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Abstract: Terfezia claveryi (T. claveryi) is used by traditional healers in the Middle East region to treat
several diseases, including diabetes. The present study evaluated the total phenolic and investigated
the blood-glucose-lowering potential of different aqueous extracts of this selected truffle using in vitro
and in vivo models. The phytochemical profile was examined using UPLC-MS. The macerate and the
microwave-assisted extract were the richest in phenolic compounds. All T. claveryi extracts exhibited
a remarkable α-glucosidase inhibitory effect in vitro, with an IC50 of 2.43, 3.26, 5.18 and 3.31 mg/mL
for the aqueous microwave-assisted extract macerate, infusion and decoction, respectively. On the
other hand, in the high-fat diet alloxan-induced diabetic mice model, all tested crude aqueous extracts
exhibited a significant antihyperglycemic activity (p < 0.05). Four hours after the administration of the
250 mg/kg dose, the macerate was able to induce a 29.4% blood-glucose-lowering effect compared
to a 24.8% reduction induced by the infusion, which was sustained for a further two hours. The
hypoglycemic effect (29.3% and 32.4%) was also recorded six hours after the administration of the
single dose 500 mg/kg of the macerate and the infusion, respectively. Truffle extracts exhibited
antidiabetic activity both in vitro and in vivo, providing a rationale for the traditional use as a
natural hypoglycemic.

Keywords: diabetes; truffle; Terfezia claveryi; total phenols; α-glucosidase inhibition; antihyper-
glycemic; high-fat diet; alloxan; type 2 diabetes mice model

1. Introduction

Diabetes mellitus is a chronic progressive multifactorial metabolic disorder charac-
terized by carbohydrates, lipids and protein metabolism disturbances. The hallmark of
diabetes is sustained hyperglycemia [1]. It occurs due to the total loss of function of β
cells of islets of Langerhans (type 1) or due to insulin deficiency and resistance (type 2) [2].
Diabetes is considered an epidemic disease. The WHO expects the number of diabetic
patients to reach 300 million by the end of 2025 [3].

There are numerous approaches and medications to treat diabetes. The current an-
tidiabetic medications, including insulin and agents, have several limitations, including
long-term treatment, adverse side effects and high cost. These limitations have increased
the tendency to search for effective and affordable medications with fewer side effects [4].
However, complementary and alternative medicine interventions, including herbal and
nutritional interventions in patients with diabetes, are being used increasingly to counter
the disease [5].
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Plants have always played an essential role in traditional medicine to treat various
diseases. They contain several metabolites that have complementary or synergistic effects
on the human body. They rarely cause adverse effects if recommended by qualified
healthcare personnel [6].

Terfezia claveryi (Pezizaceae) is an edible macrohypogeous fungus used in many cul-
tures due to its medicinal and nutritional properties. It is distributed in countries around
the Mediterranean region and the Arabian Peninsula. Some desert T. claveryi were also
found in South Africa and Botswana [7–10]. The most common name of desert T. claveryi in
the Arabian region is Kamah [11].

Terfezia claveryi is a source of carbohydrates, amino acids (methionine, cysteine, tryp-
tophan and lysine), proteins, fats, fibers, minerals and ascorbic acids [8,12]. In addition,
it contains phenolic compounds and tocopherols in minor amounts [10,13]. Mushrooms,
including Terfezia claveryi, are considered an extensive source of bioactive peptides. Conse-
quently, their composition and secondary structure display various biological activities [14].

Terfezia species have been reported to be rich in proteins and are usually recommended
as meat substitute in arid and semiarid areas of the Mediterranean region. Prophet Mo-
hammed mentioned the Kama for its beneficial effect in treating eye infections. Later, Ibn-
Sina described it as healing for vomiting, wounds and weakness [9]. It is also used to treat
skin diseases, wounds and as an aphrodisiac [7]. Several biological activities have been ex-
plored for Terfezia claveryi, including antibacterial, antioxidant, potential hepatoprotective,
antimutagenic, anti-inflammatory and anticancer activities [12]. The antioxidant property
of truffles has elevated the question of whether they can be used as a functional/medical
food that could play a role in health maintenance and disease prevention, including dia-
betes [15].

Recently, the methanol extract of T. claveryi was reported to be a stronger inhibitor of
the α-amylase enzyme than acarbose in vitro. In addition, the extract reduced the fasting
blood glucose levels in diabetic rats when tested in vivo [16].

