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Cortical dipole imaging has been developed to visualize brain electrical activity in high spatial resolution. It is necessary to solve
an inverse problem to estimate the cortical dipole distribution from the scalp potentials. In the present study, the accuracy of
cortical dipole imaging was improved by focusing on filtering property of the spatial inverse filter. We proposed an inverse filter that
optimizes filtering property using a sigmoid function. The ability of the proposed method was compared with the traditional inverse
techniques, such as Tikhonov regularization, truncated singular value decomposition (TSVD), and truncated total least squares
(TTLS), in a computer simulation. The proposed method was applied to human experimental data of visual evoked potentials. As
a result, the estimation accuracy was improved and the localized dipole distribution was obtained with less noise.

1. Introduction

The spatial resolution of electroencephalogram (EEG) data
is limited because of the small number of scalp surface elec-
trodes used and the low conductivity of the skull. Therefore,
it was difficult to specify brain electrical activity directly
from the potential distribution measured on the scalp surface.
Cortical dipole imaging that estimates the equivalent dipole
source distribution on a virtual layer within a brain from the
scalp potential has been proposed to solve this problem [1, 2].
According to cortical dipole imaging, brain electrical activity
is represented by the equivalent dipole distribution without
being restricted in the number and the direction of the signal
sources.

The cortical dipole distribution is estimated from the
scalp potentials by solving an inverse problem of the transfer
matrix from the dipole layer to the scalp surface based on a
head model. The solution of the inverse problem is influenced
not only by the measurement noise but also by the error
in the transfer matrix. The measurement noise originates in
the measurement environment, caused by factors such as
the variance of the electrode impedance, the environmental
noise, and artifacts caused by eye blinks or body movements.

On the other hand, the transfer matrix error originates in the
distortion of the head model design such as errors of an elec-
trode displacement, individual differences in head shape, and
nonuniform electrical conductivity. Therefore, it is important
to reduce the influence from both the measurement noise
and the transfer matrix error for the EEG inverse solution of
cortical dipole imaging.

Several spatial inverse filters have been proposed to
reduce the influence of the measurement noise. Tikhonov
regularization [3] and truncated singular value decomposi-
tion (TSVD) [4] were applied to truncate the noisy com-
ponents. Use of a parametric projection filter incorporated
with the statistical information on the noise has also been
proposed [5, 6]. Moreover, the transfer matrix error was taken
into consideration in the truncated total least squares (TTLS)
method [7]. In this method, after scaling the covariance of the
transfer matrix error to equal that of the measurement noise,
the solution is estimated by minimizing the influence from
both the measurement noise and the transfer matrix error.
TTLS has been applied to a bioluminescence topography
inverse problem [8] and an ECG inverse problem [9]. We
applied TTLS to the inverse problem of cortical dipole
imaging [10]. TTLS provided better results compared with
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the traditional inverse methods when the transfer matrix was
included in the forward problem.

In the present study, we paid attention to filtering prop-
erty when solving the cortical inverse problem in order to
improve the accuracy of cortical dipole imaging. Filtering
property presents the amplitude characteristics by changing
the singular value when singular value decomposition (SVD)
is applied to the inverse solution. According to filtering prop-
erty, the terms easily influenced by noise are reduced while
the terms with less noise are passed. We estimated optimum
filtering property using the least squares method (LS) in the
simulation of several signal source configurations. An inverse
filter model was constructed by approximating the filtering
property with a sigmoid function. The proposed method
was compared with traditional inverse techniques such as
Tikhonov regularization, TSVD, and TTLS in computer
simulation [11]. Based on the simulation results, our method
was applied to human EEG data of visual evoked potential
(VEP) [12]. The results indicated that the proposed method
can provide better performance compared with traditional
inverse techniques. In the present study, the restorative ability
and applicability of the proposed method are defined by
changing the signal and noise configurations and by applying
these to several sets of experimental data. Concretely, the
optimum parameter for the sigmoid function-based inverse
filter is investigated by changing the depth of the signal source
and the noise level.

2. Methods

2.1. Cortical Dipole Imaging. Cortical dipole imaging is one
of the high-resolution EEG mapping techniques. A volume-
conductor head model is used to estimate the cortical dipole
distribution from measured scalp potentials. The head model
is approximated by an inhomogeneous set of three concentric
spheres that represent the scalp, the skull, and the brain, as
shown in Figure 1 [2]. The radius of the scalp is set to 1 and
the radii of the skull and the cortex are set to 94% and 87%
of the scalp radius, respectively. The conductivity of the skull
was set to 0; = 0.0125 and the conductivity of the cortex and
the scalp was o, = 1.0. A dipole layer was established inside of
the cortex with arbitrary radius, r;. A total of 1280 equivalent
radial dipoles were uniformly arranged on the dipole layer to
represent the dipole signal sources in a brain. Cortical dipole
imaging has an advantage that there is no restriction on the
number and direction of dipole sources.

