
Hereditary retinal dystrophies (HRDs) are clinically and 
genetically broad disorders of the retina leading to severe 
visual impairment. More than 200 genes and loci have been 
reported to contribute to the genetic diversity and subtypes of 
retinal dystrophies [1]. Relative to the affected gene, the onset 
of the phenotype may arise at birth, occur during childhood, 
or become evident in early adulthood. The overlapping of 
clinical characteristics intensifies the genetic complexity and 
hampers accurate clinical diagnosis [2]. Consanguinity plays 
a significant role in the prevalence of HRDs [3]. Advanced 
molecular techniques (targeted gene panel, whole genome 
sequencing [WGS], and whole exome sequencing [WES]) 
have significantly boosted the detection of candidate variants 
paving the road to the extensive study of genes and determi-
nation of the underlying variations which has now become 
a crucial process in genotype–phenotype correlation and 
disease management. Owing to the complex nature of HRDs, 
next-generation sequencing offers adequate resources and 
insight into the genetics of novel disease genes and strongly 
influences genetic counseling for recurrence risk assess-
ment, prenatal diagnosis (PND), as well as helping predict 
the clinical course of the disease. Overall, amalgamation 

of advanced technologies and clinical counseling underpin 
improvements in disease management and clinical outcome 
providing greater support for the patient’s everyday life.

The aim of this study was to investigate the genetic basis 
of hereditary retinal dystrophies in five Iranian families. 
Applying WES, we report the ascertainment of homozygous 
mutations in the TTC8 (Gene ID 123016; OMIM 613464), 
CRB1 (Gene ID 23418; OMIM 600105), LRP5 (Gene ID 4041; 
OMIM 603506), MERTK (Gene ID 10461; OMIM 604705), 
and ABCA4 (Gene ID 24; OMIM 601718) genes.

METHODS

The present study was approved by the Ethical Committee, 
Deputy of Research Affairs of Shahid Beheshti University 
of Medical Sciences, following the Declaration of Helsinki. 
The families presented at the multidisciplinary genetic clinic 
at Genomic Research Center, Shahid Beheshti University of 
Medical Sciences (SBMU) and the Comprehensive Shiraz 
Medical Genetics Center for genetic counseling and investi-
gation of the underlying cause of blindness in their families.

Clinical description:

Family A—Family A is a non-consanguineous family 
of north Iranian descent in the Mazandaran province with 
two affected children (Figure 1). The proband is a 7-year-
old girl with developmental delays born via uncomplicated 
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Caesarean section. She presented speech and mental delays, 
autistic behavior, and nephronophthisis. Visual problems 
appeared at the age of 3 when the patient was unable to move 
around and stood still in dim light conditions. At present, she 
is incapable of noticing objects and may trip if not warned. 
Her older brother also expresses similar features of visual 
impairment but is healthy otherwise. Based on an overview 
of the clinical examinations, age at presentation, and family 
history, WES was proposed to the family.

Family B—The proband is a 10-year-old healthy boy 
born to first-cousin parents from the city of Shiraz (Figure 
1). When he was 5 months old, his parents realized his lack 
of attention to objects. He turned his head only at noises. 
Ophthalmic examination confirmed roving eye movements 
and congenital retinal dysgenesis in both eyes. Fundus 

examination revealed pigmentary changes (Figure 2A; Table 
1). He has had a progressive decrease in visual acuity, and at 
present, despite being able to notice light, he cannot distin-
guish colors. The patient has nystagmus and nyctalopia. He 
attends a school for the blind and uses the Braille system to 
read and write. The patient is mentally stable and physically 
healthy. There was no previous family history of genetic 
disorders. WES was recommended to the family for further 
investigations of the genetic defect.

Family C—A 6-month-old girl was born to consan-
guineous parents in Shiraz via normal vaginal delivery. 
There was no evidence of genetic disorders in the family 
pedigree (Figure 1). At 2 months of age, the patient was in 
constant distress, but as her parents and doctors were unable 
to localize the pain, the infant lost vision in both eyes due to 

Figure 1. Overview of the pedigree and genotyping results of the participating families. Genotypes and cosegregation results are 
provided for all probands and available family members. Probands are indicated with an arrow. Affected individuals are shown in black. 
Hom=Homozygous, Het=Heterozygous.
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ocular hypertension. Subsequently, she had bilateral retinal 
detachment, bilateral persistent hyperplastic primary vitreous 
(PHPV), and arterial septal defect (ASD). With respect to the 
clinical evidence and the lack of a clearcut diagnosis, WES 
was offered to the family.

