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ABSTRACT

The majority of the human genome encodes long
noncoding RNA (lncRNA) genes, critical regulators
of various cellular processes, which largely outnum-
ber protein-coding genes. However, lncRNA-involved
fusions have not been surveyed and character-
ized yet. Here, we present a systematic study of
the lncRNA fusion landscape across cancer types
and identify >30 000 high-confidence tumor-specific
lncRNA fusions (using 8284 tumor and 6946 normal
samples). Fusions positively correlated with DNA
damage and cancer stemness and were specifically
low in microsatellite instable (MSI)-High or virus-
infected tumors. Moreover, fusions distribute differ-
ently among cancer molecular subtypes, but with
shared enrichment in tumors that are microsatellite
stable (MSS), with high somatic copy number alter-
ations (SCNA), and with poor survival. Importantly,
we find a potentially new mechanism, mediated by
enhancer RNAs (eRNA), which generates secondary
fusions that form densely connected fusion networks
with many fusion hubs targeted by FDA-approved
drugs. Finally, we experimentally validate functions
of two tumor-promoting chimeric proteins derived
from mRNA-lncRNA fusions, KDM4B–G039927 and
EPS15L1–lncOR7C2–1. The EPS15L1 fusion protein
may regulate (Gasdermin E) GSDME, critical in py-
roptosis and anti-tumor immunity. Our study com-
pletes the fusion landscape in cancers, sheds light
on fusion mechanisms, and enriches lncRNA func-
tions in tumorigenesis and cancer progression.

INTRODUCTION

Fusions are products mostly resulting from DNA structural
changes (1,2). Many fusions can be used as biomarkers and
therapeutic targets in various cancers (3,4), such as BCR–
ABL1 in leukemia, EWSR1–FLI1 in Ewing’s sarcoma and
TMPRSS2–ERG in prostate cancer. Thanks to the huge
number of samples with RNA sequencing (RNA-seq) avail-
able from projects including The Cancer Genome Atlas
(TCGA) (5) and Genotype-Tissue Expression (GTEx) (6),
fusion events have been studied extensively in both cancer
(1,7–11) and normal tissues (12). Integrative analysis of fu-
sions with kinase fusions, druggability and other driver mu-
tations was performed (10). A database of systematic func-
tional annotations of fusions was constructed (9). The fu-
sion knowledge database based on text-mining and manual
curation has been updated recently (8).

However, all these efforts have been focused on mRNA–
mRNA fusions, and most studies dedicated to either iden-
tification or collection of fusion events. Few fusions were
reported for lncRNA, especially enhancer RNAs (eRNA),
which largely outnumber the protein-coding genes and play
important roles in cellular processes during development
and diseases (13,14). Numerous efforts strived to anno-
tate lncRNA functions (15) and study lncRNA functional
mechanisms (16). Adding lncRNA-involved fusions would
provide new insights into the whole picture of fusions, espe-
cially in cancers. Moreover, fusion connections with cancer
molecular subtypes have not been reported before, which
may have considerable contributions to our understanding
of the underlying mechanisms of fusion generation and tu-
morigenesis.

Here we present the first atlas of lncRNA fusions, to-
gether with mRNA–mRNA fusions, across cancers. The
validation rate of our lncRNA fusions was estimated to
be as high as ∼80%. We study this fusion landscape in
novel angles and provide interesting insights into fusions
in cancer, including fusion connections with MSI, virus in-
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fection, molecular subtypes, SCNA, cancer stemness and
patient survival. More importantly, we report a subset of
secondary fusions mediated by primary eRNA fusions and
experimentally validated the tumor-promoting functions
of two mRNA-lncRNA fusions, KDM4B–G039927 and
EPS15L1–lncOR7C2–1.

MATERIALS AND METHODS

Data collection

TCGA RNA-seq raw reads and associated clinical infor-
mation were downloaded from the GDC portal (https:
//portal.gdc.cancer.gov/). GTEx RNA-seq raw reads and
sample information were downloaded from the dbGaP
database (phs000424.v6.p1). Virus infection status for can-
cers was obtained from (17). Tumor MSI genotyping infor-
mation was obtained from (18). Cancer subtypes, stemness,
DNA damage scores and immune signature classifications
were downloaded from UCSC Xena (https://xenabrowser.
net/). CPTAC-BRCA proteomics and phosphoproteomics
datasets were downloaded from http://linkedomics.org. In-
teractions of eRNA-target and eRNA-drug were obtained
from (19). Hi-C-based enhancer–promoter interactions
were from (20). CRISPR-based enhancer-target were from
(21). RNA-seq reads (SRR8615767) for MDA-MB-231
cells were downloaded from Gene Expression Omnibus
(GEO). Our SKBR3 RNA-seq reads were deposited on
GEO (GSE157986).

Build an integrative set of lncRNA annotations

GTF annotations of protein-coding and lncRNA
genes for GENCODE v28 were downloaded from
www.gencodegenes.org. Three more additional comprehen-
sive lncRNA annotations were further obtained, including
MiTranscriptome v2 (22), NONCODE v5 (23) and LNCi-
pedia v5.2 (24), all as GTF files. All genomic coordinates
were converted to hg38. Then, we merged the four GTF files
and removed duplicated gene annotations using gffcompare
(https://ccb.jhu.edu/software/stringtie/gffcompare.shtml).
Specifically, any transcript annotated as ‘protein coding’ in
the MiTranscriptome database was removed. A final set of
251 692 genes including protein-coding (n = 19 889) and
ncRNAs (n = 231 803, mostly lncRNAs) were used for
genome indexing and then fusion identification (indexing
this huge set of lncRNA annotations for STAR-Fusions
was very time-consuming, taking several weeks on the
server). We deliberately included as many lncRNA annota-
tions as possible (more than those in the LncBook database
(25)), which is not published before this project started) for
fusion algorithms to better detect fusion events, and we
applied strict filtering steps to clean the fusion results.