The present study was designed to evaluate the in vitro and in vivo antidiabetic
activity of the Terfezia claveryi aqueous crude extracts using different extraction techniques,
to identify the microscopical fingerprinting and to quantify the phenolic content in each
prepared extract. To our knowledge, it is the first study to investigate the antidiabetic
activity of the aqueous extract of T. claveryi obtained by a different method of extraction.

2. Results
2.1. Microscopical Examination

Microscopy is used as part of the identity authentication, taxonomy, plant tissue
anatomy and quality control of plant material [17]. The epidermal cells possessed thin
walls with oil glands concentrated near each other. In addition, the truffle tuber peridium
(outer skin) showed a unique sclereid-like structure (Figure 1).
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2.2. Preliminary Phytochemical Screening

Preliminary qualitative analysis of T. claveryi aqueous extracts for the bioactive phy-
tochemical constituents indicated the presence of carbohydrates, flavonoids, proteins,
saponins and terpenes. No alkaloids were detected in any of the tested extracts.

2.3. Determination of Total Phenolic Content of the Crude Extracts

The Folin–Ciocalteu colorimetric method was used to determine the total phenolic
content of the extracts. The macerate and the microwave-assisted extracts were found to be
the richest in phenolic compounds at (18.5 ± 0.55 mg GAE/g) and (16.9 ± 0.09 GAE/g),
respectively, compared to extracts obtained by the decoction and the infusion methods,
where the content was (6.8 ± 1.8 GAE/g) and (5.0 ± 0.10 GAE/g), respectively.

2.4. UPLC-ESI-MS

In all T. claveryi extracts, caffeic acid, coumaric acid, protocatechuic aldehyde, trans-
vaccenic acid and vanillic acid appeared as molecular ions of M-H- at m/z (179.03501,
163.04002, 137.02452, 281.24855 and 167.03451), respectively (Table 1). The 3, 5-dimethoxy-
4-hydroxy acetophenone had a molecular ion at m/z (195.0466) and a fragment at m/z
(133.0108), indicating a loss of two methoxy groups. Palmitic and stearic acids were
detected at m/z (255.2325 and 284.27123), respectively, with a fragment at m/z (44.9974),
corresponding to the loss of a COOH from the precursor [M − H]–ion, see (Figures 2 and 3).

Table 1. Detected compounds in different Terfezia claveryi aqueous extracts using UPLC-ESI-MS.

No. Compound Molecular
Formula m/z Retention

Time

Extract Chemical Composition

Maceration Decoction Infusion Microwave-
Assisted

1 Isoferulic acid C10H10O4 193.051 1.22 ND ND ND +
2 Succinic acid C4H6O4 117.01981 1.68 + ND ND ND
3 Protocatechuic

aldehyde C7H6O3 137.02479 2.09 + ND ND +
4 Coumaric acid C9H8O3 163.04002 2.53 + ND ND ND
5 Vanillic acid C8H8O4 167.03451 3.09 + + ND +
6 Caffeic acid C9H8O4 179.03501 3.19 ND ND ND +
7 Scopoletin C10H8O4 191.03477 4.29 + ND ND ND
8 Palmitic acid C16H32O2 255.23259 30.23 + ND + ND
9 Trans-vaccenic acid C18H34O2 281.24855 30.34 + ND + ND

10 Stearic acid C18H36O2 284.27123 33.18 + + + +

ND: not detected, +: detected.
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Figure 3. Chemical structures of the fatty acids found in Terfezia claveryi.

Scopoletin was detected at m/z (191.0347), with a major fragment at m/z (44.9722),
indicating a loss of (COOH). In addition, 3, 5-dimethoxy-4-hydroxy acetophenone was
detected at m/z 195.0669. Isoferulic acid was detected at m/z (193.051), with a major fragment
at m/z (44.9988), representing COOH. Carbohydrates are the main macronutrients present
in truffles. In all the analyzed truffle extracts, piscopyranose, mannitol and trehalose peaks
were detected between 0.59 and 1.26 min.

2.5. In Vitro α-Glucosidase Inhibition Activity of Terfezia claveryi Extracts

The in vitro α-glucosidase inhibition potential of the T. claveryi extracts was evalu-
ated. The percentage of the enzyme inhibition as a function of the concentration and the
type was detected. The IC50 was calculated from the graph (Figure 4). Concentration-
dependent inhibitory activity was observed for all tested extracts, as well as the standard
at various concentrations.
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Figure 4. Inhibition of α-glucosidase activity by different T. claveryi aqueous extracts.

