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Background
Microbiota in the human body is of great significance to human health. Pathogenic 
microorganisms are the chief culprit for many human diseases [1], such as the SARS 
outbreak in 2003 [2, 3] and avian influenza (HPAI) [4] in the past few years, as well as 
inflammatory bowel disease (IBD) caused by enteric human virome [5, 6]. Studies have 
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even shown that there is a close connection between mental illness and gut microbes [7, 
8]. Through the detection of gut microbes in patients with chronic heart failure (CHF), 
it was found that compared with normal individuals, CHF patients had higher levels of 
gram-negative bacteria and Candida in the intestine, and an increase of intestinal per-
meability, which promoted the process of CHF [9]. The gut flora can also impact arthri-
tis (AR). The work in [10] applied 16S rDNA sequencing to sequence the gut microbiota 
of patients and healthy individuals and found that the abundance of the gut microbiota 
reduced significantly in patients with AR. Therefore, it is essential to efficiently explore 
relations between microbes and diseases, which is currently not feasible because most 
information is buried in the vast amount of unstructured biomedical literature.

The first human microbial-disease association database (HMDAD) was built to pro-
vide experimental data for microbial disease association research. The database only 
contains 39 disease entities and 292 microbial species, and the relationship between the 
two entities is established at the document level [11]. Most studies on the prediction of 
microbial disease associations are based on this database like KATZHMDA [12], NCPH-
MDA [13], MDLPHMDA [14], RNMFMDA [15]. However, due to the limited types of 
diseases and microorganisms included in this database, a large amount of information 
in biomedical texts has not been thoroughly mined. MicroPhenoDB is a recent work of 
the relationships between disease phenotype, pathogenic microbes, and core genes. It 
was built by a manual review process, and a calculation method, which collects the IDSA 
guideline data, the manual curate data resource, and traceable literature with different 
weights to calculate the score between microbes and diseases [16]. Most studies on the 
relationship between microorganisms and diseases need many human resources. Park 
et al. [17] proposed an ensemble parser model based on a hierarchical long short-term 
memory network. It firstly decided whether the two targeted entities interacted with 
each other, and then caught the relation trigger word. PubMed is a free database for bio-
medical and life sciences literature, with over 70 million abstracts and more than 7 mil-
lion full-text articles. By March 2021, 64,510 records were retrieved from PubMed and 
64,259 full-text records were retrieved from PMC by the ’microbe’ query. As illustrated 
in Fig.  1, the amount of microbe-related literature is increasing rapidly in the recent 
20 years, making it difficult for microbe researchers to identify, retrieve and assimilate 

Fig. 1  Number of PubMed articles returned by the ‘microbe’ query
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all relevant publications. Hence, automated text mining is an essential tool to discover 
the valuable information hidden in this enormous amount of literature.

Biomedical named entity recognition(BNER) is a fundamental task for understanding 
biomedical literature, mainly presented as non-structural texts injected with many spe-
cialized terms. A number of successful NER tools have been developed for diseases [18], 
genes/proteins [19, 20] , species [21], chemicals [22], etc. In this work, we use DNorm 
[18] to recognize disease entities, which is a machine learning based toolkit for disease 
NER and normalization. For microbes, there is no such tool available, and we have to 
build our own method. Biomedical relation extraction(BioRE) aims to capture relations 
between two entities from NER results automatically. The entity-relationship facilitates 
the acquisition of domain knowledge by researchers in the biomedical field, enables the 
automated processing of biomedical information, and promotes research tools in the 
biomedical field and the development of information in the medical field. Previous stud-
ies and datasets on BioRE already discussed about protein–protein interactions (PPIs) 
[23], drug–drug interactions (DDI), drug–target interactions (DTIs), etc. Still, the clas-
sification of the relation between microbe and disease has no clear definition.

Machine learning and deep learning methods rely heavily on manually labeled data 
sets, and human annotation is costly and time-consuming. Transfer learning has been 
successfully utilized in many natural language processing fields such as text classifica-
tion [24], named entity recognition [25]. It extracts knowledge from one or more source 
domains and applies it to the target domain. Giorgi and Bader [25] applied this idea on 
biomedical named entity recognition, a deep neural network(DNN) was trained on large 
silver-standard corpora with noise and then transferred to small gold-standard cor-
pora. It indeed showed a significant improvement on 23 gold-standard corpora covering 
chemicals, disease, species, and genes/proteins. Inspired by the work of transfer learn-
ing for biomedical named entity recognition [25], we introduced transfer learning into 
extracting microbe–disease interactions from the biomedical literature.

