transformed exposures.

LM LM-int

b̂ 95% CI p-value b̂ 95% CI p-value

C 0.04 (-0.03, 0.11) 0.24 0.05 (-0.08, 0.19 0.44

MeBr 0.00 (-0.06, 0.07) 0.96 0.17 (0.05, 0.29) 0.01

OP 0.05 (-0.03, 0.13) 0.24 0.02 (-0.17, 0.22) 0.80

O3 -0.06 (-0.20, 0.07) 0.36 -0.13 (-0.32, 0.06) 0.17

NO2 -0.32 (-0.54, -0.10) 0.01 -0.68 (-1.10, -0.25) 0.00

PM2.5 -0.01 (-0.20, 0.17) 0.90 -0.11 (-0.48, 0.26) 0.55

PM10 0.19 (0.02, 0.35) 0.03 0.50 (0.08, 0.93) 0.02

C:PM2.5 – – – 0.28 (0.01, 0.54) 0.04

OP:PM10 – – – 0.31 (-0.01, 0.62) 0.05

NO2:PM10 – – – 0.33 (-0.05, 0.72) 0.09

https://doi.org/10.1371/journal.pone.0249236.t005
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results from the linear models indicating a protective effect of PM10 are counter-intuitive as

there is an extensive literature on the deleterious health effects of PM on lung function. None

of the other methods found evidence of protective effects for any of the exposures.

Next we consider the five contemporary methods. NPBr did not identify any exposures

with PIPs above 0.5. The exposure with the highest PIP was NO2 (PIP = 0.47), which was esti-

mated to be negatively associated with FEV1 (b̂: -.08, CI: -0.35, 0.00). In NPB, NO2 was

selected (PIP = 0.60) and was also negatively associated with FEV1 (b̂: -0.12, CI: -0.36, 0.00)

(Table 6). No other main effects or interactions were selected by either method (S10 Table in

S1 File).

In BKMR, NO2 was selected as an important mixture component with a PIP of 0.96 (S11

Table in S1 File). No other exposures had PIPs above 0.5. Results were similar using the HVS

formulation (S12 Table in S1 File). NO2 had a negative and nonlinear association with FEV1

(Fig 1). To identify interactions, we plot the posterior distribution of the exposure-response

function for each pair of exposures, holding all other exposures constant at their median val-

ues, and visually inspect changes in the response as both exposures change. In doing so we

found no notable interactions among exposures (S1 Fig in S1 File).

As clustering algorithms, UPR and SPR reveal a different kind of story. UPR revealed four

clusters as the best partitioning of the data. Each cluster had similar estimated health effects

(Fig 2a); hence, despite partitioning the exposure space there was no meaningful association

between the exposure profiles and the health outcome. Fig 2b–2e shows the empirical exposure

means for individuals assigned to each cluster. The first cluster of n = 25 individuals was dis-

tinguished by higher than average exposure to MeBr. Cluster 2 (n = 33) had low exposure to

OP and O3 and high exposure to NO2 and PM2.5 relative to the average. The third cluster

(n = 9) was characterized by relatively high exposure to OP and low exposure to O3. Individu-

als in cluster 4 (n = 86) had nearly average exposure to most pollutants except MeBR, which

was notably below average; in addition, O3 exposure was slightly above and PM2.5 exposure

was slightly below average. UPR selected OP (PIP = 0.57), O3 (PIP = 0.54), NO2 (PIP = 0.61),

and PM2.5 (PIP = 0.56) as important mixture components (S13 Table in S1 File).

SPR also revealed four clusters as the best partitioning of the data. The estimated exposure-

response function for cluster 3, the smallest cluster (n = 9), had a 0.97 posterior probability of

being greater than the overall mean estimated exposure-response function (Fig 3a). The cluster

sample sizes and associated empirical exposure means were very similar to those in UPR (Fig

3b–3e), with the labels switched for clusters 1 and 4. In both UPR and SPR, cluster 3 was the

smallest cluster and had an estimated mean health effect higher than average, but there was

more uncertainty around the health effect in UPR likely due to the two-stage approach for

Table 6. Results from analysis of FACES data set using NPBr and NPB. Table shows estimates (b̂), 95% credible intervals, and posterior inclusion probabilities (PIP) for

main effect exposures in NPB and NPBr. The regression coefficient b̂ is the expected change in FEV1 for a 1 standard deviation increase in the square root transformed

exposures. All interaction effects in NPB had posterior inclusion probabilities below 0.12.