The microwave-assisted extract exhibited the lowest IC50 of 2.43 ± 0.02 mg/mL.
The IC50 values of the extracts obtained by infusion, maceration and decoction were
3.26 ± 0.99 mg/mL, 3.31 ± 5.83 mg/mL and 5.18 ± 1.04 mg/mL, respectively. The stan-
dard control acarbose exhibited an IC50 of 0.33 mg/mL (Table 2).
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Table 2. α-glucosidase inhibition activity and IC50 by different aqueous extracts of T. claveryi
and acarbose.

Method of Extraction IC50 (mg/mL) % Inhibition

Maceration 3.31 ± 5.83 75.9 ± 3.66
Decoction 5.18 ± 1.04 58.4 ± 1.35
Microwave-assisted 2.43 ± 0.02 100 ± 0.02
Infusion 3.26 ± 0.99 81.5 ± 1.22
Acarbose (Control) 0.33 75.0

Values are expressed as mean ± standard deviation.

2.6. Antihyperglycemic Activity of Crude Truffle Extracts on High-Fat Diet Alloxan-Induced
Diabetic Mice

The antihyperglycemic effect of Terfezia claveryi extracts on high-fat diet alloxan-
induced diabetes is shown in Table 2. Between and within-group analyses were performed
to reveal the differences across the various groups and time points between the BGL (blood
glucose level). The between-group analysis revealed no significant difference in the baseline
fasting BGL across all groups before administering any treatments. However, 60 min later,
the blood glucose levels increased when the mice had unrestricted access to water and food
compared to baseline fasting BGL, regardless of the treatment (Figures 5 and 6).
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Figure 5. The change in blood glucose level in diabetic mice induced by a single dose of 250 mg/kg
Terfezia claveryi extracts and glimepiride. Each bar represents the mean ± SEM for (n = 6) mice per
treated group.

Considering the within-group comparison, a BGL reduction effect was observed for
all tested doses of the crude extracts at different time points. At both doses of 250 and
500 mg/kg, body weight showed only a weak reduction after 2 h of administration, while
glimepiride showed more pronounced antidiabetic activity in the high-fat diet alloxan-
induced diabetic mice. At 4 and 6 h, the magnitude of the BGL reduction induced by the
macerate and infusion was comparable to that for glimepiride, as shown in Table 3. How-
ever, the administration of a dose of 500 mg/kg did not show a higher BGL reduction effect.
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Figure 6. The change in blood glucose level in diabetic mice induced by a single dose of 500 mg/kg
Terfezia claveryi extracts. Each bar represents the mean ± SEM for (n = 6) mice per treated group.

Table 3. Percentage change of blood glucose after a single dose administration of Terfezia claveryi
crude extracts.

Dose Treated Group
% Change in Blood Glucose Level after (minutes) of Treatments

30 60 90 120 180 240 360

250 mg/kg

Macerate 8.1 ± 0.12 37.4 ± 0.21 22.3 ± 0.13 4.1 ± 0.07 −21.3 ± 0.05 * −29.4 ± 0.05 * −26.6 ± 0.04 *

Decoction 13.8 ± 0.07 33.9 ± 0.17 25.5 ± 0.21 9.5 ± 0.15 1.1 ± 0.13 −13.2 ± 0.07 * −8.7 ± 0.08 *

Microwave-assisted 37.5 ± 0.13 57.9 ± 0.23 37.6 ± 0.17 17.2 ± 0.10 −1.9 ± 0.10 −12.6 ± 0.06 * −17.3 ± 0.04 *

Infusion 44.5 ± 0.12 66.1 ± 0.11 35.7 ± 0.07 7.8 ± 0.06 −16.8 ± 0.09 * −24.8 ± 0.06 * −27.8 ± 0.05 *

500 mg/kg

Macerate 4.6 ± 0.10 71.8 ± 0.08 61.0 ± 0.14 36.8 ± 0.09 −8.2 ± 0.09 * −18.8 ± 0.11 * −29.3 ± 0.05 *

Decoction 39.0 ± 0.07 54.1 ± 0.07 35.8 ± 0.13 35.8 ± 0.07 3.8 ± 0.04 −0.24 ± 0.12 −2.7 ± 0.08 *

Microwave-assisted 34.0 ± 0.08 61.4 ± 0.17 42.3 ± 0.16 33.0 ± 0.27 11.2 ± 0.12 −7.6 ± 0.07 * −6.0 ± 0.07 *