Family D—A 33-year-old man with visual defect from 
the city of Ilam was born to consanguineous parents (Figure 
1). At the age of 8, he experienced night blindness followed 
by gradual loss of peripheral vision. By the age of 23, he had 
difficulty reading and writing and could not recognize colors. 

Fundus examination showed widespread retinal degeneration 
(Figure 2B; Table 1). At present, he uses a Zoomax electronic 
magnifier to read. The patient underwent cataract surgery. 
His cousin also experienced similar visual symptoms but 
did not seek genetic counseling. The patient wanted to get 
married and was curious to learn about the genetic basis of 
his blindness. WES was advised to the patient.

Family E—A 30-year-old man from Hamedan province 
was born to first-cousin parents (Figure 1). When he was 13, 
the first symptoms of loss of central vision emerged followed 

Figure 2. Fundus photograph of affected individuals. A: Left and right eyes of proband (II:I) of family B presenting Drusen-like spots, attenu-
ated vessels, pallor optic disc, and pigmentary changes. B: Left and right eyes of proband (III:I) of family D showing diffuse pigmentary 
retinal degeneration, bony spicule, attenuated vessels, and optic disc pallor.
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by gradual loss of visual acuity. Fundus examination detected 
macular degeneration (Table 1). At present, the patient has 
normal peripheral vision in both eyes; however, he experi-
ences difficulty adjusting to dim and dark light conditions. 
He is able to differentiate colors but is unable to notice details 
in the objects. He also has strabismus for which he did not 
undergo surgery. The patient wished to marry a healthy 
woman and was interested in a risk assessment to perform 
PND during every pregnancy. Based on the absence of a 
history of genetic disorders in the family and the desire of 
the bride’s family, the patient requested WES.

Genetic analysis: Peripheral blood samples were collected 
from the patients and their family members after written 
informed consent was obtained. Peripheral blood (3-5 ml) 
was collected from affected individuals and their parents 
where these were available by venepunture and drawn in 
BD vacutainer® EDTA blood collection tubes (BD Biosci-
ences, Oxford UK). Samples were stored at 4 °C prior to use. 
Genomic DNA was extracted from peripheral blood leuko-
cytes as according to standard procedures. WES was initially 
performed (Macrogen Inc., Seoul, Korea) on the probands 
to sequence close to 100 million reads on an Illumina 
HiSeq4000 Sequencer (Macrogen Inc. Seoul, Korea) with 
paired-end sequencing, read length 101 bp, and coverage of 
100X. Exon enrichment was performed according to the Sure-
Select Human All Exon kit (Agilent). The sequencing read 
was aligned and mapped to hg19 from the UCSC Genome 
Browser, and identified variants were annotated and filtered 
using the in-house developed annotation pipeline based on 
ANNOVAR. After extensive filtration using databases such 
as 1000 genome, ExAC, and Varsome, we ended up with more 
than 1,000 genetic variations. Focusing on homozygous vari-
ants (minor allele frequency [MAF]<0.001), they were priori-
tized based on their pathogenicity degree, and variants in 
genes related to hereditary retinal dystrophies were selected 
for interpretation. Genomic DNA was analyzed by PCR using 
ABI 9700 PCR System (Applied Biosystems) and Sanger 
sequencing using specific primers (Primer3) for amplifying 
all exons and exon–intron boundaries of the identified vari-
ants in TTC8, CRB1, MERTK,and ABCA4 (Primer sequences 
can be provided upon request). Results were analyzed using 
Lasergene SeqMan Pro software (DNASTAR, Madison, WA; 
Figure 3). Furthermore, protein modeling was conducted to 
assess the structural and functional effects of the identified 
mutations.