Identify and clean fusion events

Most computing work of fusion identification was per-
formed on the Tianhe-2 supercomputer, supported by Na-
tional Supercomputer Center in Guangzhou. Two highly
reliable fusion algorithms (26), Arriba (https://github.com/
suhrig/arriba, default parameters) and STAR-Fusion (26)
(–FFPM 0.1, also used by (10)) were used to call fusion

events. Both algorithms were applied to each sample from
TCGA and GTEx. Then, fusion results from both algo-
rithms were merged (using only fusions with ‘high’ confi-
dence from Arriba and with FFPM ≥ 0.5 and ‘YES LDAS’
from STAR-Fusion) separately for cancer and normal sam-
ples. When both algorithms identified the same fusion in
a sample, the fusion from Arriba was retained. Next, can-
cer fusions overlapping any fusion found in normal samples
(TCGA tumor matched normal or all GTEx normal sam-
ples) were removed. Then, we further required support of
both types of fusion reads: split-reads ≥ 1 and spanning-
reads ≥ 1. Moreover, although duplicated annotations were
removed, there were still some transcripts that may share the
same fusion breakpoint for one fusion event, and only the
event with the most supporting reads was kept. The remain-
ing fusions were used for downstream analysis.

NFPT calculation

For each cancer, NFPT was calculated as the total fusions
divided by the total samples (normalization). This was done
similarly for each cancer subtype and cancers with or with-
out virus infection.

Analysis of MSI with fusions

For each MSI-prone cancer, COAD, ESCA and STAD,
MSS and MSI-Low were grouped together as ‘others’ and
compared with MSI-High, because we found MSS and
MSI-Low samples did not differ in fusion abundances. Fu-
sions (log-transformed) for ‘MSI-High’ and ‘others’ sam-
ples were compared by two-sided wilcox.test in R.

Survival analysis

For each survival analysis, a log-rank test by TCGAbiolinks
(27) was used to compute the significance, and Cox multi-
variate regression was further used to confirm the signal and
compute the hazard ratio, after adjusting for confounding
variables including sex, age, stage, ploidy and tumor purity.
In survival analysis of KDM4B and EPS15L1 fusions, both
the clean (high-confidence only) and raw (including fusions
with other confidence levels) fusions were examined, and
raw fusions were found useful and improved the significance
of survival difference.

Analysis of DNA damage score, cancer stemness and immune
signatures with fusions

For each sample, fusions (log-transformed) were correlated
with DNA damage score or cancer stemness using Pearson
correlation and P-value was calculated by the cor.test func-
tion in R. For immune signatures, fusion numbers were nor-
malized by the number of samples classified as each signa-
ture for each cancer, similar to NFPT calculation.

Analysis of virus infection with fusions

For each virus-associated cancer, fusions (log-transformed)
for virus-positive and virus-negative samples were com-
pared by one-sided t-test in R.

https://portal.gdc.cancer.gov/)
https://xenabrowser.net/)
http://linkedomics.org
http://www.gencodegenes.org
https://ccb.jhu.edu/software/stringtie/gffcompare.shtml)
https://github.com/suhrig/arriba


12620 Nucleic Acids Research, 2020, Vol. 48, No. 22

FGI network construction and analysis

LncRNA breakpoints from FPL fusions were used to exam-
ine potential overlap with eRNAs that had potential inter-
action with long-range target genes (19) and with enhancer
elements that had physical contact with long-range target
genes determined by Hi-C (20) or CRISPR-based (21) tech-
nologies. Then, the protein gene from FPL fusions and tar-
get genes of the eRNA from the same tissue were connected
together and formed the FGI network. Both the clean and
raw tumor fusions were used to check for detection of pre-
dicted secondary fusions in this FGI network, and raw fu-
sions were found useful to enhance the support for sec-
ondary fusions, compared with only using high-confidence
fusions. Cytoscape (28) was used for network analysis and
visualization. For iMARGI (29) data re-analysis, we down-
loaded processed data files in BEDPE format containing
interacting regions from GEO (GSE122690). The nearest
gene was assigned to each region. Secondary FPP gene pairs
were then compared with iMARGI gene pairs to calculate
the overlap.

Drug target and drug responses analysis

Drugs targeting FGI hub genes were obtained from DGIdb
(30) with information of FDA approval. For eRNA associ-
ated drug responses, genomic breakpoints of eRNA fusions
were compared with eRNA regions from (19). Breakpoints
located in eRNAs with drug associations were regarded as
affecting eRNA–drug associations.

Proteomic and phosphoproteomic analysis

Identification of novel peptides from KDM4Bf and
EPS15L1f was performed by PepQuery (31). Differential
protein and phosphorylation levels were analyzed by R
package limma, adjusted for confounding variables, includ-
ing sex, age, stage, tumor purity and ploidy.