NPBr NPB

b̂ 95% CI PIP b̂ 95% CI PIP

C 0.00 (0.00, 0.04) 0.07 0.00 (0.00, 0.03) 0.07

MeBr 0.00 (-0.02, 0.00) 0.06 0.00 (-0.01, 0.00) 0.06

OP 0.02 (0.00, 0.12) 0.21 0.01 (0.00, 0.11) 0.16

O3 0.00 (-0.08, 0.02) 0.11 -0.01 (-0.12, 0.01) 0.11

NO2 -0.08 (-0.35, 0.00) 0.47 -0.12 (-0.36, 0.00) 0.60

PM2.5 0.00 (-0.08, 0.06) 0.13 0.00 (-0.09, 0.05) 0.12

PM10 0.02 (0.00, 0.21) 0.21 0.02 (-0.01, 0.20) 0.19

https://doi.org/10.1371/journal.pone.0249236.t006
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Fig 1. Results from analysis of FACES data set using BKMR. Figure shows the univariate relationship between each exposure

and FEV1, holding all other exposures at their median value.

https://doi.org/10.1371/journal.pone.0249236.g001

Fig 2. Results from analysis of FACES data set using UPR. Panel (a) shows the distribution of the model averaged estimated

exposure-response function (θc) for each cluster identified in the best clustering by UPR. The dotted line represents the overall

mean estimated exposure-response function across all clusters. Panels (b-e) show the empirical exposure means of the

individuals assigned to each cluster in the best clustering, with 1 standard deviation error bars. The dotted lines are drawn at 0,

the mean of the standardized exposure data.

https://doi.org/10.1371/journal.pone.0249236.g002
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estimation. SPR selected five important mixture components: MeBr (PIP = 0.71), OP

(PIP = 0.51), O3 (PIP = 0.75), NO2 (PIP = 0.67), and PM2.5 (PIP = 0.63) (S13 Table in S1 File).

We found the clustering and PIPs in UPR and SPR to be sensitive to prior choice particularly

for the cluster-specific precision matrix and error precision.

Discussion

Interest is rapidly growing in estimating the association between exposure to mixtures of envi-

ronmental chemicals and health outcomes. As a result, new statistical approaches have been

developed for studying health outcomes associated with exposure to mixtures. The purpose of

this paper was to evaluate and compare recently developed methods for mixtures and deter-

mine which research questions they answer well and in which scenarios. We limited our study

to contemporary Bayesian methods since they are under-studied, under-utilized, and may

have the ability to answer multiple research questions. Our results highlight the advantages of

the flexible modeling and Bayesian framework of BKMR and NPB in estimating the exposure-

response function precisely and identifying mixture components most strongly associated

with the health outcome.

Overall, BKMR was a top-performing method. In each of the scenarios, BKMR estimated

the exposure-response function with coverage closest to the nominal level (0.95) and lowest

RMSE. Despite being a more flexible approach based on Gaussian processes, BKMR had lower

RMSE in the linear scenario than NPBr, LM, and LM-int, all of which assume linearity. This is

likely because NPBr and LM do not account for interactions and LM-int can result in inflated

standard errors in the presence of correlated data. BKMR identified active mixture compo-

nents with the greatest frequency, but also included inactive components more often than

other methods. Although we did not evaluate variable selection rates for interactions in BKMR

Fig 3. Results from analysis of FACES data set using SPR. Panel (a) shows the distribution of the model averaged estimated

exposure-response function (θc) for each cluster identified in the best clustering by SPR. The dotted line represents the overall

mean estimated exposure-response function across all clusters. Panels (b-e) show the empirical exposure means of the

individuals assigned to each cluster in the best clustering, with 1 standard deviation error bars. The dotted lines are drawn at 0,

the mean of the standardized exposure data.

https://doi.org/10.1371/journal.pone.0249236.g003
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in our simulation, BKMR can identify linear or nonlinear interactions among exposures

through visualization or summarizing the posterior distribution of the exposure-response

function. A drawback to BKMR is that results are not as easily interpreted as in NPB or the lin-

ear models, though there are currently efforts to enhance interpretation and a suite of visuali-

zation approaches that aid in interpretation. BKMR is an appealing choice for mixtures

because it makes minimal assumptions on the shape of the exposure-response function and

includes a sophisticated variable selection algorithm for identifying important mixture

components.