Infusion 33.0 ± 0.13 69.1 ± 0.15 56.0 ± 0.14 45.7 ± 0.20 −26.4 ± 0.03 * −31.8 ± 0.05 * −32.4 ± 0.08 *

Negative control 23.1 ± 0.11 24.9 ± 0.07 39.1 ± 0.18 42.2 ± 0.17 32.7 ± 0.10 33.8 ± 0.08 32.5 ± 0.13

Glimepiride 35.0 ± 0.07 29.6 ± 0.07 5.8 ± 0.09 −2.8 ± 0.05 −8.4 ± 0.05 −18.1 ± 0.05 −25.1 ± 0.05

* The significance level p < 0.05 versus negative control: normal saline; FBG: fasting blood glucose (mg/dl). There
was no significant difference between the extract at both doses versus glimepiride.

At a dose of 250 mg/kg, the maximum BGL reduction of 26.6%, was recorded for
the macerate compared to 8.7%, 17.3 % and 27.8 % reduction induced by the decoction,
microwaved-assisted extract and infusion, respectively. On the other hand, the maximum
BGL lowering effect of 29.3% was induced in mice that received a dose of 500 mg/kg
of the macerate. Other extracts were able to decrease the BGL by 2.7% decoction, 6.0%
microwave-assisted and 32.4% the infusion when tested at the same dose.

3. Discussion

Extraction is the core step in discovering and evaluating bioactive compounds from
plants. Plant material extracts are widely produced by conventional methods, including
maceration, decoction, percolation, infusion and hot continuous (reflux and Soxhlet) ex-
traction. However, new methods such as ultrasound-assisted solvent extraction (UASE),
microwave-assisted solvent extraction (MASE) and supercritical fluid extractions (SFE)
have achieved accumulative interest during the latest decades because they have increased
the efficiency of the extraction and are considered eco-friendly techniques [18]. The cur-
rent study used water as an extraction solvent and different extraction processes were
implemented to simulate the traditional preparation method used by herbal healers and
the public. Phenolics are the chief antioxidant compounds found in plants. Various chro-
matographic and spectrophotometric techniques can estimate the plant’s phenolic content.
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However, the former is expensive, time-consuming and requires many preparation steps.
On the other hand, the Folin–Ciocalteu colorimetric assay is an easy, economical and widely
used method [19]. It is worth mentioning that the Folin assay is considered an indirect way
to measure the antioxidant capacity because it is an oxidation/reduction reaction [20].

Wahiba and coworkers have reported the total phenolic content of the Terfezia claveryi
methanolic extract at 15 mg/g dry weight gallic acid equivalent [18]. In our study, the
highest phenolic content was detected in the macerate (18.5 ± 0.55 mg GAE/g extract),
followed by the microwave-assisted (16.9 ± 0.09 GAE/g extract). The decoction and the in-
fusion phenolic content were found to be (6.8 ± 1.8 GAE/g extract) and (5.0 ± 0.10 GAE/g
extract), respectively [21]. These findings support the reported effect of the heat-based
extraction (infusion and decoction) on the total phenolic content. Generally, the total phe-
nolic content is affected by the sample’s type, chemical and physical properties, solvent’s
polarity, extraction method, extraction temperature and extraction time, sample-to-solvent
ratio and matrix properties, including the particle size [22].

Throughout the development of type 2 diabetes, cells induce resistance against insulin,
decreasing their ability to uptake glucose from the blood. Therefore, the ultimate goal of
diabetes treatment is to regain an optimal level of blood glucose, especially after a meal.
Postprandial hyperglycemia is the initial stage of the metabolic abnormality that occurs in
type 2 diabetes. It contributes to the progression of diabetes and the development of the
micro- and macrovascular complications associated with it. Thus, early recognition and
targeting contribute to the successful management of diabetes. Inhibitors α-glucosidase,
a small intestinal enzyme that catalyzes the final step of carbohydrate digestion of the
corresponding disaccharides and monosaccharides, and α-amylase, an enzyme found in
saliva and pancreatic juice that breaks down long-chain carbohydrates, are both effective in
delaying glucose absorption and managing postprandial hyperglycemia [22–24].

In vitro testing is helpful for the mechanistic-based screening of plant extracts and
isolated natural products and is recommended as the initial step toward screening potential
antidiabetics [25]. Acarbose is widely used in treating patients with type 2 diabetes by
hindering the upper gastrointestinal glucosidases in a dose-dependent manner, resulting in
delayed glucose absorption and alleviating postprandial hyperglycemia. However, abdom-
inal side effects, such as flatulence and diarrhea or abdominal discomfort, have frequently
been reported due to the bacterial fermentation of undigested carbohydrates [26,27].