RESULTS

Five native Iranian families from across the country were 
investigated in this study. Despite the variability and severity 
of the phenotypic presentations, all affected patients had 
moderate to severe loss of visual acuity (Table 1). To iden-
tify the causative mutations, genomic DNA of the affected 
patients were analyzed through WES. Molecular approaches 
identified five novel homozygous mutations: the deletion 
mutation c.586_589delTTTG (p.F196Sfs*56) in the TTC8 
gene of family A associated with Bardet-Biedl syndrome, the 
missense mutation c.2389T>C (p.S797P) in the CRB1 gene 
(ClinVar SCV000746539.1) in family B associated with Leber 
congenital amaurosis, the frameshift mutation c.2707dupA 
(p.S903Kfs*66) in the LRP5 gene associated with familial 
exudative vitreoretinopathy in family C, the splice mutation 
c.584–1G>T in the MERTK gene (ClinVar SCV000588383.1) 
associated with retinitis pigmentosa in family D, and the 
missense mutation c.1819G>C (p.G607R) rs61749412 in 
the ABCA4 gene (ClinVar SCV000117568) associated with 
Stargardt disease in family E (Table 2). Mutation nomencla-
ture was based on cDNA nucleotide position according to 
Ensembl and Mutalyzer 2.0.28. To interpret the pathogenicity 
of the sequence alterations, we implemented in silico analyses 
using different prediction programs and software, including 
Provean, SIFT, Mutation Taster, and Combined Annotation 
Dependent Depletion (CADD) [4-7]. Cosegregation was 
performed in families A and B to verify the genotype–pheno-
type correlation (Figure 3).

DISCUSSION

Hereditary retinal dystrophies are a group of heterogeneous 
disorders caused by mutations in more than 200 genes [1]. 
HRDs can be subdivided into different groups based on the 
primary degeneration of rod or cone photoreceptor cells. 
This study was conducted to investigate the underlying HRD 
genes and mutations in five families from Iran.

The MERTK gene is predominantly associated with reti-
nitis pigmentosa (OMIM 613862). It encodes a 984-amino 
acid protein localized at the membrane of the RPE and is a 
key element in the process of outer segment (OS) phagocy-
tosis [8]. The RPE undergoes one of the largest phagocytic 
burdens in the body [9]. Mutations in the MERTK gene 
hinder phagocytic engulfment of the OS by the RPE causing 
accumulation of debris between the RPE and photoreceptors 
leading to progressive degeneration of the retinal cells [10,11]. 
The c.584–1 G>T splice site mutation may alter or abolish 
correct mRNA splicing during the process of precursor 
mRNA maturation.

http://www.molvis.org/molvis/v24/679
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Defects in the CRB1 gene account for a series of auto-
somal recessive retinal dystrophies, such as Leber congenital 
amaurosis (LCA; OMIM 613835) [12]. It is a large complex 
mapped to chromosome 1q31.3 [13,14] and is located in the 
microvilli and the outer plexiform layer of Müller glial cells 
and in the inner segments of photoreceptors [15]. CRB1 
contains three laminin G-like domains that form the globular 

part of the protein. In this mutation c. 2389T>C (p.S797P), 
the serine amino acid at position 797 is located in the second 
laminin G-like domain (LAMG 2), and substitution of this 
amino acid with proline affects interaction with other proteins 
[16] (Figure 4). A functional glitch of the CRB1 gene results 
in several types of retinal dystrophies, including early-onset 
RP, telangiectasia, and mild retinopathies [17,18].

Figure 3. Chromatogram of families A, B, D, and E presenting homozygous affected and cosegregation analysis in the kindred. Arrow 
indicates the location of the nucleotide variation.

http://www.molvis.org/molvis/v24/679
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The ABCA4 gene encodes a 2273 amino acid protein 
produced by the photoreceptor cells in the retina. This 
protein is specifically active during phototransduction to 
remove a potentially toxic substance called N-retinylidene-
PE from the photoreceptors. Mutations in the ABCA4 gene 
result in accumulation of toxin products causing Stargardt 
disease (OMIM 248200), a condition generating injury 
and loss of function in the light receptor cells [19,20]. The 
c.1819G>C (p.G607R) mutation leads to substitution of the 
arginine amino acid at potion 607 in the ABCA4 gene. Thus 
far, two variants at this position, c.1819G>A (p.G607R) and 
c.1819G>T (p.G607W), have been associated with Stargardt 
disease [21,22]. The results of this study together with results 
from previous studies show that position 607 is a hotspot in 
this gene. ABCA4 has high sequence homology with ABCA1, 
and protein modeling based on PDB 5XJY suggests that the 

side chain of the arginine probably inhibits correct folding of 
the protein (Figure 4).