Plasmids, cell lines and cell growth assay

cDNA clones of KDM4B and EPS15L1 were purchased
from JuJiao Biotehnology. Flag-tagged full and fusion
ORFs of KDM4B and EPS15L1 were subcloned to PLVX-
puro lentivirus vectors by Gibson Assemble. Primers for
cloning were listed in Supplementary Table S8. All breast
cancer cell lines were purchased from Cell Bank of Chi-
nese Academy of Sciences at Shanghai. Cells were cul-
tured in Dulbecco’s Modified Eagle medium (DMEM) sup-
plemented with 10% fetal bovine serum (FBS) and main-
tained in CO2 incubators (Thermo Scientific) at 37◦C, 5%
CO2. Lentiviruses were produced in HEK293T cells with
the viral packaging constructs psPAX2 and pMD2G (Ad-
dgene). Stable cell lines were generated by infecting the cells
with corresponding virus and selected by puromycin for 1
week. To measure cell growth, stable cells were seed in 12-
well plated and were cultured for indicating days. Culture
medium were refreshed every 2 days. Cells were stained with
0.1% Crystal Violet (Sigma) for 15 min at room tempera-
ture. Stained Crystal Violet was then extracted with 10%
acetic acid. The intensity of the color was measured by a
photospectrometry at OD570.

Quantitative real-time PCR

Total RNA was extracted from cells using Trizol (Invitro-
gen) and cDNA was prepared using Reverse Transcriptase
Kit (Vazyme). Real-time PCR was performed using SYBR
Green PCR kit (Vazyme), and was run on Roche LightCy-
cler 480. Expression levels were normalized by GAPDH.
Primers for real-time PCR were listed in Supplementary Ta-
ble S8.

Western blot analysis

Cultured cells were lysed with RIPA buffer containing com-
plete mini protease and phosphatase inhibitors (Roche).
Western blots were obtained utilizing 20–40 �g of lysate
protein. The following antibodies were used in this study:
Vinculin (Sigma, V9264, 1:5000 dilution) and Flag M2
(Sigma, F1804, 1:2000 dilution).

Fusion validation

Total RNA of SKBR3 and MDA-MB-231 were extracted
using TRIzol according to the manufacturer’s instructions
(Invitrogen, Thermo Scientific, U.S.A.). One microgram
total RNA was used for cDNA synthesis. PCR products
were gel purification and were cloned into T vectors by
TA cloning. Insertions were sequenced by Sanger sequenc-
ing. Primers used for validation were provided in Supple-
mentary Table S9. For RNA Sequencing of SKBR3 cells,
RNA was extracted with TRIzol and sequenced following
the manufacturer’s protocol. RNA-seq data were processed
as the TCGA RNA-seq data.

RESULTS

Widespread lncRNA fusions across cancer types

We obtained 48 545 high-confidence tumor-specific fusions
(Figure 1A and Supplementary Table S1) after strict fil-
tering (see ‘Materials and Methods’ section) of the ini-
tial 1 867 911 fusions in 8284 cancer samples (30 cancer
types) from TCGA and 6946 normal samples from TCGA
(n = 585) and GTEx (n = 6361) (Supplementary Table
S2). The initial fusions were identified by combining three
large lncRNA annotation databases MiTranscriptome (22),
NONCODE (23) and LNCipedia (24)) with GENCODE
(www.gencodegenes.org) as reference and applying two ef-
ficient fusion calling algorithms (Arriba and STAR-Fusion)
(26) (see ‘Materials and Methods’ section). Most fusions
were predicted by Arriba to originate from duplications or
translocations (Figure 1B).

Our strategy enabled comprehensive identification of
lncRNA-involved fusions across cancer types. Among all
these tumor fusions, 14 673 (30.2%), 20 816 (42.9%), 5230
(10.8%) and 7826 (16.1%) events were mRNA–mRNA
(FPP), mRNA–lncRNA (FPL), lncRNA–mRNA (FLP)
and lncRNA–lncRNA (FLL) fusions, respectively (Fig-
ure 1C). In previous studies, lncRNA-involved fusions
in TCGA only comprised ∼1.0% (Hu2018 (7)) or 4.3%
(Gao2018, (10)) (Figure 1D). About half (56.9%) of our
mRNA-mRNA fusions were previously reported in TCGA
(7,10). We identified 72.8% of fusions from the Gao2018

http://www.gencodegenes.org
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Figure 1. Characteristics of high-confidence fusions and the relationship between fusion and MSI. (A) Fusion distribution across cancer types. BRCA has
the highest fusions partly because it has the largest number of tumor samples. Numbers for each bar represent numbers of tumor samples used in this study.
(B) Fusions are predicted as results of different structural variations, mostly duplications (DUP) and translocations (TLOC), and less from deletions (DEL)
and inversions (INV). Color scale stands for fusion fraction for each category. (C) Comparison of mRNA–mRNA fusions (FPP) and lncRNA-involved
fusions (FPL, FLP, FLL). Most fusions are from FPL, followed by FPP. (D) Comparison of percentages of lncRNA fusions in three studies of TCGA cancer
samples. (E) RT-PCR detection of selected fusions in SKBR3 and MB-231 cells. Neg and pos represent negative control and positive control, respectively.
(#1, G082937–G082922, #2, G082937–NONHSAG051248; #3, RF02164–PCAT1; #4, ARHGAP10–NONHSAG112173; #5, G082937–POU5F1B; #6,
NONHSAG073428–MICAL1; #7, G038808–G045118; #8, FOCAD–G084147; #9, FOCAD–NONHSAG114490). (F) Similar distribution across cancers
of FPP and lncRNA fusions (FPL, FLP, FLL). MSI-prone cancers (UCEC, ESCA, OV, STAD) rank at the top. (G) MSI-High tumors (COAD, ESCA,
and STAD) have significantly less fusions, consistently, than other tumor subtypes; two-sided Wilcoxon test.

study and the difference was probably mostly because of
about 8% of tumor samples were not included here due to
download issues or failed the fusion pipeline, or because of
a much larger set of reference annotation were used. Inter-
estingly, FPLs was much higher than FLPs, which is prob-
ably due to FPLs used protein-coding promoters and FLPs
used lncRNA promoters, because it is known that generally
lncRNAs had much lower expression than protein-coding
genes. To support this hypothesis, we further showed that
FPLs generally had more supporting reads than FLPs (Sup-
plementary Figure S1).