The α-glucosidase enzyme inhibitory activity is correlated to the concentration of phenolics
in the tested extract, as represented by the IC50 values (Table 2). The microwave-assisted extract
exhibited total inhibition of the enzyme and the lowest IC50 value (2.43 mg/mL), which is
consistent with the high phenolic content compared to other extracts. On other hand, the
inhibition potential of the infusion was found to be high (IC50 3.26 mg/mL) despite being
poor in phenolic content, which could be attributed to the presence of other potent bioactive
phytochemicals yet to be identified by further research. However, the inhibition of α-glucosidase
enzyme activity remains one of the suggested potential mechanisms of action exhibited by
truffle extracts [28].

A systemic review summarized 411 natural products isolated from medicinal plants
worldwide that exhibited α-glucosidase inhibitory activity. These natural product inhibitors
structurally combine alkaloid, terpene, quinine, flavonoid, phenol, phenylpropanoid and
steroid skeletons rich in organic acid, alcohol, ester and allyl functional groups [28]. The
preliminary phytochemical screening of the macerated crude extract revealed the presence
of flavonoids, saponins and terpenes, but there is an absence of alkaloids.

In the current study, the in vitro findings were supported by the in vivo testing results.
Animal models for diseases are widely used experimentally to understand the pathophysi-
ology of an illness and help in the drug development process. Through the years, various
animal models were developed to study the antidiabetic effects of compounds, including
genetic, surgical, chemical and diet-induced models [29].

Mice and rats are commonly used in diabetic research because they share signaling
and metabolic pathways with humans and can develop insulin resistance and hyper-
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glycemia, resembling humans. The physiology of mouse/rat models is well documented
and comprehended [25].

Mice nourished with a high-fat diet have been reported to induce obesity and type
2 diabetes characteristic features. Additionally, the combination of high-fat feeding with
the injection of a chemical agent such as alloxan to induce metabolic disorganization
characterizing type 2 diabetes had also been formerly reported [30,31]. Therefore, to confirm
the type II model, mice were investigated for insulin resistance using the (HOMA-IR) index.
It is well accepted that insulin resistance is a significant feature of obesity–diabetes [31].

The serum glucose level was measured at baseline and there were no significant
differences across the groups observed. The normal saline-treated animals did not show
a reduction in blood glucose compared to the baseline level. However, significant blood
glucose reduction was noticed in diabetic mice after the single dose administration of
different Terfezia claveryi extracts, indicating that the change in the blood glucose level was
attributed to the treatment received. However, the antihyperglycemic effect of the extracts
obtained by decoction and microwave-assisted methods was less intensive and immediate
than that of glimepiride, suggesting that these extracts might reduce the side effects of
hypoglycemia during the treatment of diabetes. In addition, the antihyperglycemic effect
of the extracts obtained by the maceration and infusion methods was comparable to
glimepiride, suggesting the presence of potent bioactive phytochemicals in the tested
extracts to be identified in further studies.

The hypoglycemic activity observed in the glimepiride-treated group was due to the
effect induced by the sulfonylurea drug that can selectively block the ATP-sensitive K+
channels (KATP) in the plasma membrane of the pancreatic β-cells, thereby potentiating
insulin release. This suggests that the low multiple doses of alloxan intraperitoneal injection
did not destroy the β-cells [32]. Thus, the hypoglycemic activity of Terfezia claveryi extracts
may be due to the potentiation of insulin secretion from the beta cells. Furthermore, it
was noticed that the extracts had relatively the same onset of action as the standard drug
glimepiride, which further supports the postulated mechanism.

Although the active metabolites in Terfezia claveryi were not fully identified in the
present work, these compounds cannot be excluded from being involved in the antidiabetic
activity of the tested crude extracts. They can react individually or in synergy to reduce
hyperglycemia. The two major classes of compounds identified in truffle species, flavonoids
and phenolic acids, are well-known for their insulin potentiation activity and enhancement
of blood glucose uptake in peripheral tissues through GLUT-4 [33–35]. For example,
apigenin controls hyperglycemia by raising the blood insulin levels, while rutin increases
glucose uptake by peripheral tissues and improves insulin resistance [33,34]. Moreover,
gallic acid induces glucose uptake peripherally by promoting GLUT-4 translocation [36].
Psicopyranose was also reported to alleviate postprandial hyperglycemia [37].

