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Growing urban bicycle networks
Michael Szell1,2,3*, Sayat Mimar4, Tyler Perlman4, Gourab Ghoshal4 & Roberta Sinatra1,2,3,5

Cycling is a promising solution to unsustainable urban transport systems. However, prevailing bicycle 
network development follows a slow and piecewise process, without taking into account the structural 
complexity of transportation networks. Here we explore systematically the topological limitations of 
urban bicycle network development. For 62 cities we study different variations of growing a synthetic 
bicycle network between an arbitrary set of points routed on the urban street network. We find 
initially decreasing returns on investment until a critical threshold, posing fundamental consequences 
to sustainable urban planning: cities must invest into bicycle networks with the right growth strategy, 
and persistently, to surpass a critical mass. We also find pronounced overlaps of synthetically grown 
networks in cities with well-developed existing bicycle networks, showing that our model reflects 
reality. Growing networks from scratch makes our approach a generally applicable starting point for 
sustainable urban bicycle network planning with minimal data requirements.

Cities worldwide are scrambling for sustainable solutions to their inefficient, car-centric transport systems1,2. One 
promising, time-tested candidate is cycling. It is an efficient mode of sustainable urban transport that can account 
for the majority of intra-urban trips which are primarily short or medium-distance3. Cost-benefit analysis that 
accounts for health, pollution, and climate, reveals that in the EU alone cycling brings a yearly benefit worth € 24 
billion while automobility costs society € 500 billion4. These insights provide further impetus for coordinated 
efforts to extend cycling infrastructure as one solution to the urban transport crisis and to effectively fight climate 
change5,6. Apart from being effective, this solution is also considerably more economic and wide-ranging than 
merely focusing on motor vehicle electrification7–9.

In practice, however, bicycle infrastructure development struggles with a political inertia due to the deep-
rooted complexity of car-dependence10,11: For example, Copenhagen took 100 years of political struggles to 
develop a functioning grid of protected on-street bicycle networks12 that continues to be split into 300 discon-
nected components today13. Accordingly, the most developed, influential bicycle network planning guidelines, 
such as the Dutch CROW manual14, acknowledge that building up bicycle networks happens typically through 
decades-long, piecewise refinements. Unfortunately, there is overwhelming scientific consensus that the possible 
exit scenarios from the planetary climate crisis compatible with the 1.5° goal are closing rapidly15,16. Given that 
transport is the most problematic sector17 and that the majority of humanity is living in cities, making urban 
transport sustainable is therefore one of the most urgent societal issues1,7,10,18. Electric cars are a potential solu-
tion to exhaust pollution but come with the same unavoidable downsides as traditional cars concerning urban 
livability2, space allocation6, road safety19, particulate matter pollution that is mainly caused by non-exhaust 
emissions20, public health and equity5,21, among others. In particular, a sole focus on electric vehicles is coun-
terproductive and “active travel should be a cornerstone of sustainability strategies, policies and planning”9. 
Because of the fact that boosting active travel in cities has some of the highest potential to mitigate climate change 
and to improve public health5,7, in this paper we focus on bicycle network development. While there has been 
historical political inertia in growing bicycle networks, the ongoing COVID-19 pandemic has prompted several 
cities to engage in successful accelerated network development, proving that such efforts are indeed possible22,23 
(apart from already existing examples of fast growth24,25). A systematic exploration of city-wide, comprehensive 
development strategies is therefore urgently needed.

Although the prevailing, piecewise application of qualitative policy guidelines in existing bicycle network 
planning14,26 might have a good track record in e.g. Dutch cities and Copenhagen12, this process lacks rigorous 
scrutiny: are the resulting networks truly optimal? Can such policies be replicated in other cities? And are there 
fundamental topological limitations for developing a bicycle network? Indeed, an evidence-based, scientific 
theory of bicycle network development is missing.

There is a growing academic literature on analyzing bicycle networks of specific cities, for instance Montreal27, 
Seattle28, or recent data-driven approaches for Bogota29, London30, or Berlin31. While such studies are invaluable 
in terms of local enhancements and data consolidation for a particular place, here we instead focus on a global 
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analysis, in particular on the fundamental topological limitations of bicycle network development that are relevant 
for all urban environments, independent of the availability of traffic flow data32. This approach follows the idea 
of a Science of Cities33 where we study the topological properties of bicycle networks that are independent of place 
using computational, quantitative methods of Urban Data Science34.

The vast majority of cities on the planet has negligible infrastructure for safe cycling6. Indeed, urban transport 
infrastructure development worldwide has been heavily skewed towards automobiles since the twentieth century, 
today featuring well connected networks of streets for motorized vehicles13. Rather than uprooting the existing 
infrastructure and replacing it with an entirely new one—an economically infeasible strategy—we investigate 
how to retrofit existing streets into bicycle networks. Sacrificing specificity for generalizability, our formulation 
contains as a starting point two ingredients: the existing street network of a city, and an arbitrary set of seed 
points. With these minimal ingredients we explore different growth strategies that sequentially convert streets 
that were designed for only cars to streets that are safe for cycling14,35. Using the CROW manual as a key refer-
ence and inspiration14, the objective of all explored strategies is to create cohesive networks, i.e. well connected 
networks that cover a large fraction of the city area (see “Materials and methods”).