The observation of the scalp potential g is modeled using
the transfer matrix A from the dipole layer to the scalp surface
as follows:

g=(A+E)f+n, (1)

where f is the dipole distribution, E is the transfer matrix
error, and n is the measurement noise. The transfer matrix
A is determined from the geometry of the head model,
the electrical conductivity involved, and the electrode and
equivalent dipole source arrangements. The inverse problem
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FIGURE 1: 3 sphere inhomogeneous volume-conductor head model.

should be solved to estimate the dipole distribution f from
the measured scalp potential g:

f = Bg, (2)

where B is the inverse filter. As the method to construct
the inverse filter, Tikhonov regularization [3] and TSVD
[4] were proposed to reduce the influence of measurement
noise. In addition, the TTLS method that reduces both
the measurement noise and the transfer matrix error was
investigated [7].

2.2. Inverse Techniques. The m x n transfer matrix is decom-
posed by

A =UzV], 3)

where U and V are mth- and nth-orthogonal matrices and X
is the singular value matrix:

o;, fori=j,

0, fori#j,
(4)
o,2--20,>0,
Oppp =" =0, = 0.
o; (i = 1,...,n) represents singular values. u; and v; are left

and right singular vectors, respectively. The parameter r is the
number of nonzero singular values.

In general, the inverse problem is solved by LS. The
solution is described by
r T
fis = hE,

i (5)

i=1 “i

According to this method, the noise and error involved in
the scalp potential g are enhanced by the terms of small
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singular values. Tikhonov regularization and TSVD that
estimate the solutions while suppressing the influence from
the measurement noise overcome this problem. Tikhonov
regularization is given by

2 T
g ug

z T LT r
frixn = (A A+YI) Ag= l; 7+ Tivi, (6)
where y (y > 0) is the regularization parameter [3]. TSVD is
given by

T

k
f = )
TSVD ; Gi

where k is the truncation parameter [4]. When the error is
involved in the transfer function, the estimated solutions have
bias in these methods. To reduce the influence of the transfer
function error, TTLS was introduced [7]. The SVD for the
augmented matrix (A, g) is given by

(Ag) =TIV,
U=(u,....u,),
V=F, V1)
UU =1,
Vo1, ®)

_ o, fori=j,
T=(z;) eR™"™Y, z,=1" 7
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v
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When k is a truncated parameter, the solution of TTLS is
given by

— —T
P — — Vv,V
frois = ViV, =——— 222’ )
[Vaall
where
_ (v, V _ _
V= (_11 _12) , Vll € RnXk, V22 € RIX(H+1_k). (10)
Vi Vy

V* is the Moore-Penrose pseudoinverse of V. The notation
[l I, denotes the Euclidian norm. In TTLS, the measurement
noise and the transfer function error are combined by
the augmented matrix. After decomposing the augmented
matrix, the singular values that enhance the measurement
noise and the transfer matrix error are truncated.

2.3. Filtering Property. These inverse solutions of Tikhonov
regularization, TSVD, and TTLS are commonly expressed as

Z .Tg v (11)
i=1
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FIGURE 2: Filter factors of various inverse techniques against the
singular value.

where p; is a filter factor. The filter factor {p;} (i =1,...,r) is
called a filter property [7, 11]. The filter factors p; of Tikhonov
regularization, TSVD, and TTLS are derived by

2
0;

Pitika = 5 3>

o} +y?
1, fori=1,...,k,

Pisvp = 12
' 0, fori=k+1,...,1, (12)

k = 2
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Figure 2 shows examples of the filter factors of Tikhonov
regularization, TSVD, and TTLS against the singular values.
The eccentricity of the signal sources was set to 0.6. Ten
percent measurement noise and 10% transfer matrix error
were added to the scalp potential and the transfer matrix,
respectively. The radius of the dipole layer was set to 0.85.
The singular value on the horizontal axis is displayed using
a logarithmic scale. The terms for large singular values
were passed while the terms for small singular values were
attenuated in all filter factors. While the property of Tikhonov
regularization was gradual, the properties of TSVD and TTLS
were steep.