Polysaccharides in mushrooms have been considered prominent bioactive residents.
In addition, the truffle is rich in low glycemic index sugars that were reported to have an
antidiabetic effect. Treholase is a major sugar isolated from Terfezia claveryi with potential
antidiabetic activity. It can improve insulin sensitivity by affecting the glucose signaling
pathways or diminishing oxidative stress [38]. Mannitol is another sugar alcohol with
reported glucose uptake activity. The in silico docking analysis suggested that the GLUT-4
transporter is a possible molecular target of mannitol [39]. However, several hypoglycemic
mechanisms were identified, including reducing gut glucose absorption, enhancement of
β-cell mass and potentiating insulin signaling [40].

In the current study, several phenolic compounds were detected in Terfezia claveryi
extracts using UPLC-ESI-MS. Previous studies identified the presence of benzoic acid
derivatives (p-hydroxybenzoic, vanillic, syringic, gentisic and protocatechuic acids) and
cinnamic acid derivatives (p-coumaric, ferulic and p-hydroxycinnamic acids) were detected,
in addition to apigenin and rutin flavonoid derivatives. All were reported to possess
α-glucosidase inhibitory activity [33,35,40].
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It has been reported that the unsaturated linoleic acid and α-linolenic acid, as well as
the saturated palmitic acid detected in the T. claveryi macerate, and the infusion in addition
to the stearic acid detected in all the extracts was identified by a multivariate model as
α-glucosidase inhibitors, later verified by an in vitro enzymatic assay [41]. The reported
IC50 for palmitic and stearic acid were (0.749 and 1.23 mM), respectively [42]. Furthermore,
the same effect was reported for trans-vaccenic acid, an unsaturated fatty acid identified
in Terfezia claveryi decoction and the microwave-assisted extract. The other saturated fatty
acids identified in the extracts had higher IC50 values, as reported in the literature [42].

Moreover, the T. claveryi is a precious source of unique proteins and peptides unre-
vealed in other animals, plants and microorganism sources. Thus, they were reported to
have multiple beneficial effects, including antidiabetic activities [43]. Therefore, future
studies are encouraged to investigate the different polysaccharides and peptides found in
Terfezia claveryi.

It was noticeable that the higher dose of the extracts (500 mg/kg body weight) did
not significantly reduce the blood glucose level compared to the lower dose of 250 mg/kg
body weight. The above-observed effect was reported before. The extract may have been
up taken to the system through a saturable transport, where at a specific concentration
saturation occurs, and the rest is excreted [44]. In addition, the solubility at higher doses
may be affected, causing a decrease in drug absorption to the systemic circulation. Thus,
the antihyperglycemic effect may be attained at doses lower than 500 mg/kg.

The antihyperglycemic effect of the microwave-assisted extract and decoction extended
beyond four hours (single dose of 250 mg/kg body weight). On the other hand, the sugar
level increased in animal groups treated with the macerate and the infusion.

Previous investigation of the methanolic extract of Terfezia claveryi slowed down
glucose absorption by inhibiting the α-amylase enzyme. The extract effect was assessed in
diabetic rats where the fasting blood glucose level was reduced compared to the control [16].
The ethanolic extract of Terfezia boudieri reduced blood glucose levels significantly in diabetic
rats with a higher survival rate in the treated animals [45]

In this study, the administered aqueous crude extracts of Terfezia claveryi exhibited
antihyperglycemic activity. However, it is worth identifying the major constituent(s)
responsible for the activity and investigating the detailed hypoglycemic mechanism(s).

4. Materials and Methods
4.1. Materials and Reagents

Alpha-glucosidase (CAS: 9001-42-7), alloxan (CAS: 2244-11-3) and all other chemicals
and reagents used in this study were of analytical grade supplied by Sigma-Aldrich.
Glimepiride was purchased from a local pharmaceutical company.

4.2. Plant Material

The tubers of Terfezia claveryi were bought from the local market in Amman city in
(January 2019). The botanical identification and authentication of the plant were performed
by Prof. Mayadah Shehadeh, School of Pharmacy, University of Jordan. The voucher
specimen with the number (TCMSAA 2018) was deposited in the University herbarium for
future reference.