Across the realistic strategies we report a growth phase that initially leads to a diminishing trend of quality 
indicators, until a critical fraction of streets are converted, akin to a percolation transition observed in criti-
cal phenomena and also present in the growth of other forms of transportation infrastructure as well as pat-
terns of traffic29,32,36–39. In other words, initial investments into building cycling-friendly infrastructure leads to 
diminishing returns on quality and efficiency until the emergence of a well-connected giant component. Once 
this threshold is reached, the quality improves dramatically, to an extent which depends on the specific growth 
strategy. We provide empirical evidence that the majority of cities effectively lie below the threshold which might 
be hindering further growth, implying fundamental consequences to sustainable urban planning policy: To be 
successful in developing well-connected bicycle networks, cities must invest with the right growth strategy, and 
persistently, to surpass a critical mass.

Results
The starting point for our analysis is the manually sampled street networks of 62 cities aiming to capture a 
diversity of cultural regions and a large range of populations, population densities, areas, and network lengths, 
selected from cities where there is relatively complete data available41, see Fig. 1A and Supplementary Table 1. 
Here, links represent streets and nodes are street intersections. Being embedded in a metric space, these consti-
tute planar graphs42. We downloaded and processed these networks from OpenStreetMap using OSMnx43 (see 
“Materials and methods”).

Although many of the covered cities are from well developed regions, we observe that they have negligible 
bicycle infrastructure, Fig. 1B. Additionally these are split into hundreds of disconnected components, Fig. 1C, 
which has previously prompted analysis of strategies to merge them13. Although such strategies make sense in 
cities with already well established bicycle infrastructure, they are less useful in most other cities. Further, they 
produce minimum spanning tree-like solutions that are economically attractive but lack resilience and cohe-
sion (Fig. 2), and they potentially reinforce socioeconomic inequalities by connecting only already developed 
areas while ignoring under-developed ones32, prompting us here to grow new networks from scratch instead. 
By resilience we mean a general level of fault-tolerance44: A resilient bicycle network should provide an accept-
able level of service in the face of faults and challenges to normal operation, for example interruptions due to 
road works. The removal of a small fraction of links should not have a substantial impact on network metrics.

A

CB

Figure 1.   The state of existing bicycle networks. (A) We extract street networks from 62 cities covering different 
regions and cultures; many are considered modern and well developed. (B) The distribution of city-wide 
lengths of bicycle tracks indicates negligible existing cycling infrastructure that is also (C) split into hundreds of 
disconnected components. See more details in Supplementary Table 1. Map created with: https://​github.​com/​
mszell/​biken​wgrow​th (v.1.0.0).

https://github.com/mszell/bikenwgrowth
https://github.com/mszell/bikenwgrowth
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Growing bicycle networks from scratch.  Our process of growing synthetic bicycle networks consists of 
four steps, Fig. 3, starting with the street network and the seed points. For an intuitive, interactive exploration 
see https://​growb​ike.​net.

Step (1) Seed points An arbitrary set of seed points is snapped to the intersections of the street network. 
We investigate two versions of seed points: (i) arranged on a grid, and (ii) rail stations. Generally these seeds 
could have arbitrary coordinates, but in the CROW manual’s context of origin-destination links14 they could 
represent points of interests such as district centers, shopping areas, schools, etc.
Step (2) Greedy triangulation All pairs of seed nodes are ordered by route distance and connected stepwise 
as the crow flies. A link is added only if it does not cross an existing link. This greedy triangulation is an easily 
computable proxy for the NP-hard minimum weight triangulation45. It creates an approximatively shortest 
and locally dense planar network46, and a connected, cohesive, and resilient network solution minimizing 
investment, therefore satifsying both traveler and investor demands, Fig. 2.
Step (3) Order by growth strategy Each of three growth strategies is used to order the greedy triangulation 
links from the strategy’s 0-quantile (empty graph) to its 1-quantile (full triangulation), resulting in a sequence 
of growth stages. To study this growth process in a high enough resolution we split the growth quantiles into 
40 parts q = 0.025, 0.05, . . . , 0.975, 1 . The three strategies are: 

1.	 Betweenness—orders by the number of shortest paths that go through a link. It can be interpreted as 
the simplest proxy for traffic flow (assuming uniform traffic demand between all pairs of nodes). Thus, 
growing by betweenness is an approach that aims to prioritize flow.

2.	 Closeness—starts with the “most central” node, i.e. the node that is closest to all other nodes. From 
this seed, the network is built up by connecting the most central adjacent nodes. This approach is the 
most local approach possible and leads to a linear expansion of a dense as possible network from the 
topological city center.

3.	 Random—adds links randomly and is used as a baseline. This strategy is not just a theoretical null model 
but well resembling how cities build their bicycle networks in practice, as we discuss later.

Step (4) Route on street network The abstract links in the 40 stages are made concrete: They are routed on 
the street network. These synthetic bicycle networks are then analyzed for all 62 cities.

Different growth strategies optimize different quality metrics.  We measure several network met-
rics to assess the quality of the synthetically grown networks and to compare them with existing bicycle net-
works. These metrics are: length L, length LLCC of the largest connected component (LCC), coverage C, seed 
point coverage Cseed , directness D, number of connected components Ŵ , global efficiency Eglob , local efficiency 
Eloc . We define coverage as the area of all grown structures endowed with a 500 m-buffer, see light blue areas 
in Fig 6B for an illustration. Directness measures the average ratios of euclidian distances versus shortest path 
distances on the network, while global efficiency provides a similar measure that accounts for disconnected 
components47. See “Materials and methods” for technical details.