NPB was top-performing in the linear scenario regarding estimating the exposure-response

function, identifying both active and inactive mixture components, and identifying interac-

tions. NPB performed well even when the exposure-response function was mildly nonlinear,

but lacks the flexibility of BKMR for the fixed profiles scenario, which is highly nonlinear. The

AME method NPBr poorly estimated the exposure-response function in the linear scenario,

likely from not accounting for interactions. An advantage of NPB is its ease of interpretation,

which is similar to interpreting a linear regression model. NPB estimates PIPs and effect sizes

for all main effect and interaction terms, providing precise information regarding the contri-

bution of each exposure to the mixture and its effect on the health outcome.

The profile regression methods, UPR and SPR, poorly addressed the research questions of

interest in all three scenarios. Two explanations for this include lack of a clustering structure

in the exposure data and a weak signal, both of which inhibit these methods from accurately

estimating the multipollutant exposure-response function. Further, UPR and SPR do not have

the ability to identify or estimate interactions or tease out individual effects of the pollutants

within a mixture. These methods may not be appropriate for studies in which the primary

objectives are to estimate the multipollutant exposure-response function and identify driving

mixture components. As clustering methods, UPR and SPR are likely to perform better on

data that has a strong grouping structure. Since we used a single data set in our simulation

study, the results of our simulation should not be interpreted as representative of performance

on all data structures. A particular advantage of UPR and SPR is that the number of clusters

need not be pre-specified.

The linear model with interactions, LM-int, had coverage above 0.91 in all three scenarios,

but had higher RMSE and lower TSR than BKMR and NPB. LM-int and NPB are both EMM

methods, and NPB outperformed LM-int in the linear EMM scenario. LM and LM-int have

the advantage of being easy to implement and interpret, but these methods estimated the expo-

sure-response function with more uncertainty than the top-performing methods and generally

lacked the ability to select truly active mixture components, likely due to high correlation

among exposures.

In our application to the FACES data set, four methods (LM, LM-int, NPB, and BKMR)

identified NO2 as an important mixture component negatively associated with the health out-

come. In addition, LM and LM-int estimated PM10 to have a positive association with FEV1,

and PM10 was positively correlated with NO2. Further, the magnitude of the effect estimate for

NO2 in LM and LM-int was several times larger than that estimated in NPB, and the confi-

dence intervals were also larger, reflecting more uncertainty. UPR and SPR also identified

NO2 as an important mixture component, but we cannot determine the sign of effect using

these methods. Instead, UPR and SPR have the ability to estimate how the overall mixture is

associated with the health outcome. UPR revealed four clusters with similar estimated health

effects; hence, patterns in the exposure data were not associated with FEV1. In SPR, the small-

est cluster was associated with higher average FEV1 than the other clusters, suggesting an asso-

ciation between a relatively rare mixture of exposures and the health outcome. Alternatively,

this small cluster may reflect a strong influence from the health outcome in the clustering
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using a supervised learner. Meanwhile, BKMR was able to describe a nonlinear association

between NO2 and FEV1.

Using missing indicators may have introduced some bias in the effect estimates. Addition-

ally, all Bayesian methods are sensitive to prior specification and results may vary with more

or less informative priors. PIPs are particularly sensitive to prior specification in all methods,

so changing prior hyperparameters may lead to changes in TSR and FSR. We implemented all

models using the default priors as specified by the authors to obtain an objective comparison

of these methods.

Along with the primary research question, the best performing method is likely to depend

on the exposure data. We used observed exposure data so our results are highly relevant to

realistic settings. Our simulation results can be generalized to small data sets with a limited

number of localized exposures, which is a frequent scenario in epidemiological studies.

In analyses of environmental mixtures and human health, model choice depends on the

assumed exposure-response relationship and the primary questions of interest. NPB and

BKMR are recently proposed methods that outperformed traditional regression models and

offer promising tools for mixtures analyses. We recommend NPB when the exposure-response

function is assumed to be approximately linear and a primary goal is accurately identifying

which are the active and inactive components of the mixture. NPB is also highly interpretable

and explicitly tests for interactions. We recommend BKMR if the exposure-response function

is assumed to take on a complex form and the primary goal is estimating the form of the expo-

sure-response function while at the same time identifying important mixture components.

Our results suggest that UPR and SPR do not reliably answer our specified research questions,

but may be applicable for different research questions such as pattern recognition. We further

encourage users to take advantage of our R package mmpack [44] to replicate the simulation

and determine how each method performs on their own data. Results will likely be different

on different data sets. In particular, the profile regression methods may perform better on data

that exhibits a stronger clustering structure in the fixed profiles scenario. We include the clus-

tering statistics as part of the summary of the fixed profile scenario output so users can see

how much grouping structure is in their own data. Replicating the simulation on their own

data will enable users to choose the best method for their data and specific research question.
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