Highly reliable lncRNA fusions

Some lncRNAs may overlap with protein-coding genes,
which may result in false lncRNA fusions. We investigated
the breakpoints distribution of lncRNA fusions and found
that almost all lncRNA fusion breakpoints were outside of
protein-coding genes, with a mean and median distance of
230 and 69 kb, respectively, to the nearest protein-coding
genes (Supplementary Figure S2).

To further demonstrate the reliability of our lncRNA fu-
sions, we deep-sequenced our SKBR3 cells using RNA-seq
and also downloaded public RNA-seq data for MDA-MB-
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231 cells. We then applied the same fusion detection process
and selected nine of twelve lncRNA fusions (Supplemen-
tary Table S3, five from SKBR3 and four from MDA-MB-
231) from these two cell lines for experiment using RT-PCR
and subsequently Sanger sequencing. Expectedly, we suc-
cessfully validated seven (∼80%) out of the nine fusions (3/3
FPLs, 1/2 FLPs, and 3/4 FLLs) (Figure 1E and Supple-
mentary Figure S3). Therefore, our lncRNA fusions should
be reliable and complement the previous protein-coding
gene dominated fusion landscape.

Fusions were negatively associated with microsatellite insta-
bility

We found the distribution of FLPs per tumor was very sim-
ilar to FPP distribution (Figure 1F), and microsatellite in-
stable (MSI) cancers (for example, UCEC, ESCA, STAD
and OV), rather than less MSI-prone cancers THCA and
KIRC (18), seemed to have larger number of fusions per tu-
mor (NFPT), indicating some connections between fusion
and MSI. We then investigated the connections in COAD,
ESCA and STAD, which have enough samples with both
RNA-seq and TCGA MSI genotypes. Surprisingly, MSI-
High tumors had the least fusions among these three can-
cers (Figure 1G), which may be explained by the lower de-
mand of other oncogenic events, such as fusions, in MSI-
High tumors. Further work is needed to uncover the reason
why MSI-High COAD tumors, displaying frequent kinase
fusions (32), had lower fusions than STAD and ESCA. Of
note, we found that most fusions in UCEC, STAD, ESCA,
and OV originated from duplications, while most fusions
from THCA and KIRC, which had the lowest NFPTs, were
from translocations (Figure 1C).

Interestingly, SARC showed the highest NFPTs (Figure
1F) and had connections with MSI, which was detected in a
maximum of 44% sarcoma patients, although with contro-
versies (33). It was reported 85–90% Ewing sarcomas had
the EWS/FLI fusion (34), a subset of whose target genes
harbor a microsatellite response element in their promot-
ers (33). Meanwhile, the number of kinase fusions in SARC
was among the lowest (10), in contrast to THCA and KIRP
showing the highest kinase fusions (10) but with the lowest
NFPTs (Figure 1F) and the fewest MSI loci (18).

Fusions were enriched in specific cancer subtypes with high
copy number alterations and with poor prognosis

Fusions are very cancer-specific (10). Whether fusion dis-
tribution in subtypes within each cancer differs has not
been explored. Inspired by the observed fusion character-
istics in MSI cancers, we computed the NFPTs across sub-
types for each cancer. Surprisingly, the subtype fusion pro-
files showed mostly cancer subtype-specific but also some
subtype-shared characteristics (Figure 2). A summary of
the connections between fusions and cancer subtypes was
presented in Table 1.

In HNSC, classical tumors had the highest NFPTs, which
showed the worst survival rate. These tumors were HPV-
negative with highest copy number of EGFR, PIK3CA
and TP63 (35). In SKCM, the Triple WT subtype had

much higher NFPTs than other subtypes. It is a hetero-
geneous subtype characterized by high somatic copy num-
ber alterations (SCNA) and complex structural rearrange-
ments (36), consistent with our fusion results. In UCEC, the
CN High subtype showed extremely high NFPTs compared
to other subtypes. It is microsatellite stable (MSS), with the
highest TP53 mutation rate and with the worst survival rate
(37).

In SARC, subtypes iCluster:2 and iCluster:3 showed very
high NFPTs, possibly because they comprised of a large
fraction of dedifferentiated liposarcoma samples––almost
100% for iCluster:2 and 50% for iCluster:3––that displayed
the highest level of SCNAs across all TCGA cancer types
(38). Interestingly, iCluster:4 had extremely low NFPTs,
which may due to this subtype basically only need one fu-
sion (SS18–SSX) that would disrupt epigenetic regulation
(38).

Interestingly, brain tumors, LGG and GBM, showed very
similar subtype NFPTs (Figure 2, red circles). G-CIMP-low
tumors showed extremely high NFPTs than other subtypes
and was characterized by high-frequency mutations and ac-
tivation of cell cycle genes, CDKN2A/B, CCND2, CDK4
and RB1 (39).

Furthermore, digestive system cancers, including COAD,
ESCA and STAD, also showed highly similar NFPT dis-
tribution (Figure 2, orange circles), highest in chromosome
instable (CIN) tumors. Most CIN samples were MSS (40),
which further corroborated our conclusion of the connec-
tion between MSS tumors and their fusions. Moreover, CIN
samples displayed more focal SCNAs, especially in the up-
per gastrointestinal tract (meaning NFPTs in ESCA and
STAD are much higher than in COAD), which is consis-
tent with the fusion characteristics of the CN High sub-
type from various other cancer types. This positive corre-
lation may be resulted from the abundant extrachromoso-
mal DNAs (ecDNA) in cancer (41). Of note, CIN samples
have been associated with worse prognosis (42) and stem-
ness (43,44). Future work is needed to disentangle the rela-
tionship between NFPT and CIN.