We first investigate how these quality metrics change throughout the growth process averaged over all cities, 
Fig. 4. The three thick curves show the change of the metrics with growth following the three strategies (between-
ness, closeness, or random) for grid seeds. Similar results hold for rail stations, see Supplementary Figs. 5–7. By 
construction all curves reach exactly the same point at the 1-quantile (full triangulation), but their development 
differs substantially before that. The minimum spanning tree (MST) solution is depicted as a baseline (grey dotted 

Minimum spanning tree Triangulation Fully connected 

Investor's 
optimum

Cohesive  
planar network 

Traveler's 
optimum 

Economic Resilient

Figure 2.   Optimal connected network solutions. Adapted from Ref.40. (Left) The investor’s optimal strategy for 
a connected network is to invest as little as possible, minimizing total link length13. Its solution is a minimum 
spanning tree, maximally economic but minimally resilient with low directness, inadequate for travelers. (Right) 
The traveler’s optimum connects all node pairs creating all direct routes. This solution is minimally economic, 
maximally resilient and direct, inadequate for investors. It also has crossing links and is therefore not a planar 
network. (Center) A both economic and resilient, as well as cohesive planar network solution in-between is 
the triangulation. In particular the minimum weight triangulation, approximated by the greedy triangulation, 
minimizes investment.

https://growbike.net
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Figure 3.   Growing bicycle networks. Explorable interactively at: https://​growb​ike.​net. Illustrated here for Paris. 
Step (1) Seed points: A set of seed points (orange dots) is snapped to the intersections of the street network. 
Shown are grid points, alternatively we investigated rail stations. Step (2) Greedy triangulation: The seeds are 
ordered by route distance and connected stepwise without link crossings. Reached seeds are colored blue. 
Step (3) Order by growth strategy: One of three growth strategies (betweenness, closeness, random) is used to 
order the triangulation links from the strategy’s 0-quantile (empty graph) to its 1-quantile (full triangulation), 
resulting in 40 growth stages. Shown are the five quantiles q = 0.025, 0.125, 0.25, 0.5, 1 . Step 4) Route on street 
network: The links in the growth stages are routed on the street network. These synthetic bicycle networks are 
then analyzed for all 62 cities. Maps created with: https://​github.​com/​mszell/​biken​wgrow​th (v.1.0.0).

https://growbike.net
https://github.com/mszell/bikenwgrowth
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lines). This is the most economic connected solution that reaches all seeds, see Fig. 2; therefore any connected 
solution that reaches all seeds must be at least as long as the MST.

From Fig. 4A we observe that length grows linearly for closeness and slightly faster for the other strategies 
because closeness prioritizes close links which typically have similar length, while betweenness and random 
growth selects distant links earlier. Random growth adds single links scattered randomly across the city and 
therefore has the fastest growth of coverage, Fig. 4B, followed by the betweenness-based strategy, while close-
ness leads to a linear growth. Directness, Fig. 4C, displays a large dip for random growth, from D ≈ 0.8 down 
to D ≈ 0.53 at the 0.345-quantile, and a smaller dip from D ≈ 0.83 to D ≈ 0.68 for betweenness growth at the 
0.1-quantile. Directness starts lower for closeness growth, around D ≈ 0.59 but quickly overtakes the other 
strategies at the 0.05-quantile. Global efficiency, Fig. 4D, starts at a high level, around Eglob ≈ 0.7 , and grows 
slightly until Eglob ≈ 0.82 for both betweenness and closeness. Random growth starts instead much lower, around 
Eglob ≈ 0.33 . The length of the LCC, Fig. 4E, is almost identical as the growth of length for betweenness and close-
ness because the LCC makes up most of the network here. However, the LCC in random growth has a sigmoid 
growth pattern as it takes longer for the components to connect, Fig. 4G. Coverage of seeds, Fig. 4F, is similar 
to coverage but more pronounced for random and betweenness growth. On average all seeds are covered before 
the 0.6-quantile. Finally, local efficiency, Fig. 4H, is steady around Eloc ≈ 0.22 for closeness, but grows fast for 
both betweenness and random growth from around Eloc ≈ 0.05.

To summarize, the different growth strategies optimize different quality metrics and come with different 
tradeoffs: (1) Use betweenness growth for fast coverage, intermediate connectedness and directness, and low 
local efficiency. (2) Use closeness growth for optimal connectedness and local efficiency but slow coverage. (3) 
Use random growth for fastest coverage but low directness, connectedness, and efficiency.