4.3. Preparation of Crude Plant Extract

The plant’s tubers were washed with distilled water, cleaned and peeled. Then, it was
grounded using an electric mixer grinding machine. The grounded tubers were macerated
in distilled water for 2 h with continuous shaking at room temperature. The other portions
were decocted for 15 min, microwaved for 8 min (900 W) or infused with continuous
shaking for 2 h at room temperature. The aqueous crude extract was obtained by filtration
(using Whatman filter paper, 125 mm). The crude extracts were lyophilized at 80 ◦C (using
the Lyophilizer, SP Scientific, USA) to yield 154 gm (macerate), 2.0 gm (infusion), 3.0 gm
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(microwave-assisted), and 3.0 gm (decoction). The lyophilized extracts were stored at 4 ◦C
in the dark until needed.

4.4. Microscopical Characterization

One gram of the dried Terfezia claveryi powder was mounted in chloral hydrate,
according to [17]. Photomicrographs were taken using a light microscope with a built-in
camera (Leica DM750).

4.5. Qualitative Phytochemical Screening

The macerated extract was subjected to qualitative phytochemical screening for the
presence of some chemical constituents. Phytochemical tests were carried out by adopting
standard procedures [46].

4.6. Determination of Total Phenolic Content of the Extracts

The total phenolic content of the aqueous extracts was determined with the Folin–
Ciocalteu colorimetric method adapted from [47], with minor modifications. Briefly, 26 µL
of the extract solution was mixed with 13 µL of 10% (w/v) Folin–Ciocalteu reagent. After
5 min, 67 µL of Na2CO3 (8%) and 70 µL of distilled water were subsequently added to
the mixture and incubated at room temperature for 30 min in the dark with agitation.
Afterward, the absorbance was measured at 765 nm. The total phenols content was
determined using a calibration curve prepared with gallic acid standard as a reference. The
values were reported as mg of gallic acid equivalent (GAE) per gram dry weight of the
extract (mg GAE/g). The mean values were obtained from triplicate experiments.

4.7. Determination of α-Glucosidase Inhibition Activity

The α-glucosidase inhibitory activity of the aqueous extracts was performed according
to a previous study [48] and adapted in a 96-well plate. Briefly, 50 µL of 100 mM sodium
phosphate buffer (pH 6.98), 50 µL of varying concentrations of extract, 30 µL of enzyme
solution (α-glucosidase 2 IU/mL) and Saccharomyces cerevisiae (Sigma-Aldrich, USA)
were added. The mixture was incubated for another 30 min at (37 ◦C). Next, the substrate
(p-nitrophenyl-β-D-glucopyranoside,10 mM) was added, mixed and incubated at 37 ◦C for
5 min. Finally, 50 µL of pH 12 sodium phosphate buffer was added to stop the reaction.
The absorbance of 4-nitrophenol formed during the reaction was registered at a wavelength
of 410 nm. The blank with 100% enzyme activity was prepared by replacing the extract
with the buffer. A blank reaction was similarly prepared using the plant extract at each
concentration in the absence of the enzyme solution. A positive control sample was
prepared using acarbose (Bayer), and the reaction was performed similarly to the reaction
with plant extract, as mentioned above.

The inhibition of α-glucosidase was expressed as a percentage of inhibitory and was
calculated by the following formula:

% Enzym inhibition =
(Abs control − Abs test)

Abs control
× 100

The % α-glucosidase was plotted against the extract concentration and the IC50 values
were obtained from the graph. The mean values were obtained from triplicate experiments.

4.8. UPLC-ESI-MS

An amount of 10 mg of each dried plant extract was weighed and then solubilized in
100 µL DMSO (dimethyl sulfoxide). The extracts were diluted up with methanol: water
(80:10 %), vortexed and centrifuged at 3000 rpm for 10 min. Finally, the samples were
injected into the system. All solvents used were of HPLC grade.

The test samples were analyzed by the Bruker impact II ESI-Q-TOF system, provided
with Bruker Dalotonik Elute UPLC system and characterized by mass accuracy of less than
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one ppm; the mass resolution was 50,000 FSR (Full Sensitivity Resolution) and the TOF
repetition rate was up to 20 kHz.

Chromatographic separation was run through the Bruker Solo C 18-2 column with a
size of 100 mm × 2.1 mm and with a particle size of 2 µm. The mobile phase comprises
water, formic acid (HCOOH, 0.05%) and acetonitrile. The linear gradient started with
water–formic acid (5–80%) from 0 to 27 min. Then, 95% acetonitrile (27–29 min) and 5%
acetonitrile (29.1 min). The analysis was carried out using MetaboScape version 5.