As indicated in the subtype analysis, fusion events may
be associated with DNA methylation, therefore, we exam-
ined the differences of fusion abundance across methyla-
tion subtypes for each cancer. Among the nine tested cancer
types with enough samples for both fusions and methyla-
tion (BRCA, ESCA, KIRP, PAAD, PRAD, SARC, STAD,
THCA, UCS), we found five (>50%) with P values <0.05
(Kruskal–Wallis test), with extremely high significance in
BRCA (P = 1.1E-12) and SARC (P = 7.5E-10) (Supple-
mentary Figure S4). Furthermore, we observed a general
trend of better survival rate for patients with lower fusion
events (although some did not reach significance, Supple-
mentary Figure S5), with the most significant difference in
LGG (Figure 3A). This is also consistent with the subtype
analysis.

Fusions were positively associated with DNA damage and tu-
mor stemness

Fusions are mostly products of DNA damage. We corre-
lated our fusions with previously reported DNA damage
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Figure 2. Fusion distribution across subtypes for each cancer. X-axis shows cancer subtypes and Y-axis is number of fusion per tumor (NFPT). Most
cancers show subtype-specific fusion enrichment. Chromosome instable (CIN) and CN (somatic copy number)-High tumors show high NFPTs. Brain
tumors (GBM and LGG) are marked by filled circles (top left). Digestive system cancers (COAD, ESCA, STAD) are also marked by filled circles. NA, not
available. Color scales represent NFPT values (Y-axis) to create better visual effect. A detailed summary is presented in Table 1.

scores in TCGA (45). Expectedly, most cancers showed
significant positive correlation between fusion events and
DNA damage (Figure 3B), with the strongest signal from
BRCA (Pearson R = 0.44, P < 2.2E-16, Figure 3C). We fur-
ther examined the relationship between fusions and cancer
stemness (46), which was associated with damage mutations
of TP53 in some cancers. Although some signals were weak,
most cancer types showed positive correlation between fu-

sion abundance and stemness (Figure 3C, only significant
signals were shown). The strongest signal was also in BRCA
for mRNA-based stemness (Pearson R = 0.33, P < 2.2E-16,
Figure 3D). Furthermore, we found the fewest fusions per
sample in tumors classified as Inflammatory (C3) (Figure
3E), which shows the best survival rate among all six im-
mune groups (C5 and C6 groups were excluded in Figure
3E due to small sample sizes) of patients (47).
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Table 1. A summary of the associations between fusion frequencies and cancer subtypes

Cancer Subtype MSS SCNA-high CIN TP53 PTEN CDKN2A Survival

ACC CIMP-high Poor
BRCA Her2 Poor
COAD CIN Y Y Poor
ESCA CIN Y Y Poor
STAD CIN Y Y Poor
GBM G-CIMP-low Y
LGG G-CIMP-low Y
HNSC Classical Y Y Poor
KIRC 3 Y Y
KIRP C2b Y Poor
LIHC iCluster:3 Y Y Y
LUAD 2,3 Y Y
LUSC primitive Y Y
PAAD CN-high Y
PCPG Wnt-altered Poor
SARC iCluster:2 Y
SKCM Triple-WT Y Y
UCEC CN-high Y Y Y Poor

MSS, microsatellite stable; SCNA, somatic copy number alteration; CIN, chromosome instable; Y means Yes.

Fusions were negatively associated with virus infection

A considerable number of cancers were induced by virus
infection (17), which may cause gene fusions directly by
genome integration or indirectly by disrupting genome sta-
bility. We investigated the fusion difference of samples with
or without virus infection. Surprisingly, four viruses were
found associated with decreased fusion events and one with
increased fusions (Figure 4A–E). The association was sig-
nificant for HBV (hepatitis virus B, P = 0.012, one-sided t-
test) in LIHC and HHV5 (human herpesvirus 5, P = 0.033,
one-sided t-test) in COAD, and the negative trend was clear
for HPV16 (human papillomavirus 16) in HNSC, HHV4
(also known as Epstein–Barr virus, or EBV) in STAD, and
HPV45 in CESC. Therefore, cancers with virus infection,
except for HHV5, seems to have less fusions, which is sim-
ilar to MSI-High cancers––both types of cancers probably
require much fewer fusion events to induce tumor (48).

HBV was an important risk factor of liver cancer (49).
We found all six DNAJB1–PRKACA fusions exclusively
in HBV-negative liver cancer samples (Figure 4F). The fu-
sion product showed that both the DnaJ domain and the
kinase domain were intact (Figure 4G). Although DNAJB1
was able to target HBX to inhibit HBV replication (50), the
DNAJB1–PRKACA fusion would cause a rare but lethal
cancer called fibrolamellar hepatocellular carcinoma (FL-
HCC) in adolescents (51). In addition, all six CPS1–CPS1
fusions found only in HBV-negative samples (Figure 4F)
possibly disrupted the urea cycle of metabolism in liver and
caused liver cancer (49).

HPV was known to cause cancer (52). We found all 14
(five with lncRNAs) and 6 (three with lncRNAs) FAT1
fusions only in HPV-negative samples (Figure 4F) of
HNSC and CESC, respectively. FAT1, together with TP53,
CDKN2A, and EGFR, was frequently mutated in HPV-
negative tumors but rarely in HPV-positive tumors (48).
Similarly, six out of seven (five with lncRNAs) EGFR fu-
sions were found in HPV-negative HNSC samples (Fig-
ure 4F), and, interestingly, the remaining one (TCGA-CR-
7368–01A) was previously classified as ‘Atypical’ (35). Of
note, this is consistent with our cancer subtype analysis.