Network consolidation and non‑monotonic gains in quality.  The dips observed in directness, see 
yellow arrow in Fig. 4C for random growth, are akin to a phase transition in a percolation process from a discon-
nected set of components to a sudden emergence of a giant connected component, as known for e.g. random 
Erdős–Rényi networks36. Similar transitions have been observed in generalized network growth48,49, including 
in various random spatial networks42 and sidewalk networks39, and similar flavors of bicycle network growth29. 
Figure 5A and B illustrates this consolidation process for individual cities: Links are added one by one, growing 
the largest connected component until a critical threshold at the curve’s minimum (at qB = 0.1 for Boston), at 
which the largest connected component consolidates the majority of the network and starts forming cycles that 
in turn increase directness. Because connectedness increases around the critical threshold, the evolution of con-
nected components is inverse to the evolution of directness, Fig. 4G. While the global efficiency averaged over all 

Seed points covered

BA DC

FE HG

Figure 4.   Different growth strategies optimize different network quality metrics. The three thick curves show 
the changes of network metrics with growth following three strategies (betweenness, closeness, or random) 
averaged over all 62 cities for grid seeds. By construction all curves arrive at the same endpoint, but they develop 
distinctly before that. For rail seeds and individual cities see Supplementary Figs. 5–10. Red curves show the car 
network’s simultaneous decrease of quality metrics if a five times decrease of speed limits is assumed for cars 
along all affected streets. Grey dotted lines show metrics for the minimum spanning tree (MST) that connects 
all seeds with minimal investment. Growth of (A) length, (B) coverage, (C) directness, (D) global efficiency, 
(E) length of LCC, (F) seed points covered, (G) connected components, (H) local efficiency. The yellow arrow 
highlights the substantial dip in directness until the critical threshold which is more pronounced for random 
growth than for betweenness growth.
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cities shows an initial increase followed by saturation, see Fig. 4D, we find mixed trends at the level of individual 
cities: Mumbai and Montreal track the average trend, Tokyo has a flat global efficiency, while Boston and Paris 
show a dip before the critical threshold is reached with rapid gains thereafter (Fig. 5C).

This network consolidation has important implications for policy and planning. The point at which the tran-
sition happens represents substantial investments into building the network. Stopping investments and growth 
before this point leads to a net loss in investment as measured by infrastructure quality. Indeed, pushing past 
this threshold leads to substantive gains.

The effect of bicycle network growth on the street network.  While it is beneficial for a city to grow 
its bicycle network, it is important to ask how this growth affects the network of streets used by cars. The mag-
nitude of this effect depends not only on the network topology, but also on the concrete bicycle infrastructure 
being implemented: shared spaces, unprotected cycle lanes, protected cycle tracks, bicycle streets, their width, 
and so on. To consider these factors, leading bicycle planning manuals consider a plethora of local variables14,50, 
for example road category, speed limit, volume of the motorized traffic, or car parking facilities. Therefore, to 
be conservative in our estimations, here we consider the strongest possible effect of new bicycle infrastructure 
on streets apart from complete replacement: We assume that all infrastructure would be built, for example, as a 
child-friendly “fietsstraat” or living street, i.e. as a shared traffic space where cyclists and pedestrians have prior-
ity and cars are tolerated to pass through in walking speed14. This assumption roughly translates to a reduction 
of speed limits for cars along the affected road sections by a factor of 5, for example from 50 km/h to 10 km/h or 
from 30 km/h to 6 km/h . In our technical calculations we implemented a computational equivalent to this speed 
reduction—an increase of the affected road section lengths by a factor of 514. So, for example, for calculating 
directness along an affected road section, a street segment of length 100m would then count as being 500m long.

qB = 0.025 qB = 0.1 qB = 0.2A

B

C

Figure 5.   Network consolidation: Bicycle network growth has a dip of decreasing directness. (A) Three early 
stages of betweenness growth in Boston. (B) Directness sharply decreases initially due to tree-like growth 
(compare qB = 0.025 and qB = 0.1 for Boston). Once directness has reached a minimum ( qB = 0.1 ), it starts 
growing slowly due to the appearance of cycles ( qB = 0.2 ). The process is similar for the other cities (shown 
here for Montreal, Mumbai, Paris, Tokyo) and also holds for random growth, see Supplementary Figs. 5, 7, 8, 10. 
(C) We find mixed results for global efficiency: Mumbai and Montreal display a single jump, Tokyo is flat, while 
Boston and Paris shown an initial dip before increasing. Maps created with: https://​github.​com/​mszell/​biken​
wgrow​th (v.1.0.0).

https://github.com/mszell/bikenwgrowth
https://github.com/mszell/bikenwgrowth
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Given this strong constraint, we find the metric that is most affected is directness. It decreases approximately 
linearly with the bicycle network’s growth, from D ≈ 0.8 to D ≈ 0.6 , as the network is grown using the between-
ness strategy (red curve in Fig. 4C). In other words, in the absence of any bicycle infrastructure, car-routes 
deviate by around 25% from the Euclidean distance between any origin-destination, whereas once the full 
bicycle infrastructure is established, this increases to around 66%. At around the 0.4 betweenness quantile, the 
directness of the bicycle network exceeds that of the car network. The global efficiency decreases from around 
Eglob ≈ 0.75 to Eglob ≈ 0.6 , (red curve in Fig. 4D), while the local efficiency decreases negligibly from Eloc ≈ 0.11 
to Eloc ≈ 0.10 (red curve in Fig. 4H). Growing the bicycle network has no effect on the length and coverage of the 
automobile network, given that cars can still access all points on the street network, albeit in a longer time than 
they would without the bicycle infrastructure. We find almost identical behavior for the closeness and random 
growth strategies (Supplementary Fig.4).

One of the effects of modifying the street infrastructure is the redistribution of load on the street intersections, 
measured by the betweenness centrality. It has been shown that while the global distribution of the betweenness 
centrality remains unchanged due to change in density of streets, the spatial distribution and clustering of the 
high betweenness nodes tend to change, thus redistributing areas of higher traffic51. Two measures to quantify 
this effect are the spatial clustering and the anisotropy of the high betweenness nodes (see “Materials and meth-
ods”). We find a slight increase (around 5%) in spatial clustering and anisotropy for nodes in the 90th percentile 
of betweenness values but the effect is marginal (Supplementary Fig. 4).