2.4. Optimal Filtering Property Using Sigmoid Function.
When the actual dipole distribution is known, it is possible to
find optimal filtering property by LS. The estimated optimal
filtering property is shown in Figure 2. Filter factors were
calculated using 100 kinds of signal source arrangement to
adapt to various signal configurations. The estimated optimal
filter property was intermediate between the property of
Tikhonov regularization and the property of TSVD, as shown
in Figure 2.
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FIGURE 3: Optimal filter factors approximated by sigmoid function.

The filter factors have fluctuation because they were
calculated using sampled signal sources. We approximated
the filter property by a sigmoid function:

~ 1 ~ 1
T 14 ealogory) ] 4 g e’

Di (13)

where a is a gain parameter and y is a shift parameter.
The approximated result of optimal filter factors by (13) is
also shown in Figure 3. The optimal filtering property was
changed according to the level of measurement noise, the
transfer matrix error, and the depth of the signal sources.
However, it is possible to approximate the filter factor by (13)
with appropriate two parameters, a and y.

The aspect of the dipole distribution changes according to
the depth of the signal source against the fixed dipole layer.
The dipole distribution spreads so that the signal source is
located in a deep position. The optimal filter when changing
the depth of the signal source within the range 0.4-0.8 was
estimated using the LS. The noise level was set to 0.1. The
calculated optimal filter factors are plotted in Figure 4(a). The
deeper the signal source was, the more singular values were
suppressed by the filter property. It was confirmed that larger
singular values were suppressed when the noise level was
large. The sigmoid function in (13) was fitted to the obtained
optimal filter factors as shown in Figure 4(b). The filter factors
were well approximated with appropriate parameters.

In (13), it is necessary to estimate 2 parameters. There
are calculation costs associated with this method, compared
with traditional methods consisting of only 1 parameter. Thus,
we investigated the relationship between 2 parameters. If one
parameter is estimated, the other can be decided using the
derived relationship equation. The relationship between 2
optimal parameters was repeatedly investigated by changing
the depth of signal sources with a constant noise level. The
relationship between the regularization parameter and the
shift parameter in the sigmoid function is plotted in Figure 5.
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The relationships between 2 parameters for noise levels of 0.1
and 0.2 were approximated by linear equations. As a result,
the filter factors can be estimated using only shift parameter
y.

This parameter relationship changed according to the
noise level. In order to use the sigmoid function to deter-
mine the filter factors in actual EEG data, the parameter
relationship should be decided using the information on
noise level. However, the signal and noise components are
intermingled in the observed EEG data. In such cases,
independent component analysis (ICA) was applied to the
EEG data to separate in the signal and noise components.
ICA extracts independent sources from the observed signal
based on statistical independence of the original signal. In a
previous study, the noise component was precisely estimated
from the subtraction of the separated signal component from
the observed EEG data [13]. That is, the components without
a signal component were assumed to be noise. The noise level
was calculated by [nl|,/lgll,.

2.5. Parameter Estimation. In actual application, the shift
parameter y in the sigmoid function has to be determined
as the same as the regularization parameter y in Tikhonov
regularization and the truncated parameter k in TSVD and
TTLS [14-20]. If the actual dipole distribution is known,
the parameter can be determined by minimizing the relative
error between actual and estimated dipole distribution. How-
ever, the actual dipole distribution is unknown in practical
situations. For such cases, the L-curve method was proposed
to estimate the regularization parameter [14, 15]. In the
L-curve method, the optimal regularization parameter is
decided by minimizing both the estimated solution norm I£]l )
and the residual norm [Af — g||,. The optimal parameter
corresponds to the corner of the L-curve. As an estimation
method for the corner of the L-curve, a curvature method that
searches for the point of maximum curvature was proposed
[16]. A minimal product method that estimates a minimum

of the area ||Af — gl - IIfII2 was also proposed [17].

3. Results

3.1 Simulations. Computer simulations were performed to
evaluate the ability of the proposed inverse filter. A total of
128 electrodes were arranged uniformly on the scalp surface.
The dipole layer with 1280 equivalent dipole sources was
established with a depth of 0.85 inside of the brain. The
numbers of electrodes and dipoles were set to be great enough
to accomplish high spatial resolution, based on previous
studies [2, 5]. Two radial signal sources with eccentricity of
0.6 were arranged with arbitrary position. Gaussian white
noise was added as the measurement noise and the transfer
matrix error.