A novel fusion mechanism mediated by eRNAs created com-
plex fusion networks

Many lncRNAs, including enhancer RNAs (eRNA), func-
tion as scaffolding molecules, guiding various factors to
their target positions to control gene expression (14,19).
We propose that FPL may wrongly connect its protein-
coding partner (FG1) with the eRNA partner targeted
genes (FG2), forming oncogenic fusion RNA-gene interac-
tions (FGI, FG1–eRNA–FG2, Supplementary Figure S6).
We collected expression-based eRNA-gene interactions (19)
and Hi-C interaction-based (20) and CRISPR (clustered
regularly interspaced short palindromic repeats)-based (21)
experimentally verified physical enhancer-promoter inter-
actions, and imposed our FPL fusions on them to construct
FPL-induced FGI networks (3,122 interactions, Figure 5,
Supplementary Table S4, see ‘Materials and Methods’ sec-
tion). Surprisingly, we found about 13% (P-value < 2E-16,
compared to random guess, chi-squared test) of these pre-
dicted FGIs (FG1–FG2) were directly detected by fusion
calling algorithms using RNA-seq data. It is possible that
many FGIs were not detected by fusion tools because of
their lower expression level than their parental fusions.

These secondary fusion events were possibly generated by
a new mechanism involving eRNA-promoter long-range in-
teraction, well-known for trans-activation (20) and RNA–
DNA interaction, which can create fusion RNAs with-
out DNA structural changes or rearrangements, demon-
strated by the iMARGI assay (29). To support our finding
of FGI, we re-analyzed the iMARGI assay generated in-
teraction data. We found ∼12.9% (P-value < 2E-16, com-
pared to random guess, chi-squared test) of our FGI fu-
sions had physical RNA–DNA interaction determined by
the iMARGI assay. Therefore, both RNA-seq and iMARGI
assay provided support for our secondary fusions (in total,
about 22.3% FGIs were supported).

Since eRNA (lncRNA) can target a large number of
genes, this may be a potentially highly efficient way to cre-
ate fusion transcripts. This was demonstrated by many fu-
sion hubs in the FGI network, including DCAF12 and
AXIN1 in LGG, PTK2 in OV, MYH14 and LRIG2 in
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Figure 3. Associations between fusion frequencies and cancer features or patient survival. (A) Higher fusions in LGG is very significantly associated with
poorer survival of patients (log-rank test, P = 3.1E-4). (B) Correlation between fusions and DNA damage and cancer stemness (mRNA expression-based
and DNA methylation-based). The strongest signals are from BRCA for DNA damage (Pearson R = 0.44, P < 2.2E-16) (C) and cancer stemness (Pearson
R = 0.33, P < 2.2E-16) (D). (E) Fusion distribution across four immune groups for each cancer. Inflammatory group C3 has the fewest fusions.

LUSC, CSNK1E in LIHC, TAB1 in GBM, MRPL49 in
KIRP, BPTF in BRCA and TP53 and ELP5 in PRAD.
Of note, BPTF was essential for triple-negative breast can-
cer (TNBC, the most malignant BRCA) metastasis (53).
PTK2 was critical for tumor invasiveness and drug resis-
tance, including in ovarian cancer (54). Interestingly, TP53
and ELP5 were functionally related (55) and shared many
common FGI interactions. This eRNA-mediated FGI net-
work may help us explain some high-frequency fusions for a
single protein-coding gene and pinpoint the underlying tu-
morigenic mechanisms for some cancers.

Cancer druggability can potentially be augmented and drug
responses were possibly altered by lncRNA fusions

Drugs targeting FGI hubs probably will be highly effective,
which may provide new angles to tackle relevant cancers.
In the FGI network, we chose 49 hub genes (with ≥10 in-

teractions) and searched for potential drugs targeting them
in DGIdb (30). Nine genes (BPTF, CREBBP, CSNK1E,
EGFR, ERBB2, PTK2, SERPINA6, TMPRSS2 and TP53)
had available drugs (Figure 5) and five of them had Food
and Drug Administration (FDA)-approved drugs, includ-
ing CREBBP (one drug) fusions in LGG and BLCA and
SERPINA6 (eight drugs) in LIHC (Supplementary Figure
S7A).

Drug responses potentially altered by eRNA fusions were
also examined, by using a previous report of eRNA–drug
interactions (19). A total of 52 412 eRNA–drug interac-
tions, formed by 419 eRNAs and 650 drugs, were poten-
tially affected by our eRNA fusions. (Supplementary Figure
S7B). However, we note that the expression level of lncRNA
fusions needs to be considered when accurate estimation
of fusion expression are available in the future. Although
higher fusion expression possibly mediates larger impact on
druggability and drug responses, due to within-tumor het-



12626 Nucleic Acids Research, 2020, Vol. 48, No. 22

Figure 4. Fusion frequencies are negatively correlated with virus infection.
Cancers showing more fusions include HBV-negative LIHC (A), HHV4-
negative STAD (B), HPV16-negative HNSC (C) and HPV45-negative
CESC (D). (E) HHV5-negative COAD tumors show less fusion than
HHV5-positive ones. (F) Example of four fusions only found in HBV-
negative LIHC (DNAJB1–PRKACA, CPS1–CPS1) or HPV16-negative
HNSC and CESC samples (FAT1- and EGFR- fusions with other protein-
coding genes (PCG) and some lncRNAs). Red numbers represent cor-
responding fusion frequencies. (G) Schematic diagram of the DNAJB1–
PRKACA fusion protein with domains indicated. This chimeric protein
was reported to cause rare fibrolamellar liver cancer. DnaJ was reported
to inhibit HBV replication. One-sided t-test was used (A–E).

erogeneity, low fusion expression may represent driver fu-
sion activity in cancer stem cells, a small population of tu-
mor cells (56,57).