Comparing synthetic with existing network metrics.  Although the growth processes described here 
are somewhat artificial, given the lack of accounting for practical limitations of bicycle network design—street 
width, incline, or political feasibility for instance—it is nevertheless prudent to compare the synthetic network 
with existing bicycle networks to gauge their general correspondence. To have a fair comparison in terms of 
length (which is a proxy for cost), we first select all cities that have a protected bicycle network with shorter 
length Lreal than the fully grown synthetic network Lsyn (42 out of 62 cities), and for each of them we fix the 
growth quantile where the synthetic length is equal to the real length, Lsyn = Lreal . Given this set of bicycle net-
work pairs—real versus synthetic at same length—we then measure the ratio Msyn/Mreal between the synthetic 
quality metric Msyn and the quality metric of the existing infrastructure Mreal . The results for the metrics of 
coverage, local efficiency, global efficiency, and length of LCC are reported in Fig. 6A.

We find that synthetic networks have on average 5 times larger LCCs, 3 times the global efficiency, and 
higher local efficiency. Existing networks only tend to have better coverage because they are more scattered, as 
illustrated in Fig. 6B for Milan which has 230 disconnected components. Milan’s scattered network provides an 

Synthetic MilanReal Milan

LCCB

A

Figure 6.   Synthetic bicycle networks perform several times better than existing ones. (A) We plot the 
distributions (over cities) of the ratios Msyn/Mreal between network metrics of synthetic and existing 
topologies fixed at same length ( Lsyn = Lreal ), for betweenness growth and grid seeds (for all other growths see 
Supplementary Fig. 2). Synthetic networks have on average 5 times larger LCCs, 3 times the global efficiency, 
and higher local efficiency. Existing networks only tend to have better coverage because they are more scattered. 
(B) Illustration of high coverage (light blue area) due to extreme scattering and low length of LCC (dark 
blue sub-network) for Milan’s existing bicycle network, versus its synthetic version at same length ( 185 km at 
qB = 0.425 ). The LCC for synthetic Milan is the whole network. Maps created with: https://​github.​com/​mszell/​
biken​wgrow​th (v.1.0.0).

https://github.com/mszell/bikenwgrowth
https://github.com/mszell/bikenwgrowth
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important lesson: Mere measures of total length or coverage are misleading when it comes to an efficient and 
safe infrastructure if the network is not well connected. Instead, if city planners were to develop and implement 
bicycle networks holistically, considering a city-wide rather than piece-wise local approach, much higher quality 
infrastructure could be derived to the benefit of the residents. Many examples such as Dutch cities, Seville, or 
Paris have already proven that this is indeed a realistic approach24,25,52.

For completeness we also compare our results to the closeness and random growth approaches, Supplemen-
tary Fig. 2. For closeness we find almost the same result as for betweenness, only with notably worse coverage 
which is to be expected given how closeness grows the covered area as slowly as possible. For the random growth 
approach we find the same coverage as existing infrastructure, and around 2 times the global efficiency and length 
of LCC. At first blush, this implies that even a naive random growth strategy can perform better than existing 
ones. However, this could be due to a number of reasons: For instance, in the random growth process described 
here, segments are added over at least 1.7 km in each step, whereas in real cities, segments are added in a more 
scattered fashion and in varying lengths. Further, cities can have non-negligible off-street bicycle tracks, for 
example through parks, a feature not considered in our analysis.

Comparing synthetic with existing network overlaps.  To gain a better understanding into how the 
synthetically grown parts compare to existing infrastructure, and thus the extent to which the growth models 
approximate reality, we measure the percent overlap of synthetic infrastructure with existing bicycle infrastruc-
ture. Figure 7A and B report for rail station seeds the average overlaps for protected cycle tracks and for bikeable 
infrastructure respectively, where bikeable infrastructure is defined as the union of protected tracks and streets 
with speed limits ≤ 30 km/h (see “Materials and methods”). Results are qualitatively similar for grid seeds, see 
Supplementary Figs. 8–10.

For protected infrastructure, Fig. 7A, we find that growth by betweenness (solid line) starts with around 6% 
overlap on average, then decreases fast reaching 3.5%. We find a similar behavior for random growth (dotted line) 
but with a smaller effect. We find no clear effect for growth by closeness (dashed line). These observations suggest 
that cities take into account flow (betweenness) when building their cycling infrastructure, and that rail stations 
play some role—otherwise there would be no effect in the random growth. The betweenness overlap effect is 
especially strong in Copenhagen, Fig. 7A inset, which has a well-developed, cohesive on-street bicycle network. 
Figure 7B shows the synthetic growth stage at the second step, qB = 0.05 . Remarkably, at this step over 80% of 
the links suggested by the synthetic network model do already exist in reality. Even at qB = 0.20 there is almost 
70% overlap, Fig. 7C. These values are far higher than expected by chance: Given the length of Copenhagen’s 
on-street cycle tracks we would expect only at most 24% overlap in a random link placement.