First, we compared the inverse estimations of Tikhonov
regularization, TSVD, TTLS, and the sigmoid function.
Figure 6 shows the estimated results of dipole distributions
for 2 radial signal sources with a depth of 0.6. The noise level
and the error level were both set to 0.1. Figure 6 displays the
top view of dipole distributions with normalized amplitude.
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FIGURE 4: Optimal filter factors by changing the depth of signal sources.
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FIGURE 5: Relationship between shift parameter y and gain param-
eter a in (9).

Two signal sources could be observed in the actual dipole
distribution while the distribution of the scalp potential
was spread over whole parietal region. The dipole distribu-
tions were estimated using Tikhonov regularization, TSVD,
TTLS, and the sigmoid function. To avoid the influence of
parameter estimation error, the regularization parameters
were determined by minimizing the relative error when
the actual dipole solution is supposed to be known. The
result of Tikhonov regularization was influenced by noise.
The localization was accomplished by the sigmoid function
compared with TSVD and TTLS. The performance of TSVD
was almost the same as that of TTLS.

Figure 7 shows the averaged relative error between actual
and estimated dipole distributions with noise levels of 0.1
and 0.2. The error level was set to 0.1. The graphs show the
average and standard deviation over 10 patterns of signal
source arrangements. Dunnett’s multiple comparison tests
were applied to the data. The relative error of the sigmoid
function is significantly smaller than that of the other meth-
ods. The performance of parameter estimation methods was
examined in computer simulations. The curvature method
and the minimal product method were compared by means
of the relative error between actual and estimated dipole
distributions. Figure 8 shows the relative errors with the
noise levels of 0.1 and 0.2. The average and the standard
deviation were obtained over 10 trials with various signal
configurations. The relative error of the curvature method
was significantly smaller than that of the minimal product
method as a result of paired ¢-test. It was confirmed that the
curvature method is more suitable for parameter estimation
of sigmoid function than the minimal product method.

3.2. Application to VEP. Based on the simulation results, the
proposed method was applied to human experimental data.
The EEG data were measured from healthy subjects after
obtaining informed consent according to the University of
Illinois Ethical Review Board regulation. Ninety-four scalp
electrodes arranged according to the expanded international
10-20 system were used for the EEG recording. The VEP
to pattern reversal in the right half of the visual field was
measured with intervals of 0.5s. The VEP signals were
averaged over 400 reversals. The sampling frequency was
1kHz. The dipole layer was arranged with a radius of 0.85
to represent the visual-related signal sources. From the
simulation result, the regularization parameter of the sigmoid
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FIGURE 6: Simulation results of dipole distributions estimated by Tikhonov regularization, TSVD, TTLS, and sigmoid function. R: right; L:
left; A: anterior; P: posterior.
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function was estimated by means of the curvature method.
Referring to a previous study, the curvature method was
applied to Tikhonov regularization and the minimal product
method was applied to TSVD and TTLS as the parameter
estimation methods [10].

Positive potential was observed at about 100 ms after
visual stimulus (P100). Cortical dipole imaging was applied
at the positive peak (75ms after the stimulus), followed by
the propagation process (95 ms after the stimulus). Figure 9

shows the scalp potential and the dipole distributions esti-
mated by Tikhonov regularization, TSVD, TTLS, and the
proposed sigmoid function at 75 ms and 95 ms after stimulus
(the results at other time intervals are omitted for want of
space). The normalized maps were displayed when viewing
from the posterior. The positive potential was distributed over
the whole occipital region in the scalp potential map at 75 ms
after stimulus. The signal was localized at the primary visual
field in dipole distributions estimated by every method. The
influence of noise was observed in the results of Tikhonov
regularization and TSVD. The signal was more localized
when TTLS and the sigmoid function were used. The positive
potential was also distributed over the whole occipital region
in the scalp potential map at 95 ms after stimulus. Two signal
spots were visible in dipole distributions. From the viewpoint
of signal separation, TSVD and the sigmoid function pro-
vided better results than Tikhonov regularization and TTLS.

4. Discussion

As shown in (13), the optimal filtering property was approx-
imated using a sigmoid function with the singular value
as a variable parameter. In the inverse problem of cortical
dipole imaging, the number of singular values decayed
exponentially as the singular values became large. Thus, the
sigmoid function was fitted to the optimal filtering property
based on the logarithm of a singular value.