The LRP5 gene, positioned to chromosome 11q13.2, 
encodes single-pass transmembrane receptors that commu-
nicate with the seven-pass transmembrane receptor to bind 
wingless (Wnt) proteins to activate the canonical Wnt-β-
catenin pathway essential for angiogenesis of the retina 
[23-25]. Familial exudative vitreoretinopathy (FEVR, 
OMIM 133780) is a group of hereditary disorders of the 
retina generated by the premature vascularization of the 
peripheral retina leading to retinal neovascularization or 
tractional retinal detachment [26,27]. Thus far, mutations in 
the LRP5, NDP (Gene ID 4693; OMIM 310600), FZD4 (Gene 
ID 8322; OMIM 133780), and TSPAN12 (Gene ID 23554; 
OMIM 613138)  genes are known to account for FEVR. The 
c.2707dupA (p.S903Kfs*66) mutation in LRP5 is located at 
the extracellular binding domain of the protein sequence. 

Figure 4. Schematic representation of S797P substitution in the LAMG domain of the CRB1 336 gene. A: Modeling of LAMG 2 (amino acids 
from 735 to 860) using Phyre2 showed 337 that S797 (wild type in blue) is located in beta-sheet and has polar contacts with L739 (in 338 
orange) and Y808 (in orange) which are also located in the beta-sheet of the second laminin G-339 like domain. Substitution of proline at 
position 797 (mutant type in red) is conducive to the beta-340 sheet. B: It can hinder the binding of other proteins or result in destabilization 
of the protein 341 structure and protein folding. C: Schematic presentation of the G607R substitution in the ABCA4 342 gene. Wild-type 
residue glycine in blue and mutated residue arginine in red are shown at position 343 607.
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Therefore, frameshift mutations in this region are likely 
pathogenic and may lead to protein truncation or nonsense 
mediated mRNA decay (NMD) [28].

Bardet-Biedl syndrome (BBS; OMIM 209900) is a genet-
ically heterogeneous disorder associated with progressive 
early-onset retinitis pigmentosa, polydactyly, renal abnor-
malities, obesity, hypogonadism, and mental disability [29]. 
BBS is a member of group of ciliopathies needed to modulate 
intraflagellar transport (IFT) [30]. Cilia play an essential role 
regulating and maintaining the photoreceptor cells [31]. To 
date, 21 BBS genes (BBS1–21) have been identified [32]. 
Seven BBS proteins (BBS1, BBS2, BBS4, BBS5, BBS7, 
TTC8/BBS8, and BBS9) which form the BBSome complex 
are involved in the intracellular vesicular transport and cilio-
genesis [33]. The encoded protein mediates protein–protein 
interactions and the assembly of multiprotein complexes 
through its tetratricopeptide repeat (TRP) motif consisting of 
six tandem repeats of 34 amino acids each [34]. The mutation 
in the TTC8 gene, c.586_589delTTTG (p.F196Sfs*56), may 
result in the production of a truncated protein or NMD.

In summary, hereditary retinal dystrophies are degenera-
tive diseases of the retina with common clinical and genetic 
presentations. The complexity and wide phenotypic spectrum 
of the HRDs often create a challenge in definite diagnosis of 
the disorder. In such circumstances, genetic testing could help 
to delete the clinical ambiguity. The data presented in this 
study are novel and have not been reported in any population 
to date. These data highlight the importance of meticulous 
clinical diagnosis for lifestyle management of patients with 
visual disabilities. The need to uncover genetic diagnosis of 
HRDs is particularly important in the development of gene 
therapy–based treatments, prenatal diagnosis, and advances 
in reproductive options. Therefore, the combination of precise 
clinical and advanced molecular diagnoses may open new 
horizons for therapeutic services aiding future decision-
making and assisting with research. It is anticipated that 
this approach could minimize the risk of hereditary retinal 
diseases in relevant Iranian families.
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