Existing, not grown
Grown and existing
Grown, not existing

qB = 0.05

qB = 0.20

BA

C

D

Figure 7.   First stages of synthetic growth recreate existing networks. Shown are results for rail station seeds 
averaged over all cities. Same legend as Fig. 4. (A) Growth by betweenness starts with high, then decreasing 
overlap with existing protected bicycle infrastructure. Inset: The effect is especially strong in cities with well 
developed on-street bicycle networks such as Copenhagen. Here the growth algorithm starts with over 80% 
overlap. (B) Map of this high overlap in Copenhagen at the quantiles qB = 0.05 and (C) qB = 0.20 . (D) The 
overlap with bikeable infrastructure has a notable effect only for growth by closeness due to traffic-calmed city 
centers: With increasing distance from the city center, overlap falls. Maps created with: https://​github.​com/​
mszell/​biken​wgrow​th (v.1.0.0).

https://github.com/mszell/bikenwgrowth
https://github.com/mszell/bikenwgrowth
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The overlap for bikeable infrastructure looks different, Fig. 7D. Here, there is no clear effect for betweenness 
and random growth, but a very clear effect for closeness, which starts with high values (above 20% on average), 
falling slowly to 16%. This observation is consistent with cities preferentially installing low speed limit areas in 
their city centers.

Discussion
We grew synthetic bicycle networks in 62 cities following three different growth strategies all aiming to gener-
ate a cohesive network, i.e. a network that is well connected and covers a large fraction of the city area. Study-
ing the resulting networks we found a consistent critical threshold affecting directness in all cities and global 
efficiency in some of them, for the two most realistic strategies of growth by betweenness and random growth. 
This sudden network consolidation therefore has a fundamental policy implication: To grow bicycle networks 
successfully, cities must invest into them persistently, to surpass short-term deficiencies until a critical mass of 
bicycle infrastructure has been built up. Further, from a topological perspective, cities should avoid traditional 
“random growth-like” strategies that follow local, stepwise refinement. Such strategies substantially shift the criti-
cal threshold, thereby hold up the development of a functional cycling infrastructure which could fuel adversarial 
objections to bicycle network expansions along the lines of “We already built many bike tracks but nobody is 
using them, so why build more?” As we have shown, it is not a network’s length that matters but how you grow it.

Our main result focuses on directness because it is the most important metric for bicycle network planning 
apart from connectivity: It is the key metric to quantify network quality14, and it is the best predictor or quantifi-
able policy aspect for adoption of cycling53,54. To ensure that our results are robust to other possible definitions of 
directness, we compared our main result, see Fig. 4C, using four different definitions, see “Materials and methods” 
and Supplementary Fig. 3. Numerical values vary only insignificantly, all results are qualitatively identical for 
each definition, thereby establishing robustness.

By comparing metrics and overlaps of synthetic with existing networks, we gained an insight into the realism 
of our models. Our observations suggest that growth processes of existing protected bicycle networks contain a 
strong random ingredient and a detectable consideration for flow (betweenness) and rail stations. The random 
ingredient can be explained by the traditionally slow-paced urban planning processes arising from political 
inertia11,26. Unfortunately, the random strategy is also the slowest in terms of network consolidation: It needs at 
least three times the investments than the betweenness strategy to reach the critical threshold. The rail effect can 
be explained by transit-oriented development efforts, where bicycle facilities are planned close to transit lines30,55. 
The remarkably high overlap with Copenhagen’s well developed network suggests that our models could also be 
adapted to identify “missing links” in existing bicycle networks56,57.

Although the emergence of a giant component in network growth could have been anticipated with network 
science expertise, our results are not trivial: (1) This crucial insight is missing in the bicycle network planning 
manuals that practitioners use14, (2) the different pros and cons of growth strategies have not been studied nor 
quantified before, (3) the policy dimension shows that reports on lengths and functionalities of under-developed 
bicycle networks must be scrutinized in an evidence-based way and take into account network structure. Only 
by being global and minimalistic, deliberately ignoring second order effects, does our approach uncover fun-
damental topological limitations of bicycle network growth independent of place. At the same time our results 
must be treated as statistical solutions. By no means do they suggest concrete recommendations for new bicycle 
facilities, as a vast array of local idiosyncrasies (second order effects) would need to be accounted for14,50, includ-
ing: road category, speed limit, volume of motorized traffic, or aspects of comfort58. Despite the importance of 
these aspects, a transport network’s geometry is its most fundamental limitation59 which is the reason we explored 
it first. Although our approach here is not yet aiming to provide concrete urban design solutions, it could be 
useful for planning purposes for easily generating an initial vision of a cohesive bicycle network—to be refined 
subsequently56. By publishing all our code as open source we facilitate such future refinements. Our minimal 
requirements on data are a deliberate limitation we impose for our framework to be applicable to data-scarce 
environments and thus to a large part of the planet41: no lane widths, inclines, traffic flows, etc. are needed to 
optimize network topology.

The studied alternative approach of starting from rail station seeds instead from grid seeds seems reasonable, 
however care has to be taken to not amplify existing biases that are well-documented in the transport planning 
profession21,60,61: For example, planning bicycle infrastructure only along metro stations that were built following 
elitist or racist biases would reinforce them, neglecting under-served regions and their inhabitants even further. 
The strength of our seed point approach lies in its arbitrariness that can bypass such issues: Grid seeds imple-
ment equal coverage and could be a starting point, to be refined carefully with e.g. population density, traffic 
demand models, or flow data32,56,62. The biggest limitation of our approach is the sole focus on retrofitting street 
networks for safe cycling. This approach has some issues because it only considers on-street but no off-street 
bicycle infrastructure. We discuss the technical details of this limitation, mostly relevant for concrete bicycle 
network planning in low urban density, in Supplementary Note 1, concluding that future research on bicycle 
network growth should consider off-street solutions wherever possible.