The deeper the signal sources, the broader the dipole
distribution. Broad mapping can be approximated with small
number of singular values compared with sharp mapping.
As a result, the larger singular values were depressed when
the signal sources were located in deep positions. Moreover,
when the noise level is large, the noise component must
be suppressed in order to obtain high-fidelity dipole distri-
bution. We confirmed that the larger singular values were
depressed in noisy conditions.

Whenever the noise level and the depth of signal sources
were changed, it was possible to fit the sigmoid function to the
optimal filter factors estimated using LS. The cortical dipole
distribution using the sigmoid function was more localized
with less noise compared with the traditional methods. When
the noise level increased, the relative error of every method
increased. However, the relative error of the sigmoid function
was smallest among the 4 inverse filters investigated. From
these results, it was considered that highly precise estimation
for cortical dipole imaging could be achieved by optimizing
the filter factors.

In general, small singular values emphasize the noise
included in the scalp potentials. The terms with small singular
values were suppressed by filtering properties as shown in
Figure 1. In addition, as explained in Section 2.4, the filtering
property of the sigmoid function was intermediate between
Tikhonov regularization and TSVD. This filter attenuates the
terms with small singular values to reduce the noise while it
passes the terms of large singular values to reconstruct the sig-
nal. The sigmoid function performs the signal reconstruction
and noise reduction in a well-balanced manner.

The filter property based on the sigmoid function takes
into consideration only measurement noise, while TTLS
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FIGURE 9: Estimated results of dipole distributions for VEP. R: right; L: left; P: posterior.
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considers both the measurement noise and the transfer
matrix error. The present simulation, considering the mea-
surement noise and the transfer matrix error, suggested that
the optimum filter property that considered the measurement
noise properly was effective to obtain better inverse solutions.
It is expected that the restorative ability would be improved
by combining the sigmoid function-based inverse filter with
TTLS.

As the method for estimating the regularization parame-
ter of the sigmoid function, the curvature method was better
than the minimal product method. In the previous study,
it was reported that the curvature method was used for
continuous values such as the regularization parameter of
Tikhonov regularization while the minimal product was used
for discrete values such as the truncated parameter of TSVD
and TTLS [10]. The shift parameter y of the sigmoid function
in (13) is a continuous value. Thus, the curvature method is
suitable for the parameter estimation of the sigmoid function.

In the VEP experiment shown in Figure 9, the signal was
localized at occipital region of cortical dipole distribution at
75 ms after visual stimulus. The activated area corresponds
to the primary visual cortex and the results coincided with
established physiological knowledge [21]. Both TTLS and the
sigmoid function can localize the signal while suppressing the
noise. The dipole distribution at 95 ms after visual stimulus
showed two signals separated from one signal at 75 ms after
visual stimulus. The visual signal caused at calcarine sulcus
in the occipital region propagates through ventral and dorsal
pathways [21]. It was possible to represent the process of
signal propagation through ventral pathway using TSVD and
the sigmoid function. In conclusion, regarding these two
results, the sigmoid function was widely applicable in various
situations and would be effective for human experimental
data. It is difficult to evaluate the experimental performance
quantitatively because the actual signal source is unknown.
The experimental results of cortical dipole imaging have been
evaluated visually in previous studies [10, 12, 13, 19]. The
cortical imaging techniques may be evaluated by comparing
with electrocorticogram invasively [22].

The proposed inverse filter supposed that the noise is
uniformly distributed over the scalp surface. Actually, the
noise is nonuniform because of the variation of the electrode
impedance and physiological properties such as eye blink
artifacts or body movements. In such cases, the parametric
projection filter [5, 6] and parametric Wiener filter [23] can
be effectively applied under nonuniform noise conditions.
It is expected that cortical dipole imaging is improved by
combining the sigmoid function-based filtering property and
parametric projection or Wiener filter.

5. Conclusion

The spatial inverse filter was investigated based on filtering
property aiming at high-resolution cortical dipole imaging.
It was confirmed that the optimum filter factor depends
on the noise level and the depth of signal sources. These
results suggested that the filtering property can be designed
by considering the signal and noise configuration. Moreover,
the proposed method is of wide application for several

types of experimental data. In computer simulations and
human experiments using VEP, filtering property using the
sigmoid function provided more localized dipole distribution
with less noise compared with Tikhonov regularization,
TSVD, and TTLS. For parameter estimation, the curvature
method was suitable for the sigmoid function-based inverse
technique. The proposed method will contribute to the
visualization of cortical electrical activity in high resolution.
We are planning to design filtering property using statistical
information on noise distribution. Moreover, we would apply
more realistic head models in the near future.
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