4.9. Experimental Animals

Forty healthy adult (6–10 weeks of age) male BALB/c mice weighing between (18–23 g)
were purchased from the Animal House of the Applied Science Private University. Animal
care and use were conducted according to standard ethical guidelines, and all experimental
protocols were approved by the Research and Ethical Committee at the University of Jordan
(approval number: 19/2021/205).

The mice were maintained under standard conditions. The animals were kept in
suitable cages and maintained under (12 h of light and 12 h of the dark cycle, 22–25 ◦C,
45–65% humidity) following the in-house ethical guidelines for animal protection. They
were fed a high-fat diet (consisting of 30% animal fat, 10% glucose and 60% basic diet (w/w))
and were allowed free access to water ad libitum. After a randomized grouping and before
the initiation of the experiment, the animals were acclimatized to the laboratory conditions
for seven days.

4.10. Induction of Experimental Diabetes

Diabetes was evoked 45 days after a high-fat diet. Alloxan was dissolved in distilled
water at a dose of (130 mg/kg) and intraperitoneally administered to overnight fasted
(16 hrs) mice every week for three consecutive weeks. Thirty minutes later, food and water
were allowed freely to the animal. A 5% glucose solution was given to the animal to prevent
death from hypoglycemic shock.

The diabetic condition was confirmed after 72 hr to one week of injections by noticing
the symptoms of polyuria and polydipsia. Animals that showed permanent high fasting
blood glucose levels (FBGL) above 130 mg/dl were considered to be diabetic and were
included in the study

4.11. Grouping and Dosing of Animals

After the experimental mice became diabetic, they were assigned randomly into six
groups. Each group contained six mice (n = 6).

Group I: diabetic mice were given intraperitoneal normal saline (0.3 mL).
Group II: diabetic mice were given intraperitoneal glimepiride (1 mg/kg).
Group III: diabetic mice were given extract obtained by maceration (500 mg/kg).
Group IV: diabetic mice were given extract obtained by decoction (500 mg/kg).
Group V: diabetic mice were given extract obtained by infusion (500 mg/kg).
Group VI: diabetic mice were given extract obtained by microwave-assisted extract

(500 mg/kg).
After one week the experiment was repeated using a lower dose (250 mg/kg).
All extracts were dissolved in normal saline and directly administered intraperitoneally.
Blood sugar level was measured for each animal just before treatment (at 0 min) as a

baseline measurement and then at 30, 60, 90,120, 180, 240 and 360 min post-treatment. Free
access to water and food was allowed after intraperitoneal administration of the extracts
and glimepiride. Glimepiride was selected as a standard drug for the study based on
earlier studies.
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The blood glucose level was measured from cut tail tips and was determined using the
glucometer (Accu-Check® Performa, Germany). The percentage change of blood glucose
level from the initial glycemia was calculated using the following formula:

% Glycemic change =
(Gx − Go)

Go
× 100

where Go is the initial blood glucose value at zero time after six hours of fasting (mg/dL)
and Gx is the blood glucose value at x minutes after vehicle or tested compounds adminis-
tration (mg/dL) [49].

4.12. Statistical Analysis

In vivo biological evaluation results were expressed as the means ± standard error of
means (SEM) for all 6 mice in each group. Statistical differences between the treated and
the control groups were performed using the Statistical Package for Social Science (SPSS)
version 24 software. Between-group and within-group analyses were carried out using one-
way analysis of variance (ANOVA), followed by Tukey’s Kremer multiple comparison tests.
A difference in the mean values of (p = 0.05) or less was considered statistically significant.

5. Conclusions

To best of our knowledge, this study is the first to determine the microscopical finger-
printing and to investigate the effect of Terfezia calveryi aqueous crude extracts prepared
using different extraction methods (maceration, infusion, decoction and microwave-assisted
extract technique). The crude extracts have shown a significant glucose-lowering activity
in the high-fat diet alloxan-induced diabetic mice. The potential antidiabetic activity of
the truffle extracts may be related to the decrease in the absorption of carbohydrates from
food, as suggested by the α-glucosidase inhibitory activity, and it could be due to the direct
stimulation of insulin secretion from pancreatic β-cells.

Therefore, this study supports the use of Terfezia claveryi as part of the management
of hyperglycemia in patients with diabetes mellitus type 2. However, further studies are
required to identify the lead bioactive compound(s) responsible for the antidiabetic activity,
along with its molecular mechanism, in the pathophysiology of diabetes.
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