Finally we discuss the effect of growing bicycle networks on limiting street networks for car traffic. Our flow 
analysis detects no substantial change of choke points. To be fair, this analysis is static and does not account for 
possibly nonlinear dynamic congestion effects which could be studied in arbitrary detail and precision. How-
ever, the state of the art in sustainable travel planning and systems design is clear that such short-term dynamics 
predictions are overtrumped by long-term behavioral effects63–67: Induced demand posits that the development 
of a functional cycling infrastructure will generally drive a modal shift towards cycling— for latest evidence see, 
e.g. Refs.23,24—while the reclamation of ineffectively used automobile space will naturally lead to disappearing 
traffic. Therefore, the OECD recommends to replace the outdated “predict and provide” planning paradigm with 
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the vision-led “decide and provide” principle64,65. Our research follows this principle by prioritizing planning for 
access and the latent demand for cycling68,69 through a cohesive network, rather than optimizing hard to forecast 
flow dynamics that are trumped by stronger equilibrium effects in the long term.

Concerning the change from directness D ≈ 0.8 to D ≈ 0.6 , it is unclear whether to interpret it as substantial 
or inconsequential. Following considerations of long-term systems design as above, we deem it more important 
to discuss whether a small or a large change is desired. There are arguments for both sides: From the perspec-
tive of car-dependent transport planning the change should be small to not disrupt the existing system too 
abruptly10,66,70. From the perspective of sustainability, human-centric urban planning, and climate research, the 
change should be large to boost efficient bicycle transport, livable cities, and to fight climate change effectively. 
Indeed, the CROW manual states that directness should be higher for cyclists than for cars14. On top of that it 
could be argued that our eurocentric Copenhagen-style model of building a relatively sparse sub-network for 
cyclists is not going far enough, or that it could be out of place in other socio-cultural or land-use contexts71–73. 
For example, it could be inverted into a Barcelona-style model where dense patches of living streets – Super-
blocks – are built within a sparse sub-network of automobile arterials66,74. In any case, resistance to such ideas 
needs to be anticipated5,70, requiring vigorous policy making and a well-informed civil society following leading 
examples such as the Netherlands11,52. Sustainability science provides overwhelming evidence for the societal 
benefits of following such persistent implementations, facilitating the transition to cities with sustainable trans-
port systems to counteract climate change effectively, and providing extraordinary benefits to public health and 
urban livability2,9,18,19,67,75.

Summarizing limitations and future work, we call for network development models that combine both the 
long-term goal of a cohesive, accessibility-focused network as we do here, and the use of empirical, place-
specific or street-level data for refinements56, while being critical of flow-optimizing engineering approaches66. 
On a policy level, more research is needed into understanding socio-technical processes to overcome political 
inertia10,72,73. Finally, let us answer the questions posed in the beginning. Are bicycle networks of existing cities 
optimal?—Our example of Milan has shown that in general, they are not, or that they are built in a too discon-
nected way. However, when it comes to well developed cities like Copenhagen, we find—despite many still 
outstanding gaps57—higher than expected overlap in the first growth stages, showing signs of an optimization 
process. Can optimal growth policies be replicated in other cities?—Yes, the technical solutions exist, and the scale 
of investment is mostly a matter of political will as we can see from the Netherlands, Sevilla, or Paris24,25,52. And 
are there fundamental topological limitations for developing a bicycle network? Yes, there is a critical threshold 
to overcome until a functional bicycle network emerges. Because of this threshold and its dependence on the 
growth strategy, our practical recommendations are to concentrate investments as early as possible, and to grow 
for the whole city instead of piece-wise.

Materials and methods
Network data and growth.  Infrastructure networks.  We downloaded existing street and bicycle net-
works for 62 cities from OpenStreetMap (OSM) on 2021-02-26 using OSMnx43. For each city, three networks 
were downloaded: Street network, protected bicycle network, bikeable network. Each node is an intersection, 
each link is a connection between two intersections. A protected bicycle network is the union of all OSM data 
structures that encode protected bicycle infrastructure, both on-street and off-street. Following the cycling safety 
literature, we consider only protected bicycle networks in our main analysis because safe cycling in general 
conditions is only ensured through physical separation from vehicular traffic6,14,35,50,52 We also consider for ad-
ditional analysis the “bikeable” network, which is the union of a protected bicycle network and all streets with 
speed limits ≤ 30 km/h or ≤ 20m/h (including living streets). In special conditions such street segments can 
be considered safe for cycling, but not in general14,35; safety is a complex topic requiring a deep discussion of a 
multitude of variables19, therefore we consider it outside the scope of this work. OSM data has been generally 
found to be of high quality and completeness41,76, but multicity studies using bicycle infrastructure data such 
as ours could potentially suffer from some labeling inconsistencies, especially for less common types of bicycle 
infrastructure77.
Seed points.  Rail station seeds consist of all railway and metro stations. A few of the considered cities do not 
have rail stations. For creating grid seeds, we created grid points at a distance of 1707m , ensuring a tolerable 
average distance of 167m (2 mins walking) over the whole city to the triangulated network in the worst case, 
see Supplementary Note 2. We then rotated this grid to align it with the city’s most common street bearing78, 
and snapped the grid points to the closest street network intersections within a 500m tolerance. The rotation is 
mostly important for US cities that have a grid-like street network, e.g. Manhattan, for creating straight routes.