FPL-derived novel fusion proteins were potentially functional
in breast cancer

Despite the huge volume of identified fusion events, ex-
perimental validations of fusions functioning in cancer
are very limited, and as far as we know, are only re-
ported for mRNA–mRNA fusions (2,11). Here, we manu-
ally inspected mRNA–lncRNA fusions and focused on two
genes of interest, KDM4B (Lysine Demethylase 4B) and
EPS15L1 (Epidermal Growth Factor Receptor Substrate
15-Like 1) with lncRNA fusions. Their fusions were prog-
nostic for BRCA patient survival (log-rank test, P = 1.5E-4
for KDM4B and 1.8E-4 for EPS15L1, Cox regression haz-
ard ratio = 3.24 for KDM4B and 4.32 for EPS15L1 after
adjustment for confounding factors; Figure 6A and B, Sup-
plementary Figure S8). We further selected two FPL fusion
events for functional analysis, KDM4B–G039927 (the fu-
sion protein was termed as KDM4Bf, ‘f ’ for fusion) and
EPS15L1–lncOR7C2–1 (termed EPS15L1f, ‘f ’ for fusion)

(Figure 6C), whose protein products were both detected by
mass spectrometry (MS, both P = 0.0020, Figure 6D–E,
chimeric open reading frame sequences were provided in
Supplementary Table S5), for functional validation.

KDM4B is a hypoxia-inducible histone lysine demethy-
lase, promoting DNA damage and genome instabil-
ity through demethylating retrotransposons, especially in
breast cancer (58). For KDM4Bf (Figure 6C), loss of the
C-terminal domains of KDM4B probably abolished its pro-
inflammatory function (59) that is important in anti-cancer
therapies and made it structurally similar to KDM4D (60),
which is enriched in testis (61) and is associated with cancer
metastasis (62).

EPS15L1 regulates epidermal growth factor receptor
(EGFR) signaling (63). For EPS15L1f, two ubiquitin-
interacting domains located in the C-terminal of EPS15L1
were lost (64), which may render it constitutively active
without being targeted by the ubiquitin system for degra-
dation by the proteasome. Proteomics analysis showed that
proteins from various oncogenic pathways were dysreg-
ulated (Figure 6F and Supplementary Table S6), includ-
ing down-regulation of DEPDC5 (inhibitor of mechanis-
tic target of rapamycin complex 1 or mTORC1 pathway),
COPRS (differentiation stimulator), ERCC8 (DNA repair)
and FZD6 (negative regulation of Wnt signaling), and up-
regulation of G6PD (energy production).

Interestingly, phosphoproteomics analysis showed that
EPS15L1f was also associated with decreased phosphory-
lation of DFNA5 (also known as GSDME, Gasdermin E)
at Ser-252 (P-value = 7.7E-5, ranked first out of 11 643
tested phosphorylation sites), and increased phosphoryla-
tion of GRB7 (Growth Factor Receptor Bound Protein 7) at
Ser-86 (P-value = 1.5E-3, ranked sixth among 11 643 sites)
(Figure 6G and Supplementary Table S7). The tumor sup-
pressor GSDME has recently been reported by two groups
that it can induce pyroptosis, which is pro-inflammatory
and enhances anti-tumor immunity through inducing tu-
mor cell death and recruiting cytotoxic immune cells to the
tumor sites (65,66), including in breast cancer. Activity of
GSDME was potentially affected by phosphorylation (67).
In addition, TNBC cells require GRB7 (68), whose phos-
phorylation by focal adhesion kinase (FAK) could stimu-
late tumor cell migration (69).

KDM4Bf and EPS15L1f promote SKBR3 cell proliferation

The above data promoted further examination of fusion
events contributing to the tumorigenesis. KDM4B and
EPS15L1 fusion events, which generate shorter ORFs, were
selected to test whether these short chimeric proteins could
promote breast cancer cell proliferation. By real-time PCR
assay performed in a panel of breast cancer cells, SKBR3
cells were found to have low expression levels of both wild-
type KDM4B and EPS15L1(Figure 7A). Upon overexpres-
sion of full-length (wild-type) and fusion (short) ORFs
in SKBR3 cells (Figure 7B), the fusion KDM4Bf and
EPS15L1f greatly increased SKBR3 cell proliferation rela-
tive to empty control and full length ORFs (Figure 7C and
D), suggesting that lncRNA fusion events could play vital
functions in tumorigenesis.
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Figure 5. The network of secondary fusion events (FGI) mediated by enhancer (RNA)-promoter long-range interactions. Shown in the center is the main
structure of this network (for better visualization, only connected subnetworks with at least 15 genes were included). Nine subnetworks (each with one
or two hub genes, DCAF12, AXIN1, PTK2, MYH14, LRIG2, CSNK1E, MRPL49, BPTF and TP53) are shown as examples, displayed closely to their
positions (marked genes) in the full network in the center. Edge colors stand for eight different cancers as indicated in the legend and the edges for remaining
cancers are colored as gray. Node size represents the number of direct interactions. Four (CSNK1E, PTK2, BPTF and TP53) of the nine genes are marked
by a drug icon, indicating available drugs in the DGIdb database.