Greedy triangulation.  The greedy triangulation orders all pairs of nodes by route distance and connects 
them stepwise as the crow flies. A link is added only if it does not cross an existing link. This triangulation is a 
O(N logN) computable proxy for the NP-hard minimum weight triangulation45 with an approximation ratio of 
�(

√
N)

79. The greedy triangulation is fast and solvable for any set of nodes. Computing a quadrangular grid, as 
suggested by the CROW manual14, or a quadrangulation, is in general not possible for arbitrary sets of nodes and 
also computationally less feasible80.

Growth strategy: betweenness centrality.  This is a path-based measure that computes the fraction of paths pass-
ing through a given node i81,
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where σst is the number of shortest paths going from nodes s to t and σst(i) is the number of these paths that go 
through i.

Growth strategy: closeness centrality.  Measures the total length of the shortest paths from a node i to all other 
nodes in the network82,

Network metrics.  Cohesion.  The CROW manual14 describes qualitatively what it means for a network to 
be cohesive: a “combination of grid size and interconnection”. It states that this is the most elementary require-
ment for a bicycle network but without a rigorous definition. We interpret this concept as having both high con-
nectedness (few disconnected components) and coverage, see below. A cohesive network should also be resilient, 
see below, which excludes pathological cases like the minimum spanning tree.

Coverage.  We measure spatial coverage of the network as the union of the ε-neighborhoods of all network ele-
ments, i.e. a buffer of εm around all links and nodes. Here we set ε = 500m together with the grid seed distance, 
as this implies a theoretical coverage of 100% of the city area for a grid triangulation and an average distance to 
the network of 167m , see Supplementary Note 2. In general, a cohesive bicycle network should cover the major-
ity of the city area.

Seed point coverage.  This metric refers to the number of seed points that have been covered by network ele-
ments (by the coverage defined above).

Components.  The number of disconnected components is the number of maximal connected subgraphs, i.e. all 
pairs of nodes within one component are reachable with a path but there is no path between nodes from differ-
ent components.

Directness.  The directness between two nodes i and j is generally defined as the ratio dE(i,j)dG(i,j)
 between euclidean 

distance dE(i, j) and shortest path distance dG(i, j) . The average of this ratio over all pairs of nodes is then the 
directness of the whole network:

Node pairs i and j are considered from within the same components because directness is a meaningless 
concept for nodes from different components. Other possible definitions for directness could be:

•	 The previous definition but only applied to the LCC: D =
〈

dE(i,j)
dG(i,j)

〉

i �=j∈LCC

•	 The ratio of total euclidian distances and shortest path distances: D =
∑

i �=j dE(i,j)
∑

i �=j dG(i,j)

•	 The previous definition but only applied to the LCC: D =
∑

i �=j∈LCC dE(i,j)
∑

i �=j∈LCC dG(i,j)

We calculated directness according to all these different definitions as a robustness check, see Supplementary 
Figure 3. Numerical values vary only insignificantly, all results are qualitatively identical for each definition.

Local and global efficiency.  A network’s global efficiency is defined as47:

A network’s local efficiency is defined as the average of global efficiencies Eglob(i) over each node i and its 
neighbors,

Local efficiency measures local fault tolerance and therefore operationalizes the concept of resilience on a 
local level.

(1)CB(i) =
1

N

∑

s �=t

σst(i)

σst

(2)CC(i) =
N − 1
∑

i �=j

d(i, j)

(3)D =
〈

dE(i, j)

dG(i, j)

〉

i �=j

(4)Eglob =

∑

i �=j

1
dG(i,j)

∑

i �=j

1
dE(i,j)

(5)Eloc =
1

N

N
∑

i=1

Eglob(i)
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Spatial clustering and anisotropy.  We first specify a threshold θ and identify the Nθ nodes with high between-
ness above the θ-th percentile. Then, we compute their spread about their center of mass

where xi specifies their coordinates, normalizing for comparison across networks of different sizes via

where

is the average distance of all nodes in the network to the center of mass of the high betweenness cluster.
Transition between the topological and spatial regimes is quantified by the increasingly isotropic layout of the 

high betweenness nodes with increasing edge-density. The anisotropy factor is defined by the ratio

where �1 ≤ �2 are the positive eigenvalues of the covariance matrix of the spatial position of the nodes with 
betweenness above the threshold θ51.

For the largest 15 cities we calculated these values only at the 0, 0.5, and 1 quantiles of the growth strategies 
due to computational feasibility. Therefore, Supplementary Fig. 4 reports average values over the 47 smallest cities.

Data availability
All code used in the research is open-sourced, available at: https://​github.​com/​mszell/​biken​wgrow​th. All data 
used and generated in the research are publicly available at Zenodo83: https://​zenodo.​org/​record/​50830​49. Inter-
actively growing networks, plots and video visualizations for all 62 cities can be explored and downloaded at the 
accompanying visualization platform: https://​growb​ike.​net.
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