DISCUSSION

Long noncoding RNAs have been increasingly recognized
as important players in various diseases, including can-
cers. We developed an atlas of lncRNA-involved tumor-
specific fusion events across cancer types, by integrat-
ing three large lncRNA annotation databases and using
two high-accuracy fusion calling algorithms. We explored
this fusion atlas and revealed interesting characteristics of
fusions in cancer, which have not been reported before
and provided novel angles to understand connections be-
tween fusion and cancer and uncovered potential mecha-
nisms of fusions generated in cancer. This work also en-
riched our understanding of lncRNA functions. A sum-
mary of our findings were summarized in Supplementary
Figure S9.

Most fusions were deemed to originate from genomic
structural variations (1,2), which may be the products of
complex events such as chromothripsis (70). We found most
of our fusions were from duplications and translocations,
which were also supported by our cancer subtype analysis
showing positive correlation between frequent fusions and
high SCNAs that possibly resulted from abundant extra-
chromosomal DNAs (ecDNA) in cancer (41). However, we
identified a group of secondary fusion events, which formed
the FGI network, were possibly generated by a novel mech-
anism that involved eRNA-mediated long-range target in-
teraction and RNA–DNA interaction. A large number fu-
sion hub genes, some with FDA-approved drugs available,
were found in this FGI network, possibly due to the large
number targets for individual eRNAs and high efficiency
of fusion-generating by RNA–DNA interactions (29). We
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Figure 6. Characterizing two protein genes with lncRNA fusions in BRCA. (A) BRCA patients with KDM4B fusions have very poor outcome. (B) BRCA
patients with EPS15L1 fusions have very poor outcome. (C) Chimeric transcript sequences near the fusion positions (the red pipe symbol) for the selected
event KDM4B–G039927 and EPS15L1–lncOR7C2–1. UGA (red color) is the stop codon. (D) One of the mass spectrum (x-axis is m/z and y-axis is
intensity) that matches the KDM4Bf fusion peptide (shown on the top). The full chimeric fusion protein sequence was shown, with mass spectrum identified
peptide marked in red and the fusion breakpoint marked by an arrow. (E) Similar to (D), one of the mass spectrum that matches the EPS15L1f fusion
peptide. The full chimeric fusion protein sequence was shown, with mass spectrum identified peptide marked in red and the fusion breakpoint marked by
an arrow. (F) Differential protein levels for tumor samples with EPS15L1 fusions, with the top ten proteins shown. (G) Differential protein phosphorylation
levels for tumor samples with EPS15L1 fusions. Only DFNA5 (also known as GSMDE) and GRB7 showing suggestive signals are labeled.

created the FGI network by using long-range enhancer-
promoter interactions from different technologies, includ-
ing Hi-C and CRISPR. With the accumulation of data from
more studies and more advanced technologies, we expect
this network will be largely improved and expanded. How-
ever, we noted that some fusions in this network may not be
functional, which need much future work to unravel.

Two features of fusions seemed surprising initially––the
negative correlation of fusion frequencies with microsatel-
lite instability and virus infection, which were also sup-
ported by our cancer subtype analysis. However, they be-
came reasonable after considering the possible mechanisms
of tumorigenesis. Both MSI-High and virus infected cells
possibly did not require higher fusion events to increase
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Figure 7. Fusion proteins from KDM4B–G039927 and EPS15L1–lncOR7C2–1 fusion events promote breast cancer cell proliferation. (A) Real-time PCR
detection of EPS15L1 and KDM4B in a panel of breast cancer cells. Values represent mean ± s.d.. (B) Western blot analysis of SKBR3 stable cells expressing
wild-type (WT) and fusion (Fusion) ORFs of KDM4B and EPS15L1. Vinculin is used as loading control. (C) Cells were cultured for different days as
indicated, and then subjected to Crystal Violet staining; Error bar: standard deviation. (D) Cell growth assay for SKBR3 cells expressing various ORFs.
Cells are seed the same numbers and grow for 6 days. Cells are stained with 0.1% Crystal Violet.

their oncogenic potential and induce cancer. A previous
study reported that driver mutations in genes, such as TP53
and FAT1, were exclusively found in HPV-negative cancer
cells. These results were also consistent with previous find-
ing that fusion events were mutually exclusive with driver
mutations (10). Altogether, most cancer possibly only re-
quire one major type of driving events. Although we per-
formed correlations between all fusions and various pheno-
types, we observed similar results when only using lncRNA
fusions (Supplementary Figures S10–S13).

One of the limitations for lncRNA identification was
the generally low expression of lncRNAs. Moreover, we
imposed strict filters to our initial tumor fusion events,
which would further underestimate lncRNA fusions. As
stated by the author of the Arriba algorithm, the accu-
racy would be slightly lower after restricting Arriba to
its self-declared high-confidence fusions. We demonstrated,
in FGI network validation and survival analysis by fu-
sions of a single gene, that our large number of raw tu-
mor fusions should also be useful by enhancing the high-
confidence fusions results. Furthermore, we expect many
tumor-specific neoantigens would be contributed by FPL
fusion proteins, exemplified by the KDM4B and EPS15L1
fusions, possibly comparable to those contributed by FPP
fusions (10).

Collectively, our work completes the whole picture of
fusions in cancer. Comprehensive analysis of the tumor-
specific and lncRNA-dominated fusion landscape across
various cancer types in new angles reveals insights into fu-
sions in cancer and enriches our understanding of fusion
functions in tumorigenesis and cancer progression. Our
work also introduces numerous possibilities in cancer drug
development and cancer treatment.
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