Our main contributions can be summarized as follows: (1) we utilized NER tools to 
locate microbe and disease entities from an extensive collection of related literature; (2) 
we manually created two microbe–disease interaction corpus for the following training 
process, including a gold-standard and a silver-standard; (3) we applied transfer Learn-
ing to perform microbe–disease relation extraction without the need for a large-scale 
curation; (4) we developed a user-friendly website to help biomedical researchers find 
valuable information about diseases and microbes.

Methods
Data preparation

Literature data used in this work was collected from PMC (MELINE abstracts) and Pub-
Med (full-texts), by searching the keyword “microbe”, a list of PubMed IDs can be got 
(accessed on March 2021). We used Aspera (https://​www.​ibm.​com/​produ​cts/​aspera) as 
a tool to download the PubMed database on NCBI, then retrieved abstracts according 
to listed PubMed IDs. If the corresponding full-text is available in PMC, we then use 
Eutils, a tool provided by PMC, to obtain the XML file of the full-text. A total collection 
of 24,256 articles was built as our data sources. To locate microbe mentions in texts, we 

https://www.ibm.com/products/aspera
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built a specialized dictionary of microbe names collected from Human Microbe–Dis-
ease Association Database [11] (HMDAD, http://​www.​cuilab.​cn/​hmdad), Virtual Meta-
bolic Human [26] (VMH, https://​vmh.​life) and Disbiome [27] (https://​disbi​ome.​ugent.​
be). The final microbe dictionary in included 3,775 microbes. Next, we retrieved the tax-
onomy id of each microbe name to prepare for the BioNER procedure. Figure 2 shows 
the whole workflow of data preparation.

Named entities recognition (NER) and relation extraction (RE)

In this study, we considered the microbe–disease relation at the sentence level. The sen-
tence splitting is carried out with a Python natural language toolkit, called NLTK. The 
24,256 articles were separated into sentences via NLTK.

There is no readily available NER tool for microbes. LINNAEUS is a dictionary-based 
species name identification system for biomedical literature, performs with 94% recall 
and 97% precision at the mention level [21]. Using LINNAEUS and the microbe diction-
ary, we can track the microbial entities in the texts with the information of each enti-
ty’s start and end position, which will be used as input data in the RE step (shown in 
Fig. 2b). DNorm is a well-established disease name normalization model with a 0.782 
micro-averaged F-measure and 0.809 macro-averaged F-measure performance. Normal-
ized disease mentions are identified with their MeSH ids. An example of DNorm result 
is shown in Fig. 2c.

A successful RE requires at least one microbe mention and one disease mention in 
the input sentence. The sentence instance will be in the format like Fig. 2d, which is the 
input format of PKDE4J.

Once the sentences are correctly formatted, we removed those instances with more 
than 64 words as many longer sentences can lead to detection errors. We use a highly 
flexible and extensible relation extraction tool, PKDE4J, as the baseline method. It 
applies dependency tree-based rules to extract relationships among entities in sentences 
with two or more entities [28]. PKDE4J is based on dependency parsing technologies, 
which define rules to find the syntactic and grammatical structures and trigger words 
from sentences. Figure 2e shows the output format of PKDE4J. We got 96,670 instances 
after the relation extraction of PKDE4J. We also used PKDE4J to generate the silver-
standard corpus (SSC) (shown in Fig. 2f ).

Data curation

Human annotated gold‑standard corpus (GSC)

To better evaluate the performance of our method, we curated gold-standard corpus 
with hand-labeled annotations. We employed PubTator Central (PTC, https://​www.​
ncbi.​nlm.​nih.​gov/​resea​rch/​pubta​tor/), a web-based system for automatic annotations of 
biomedical concepts in PubMed abstracts and PMC full-text texts, to help annotators 
mark entities with their MeSH ids and Taxonomy ids. Microbe–disease relation types 
are defined as follows:

http://www.cuilab.cn/hmdad
https://vmh.life
https://disbiome.ugent.be
https://disbiome.ugent.be
https://www.ncbi.nlm.nih.gov/research/pubtator/
https://www.ncbi.nlm.nih.gov/research/pubtator/
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•	 positive This type is used to annotate microbe–disease entity pairs with a positive 
correlation, such as microbe will cause or aggravate disease, microbe will increase 
when disease occurs.

•	 negative This type is used to annotate microbe disease entity pairs that have a nega-
tive correlation, such as microbe can be a treatment for a disease, or microbe will 
decrease when disease occurs.

Fig. 2  The workflow of data preparation. a The initial full-text data. b The result of applying LINNAEUS 
to recognize microbe entities. c The result of applying DNorm to recognize disease entities. d The result 
of splitting texts into sentences and aligning the position of disease and microbe. e The result of relation 
extraction using PKDE4J. f The result of classification instance by the result of PKDE4J
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•	 relate This type is used when a microbe disease entity pair appears in the instance 
and described they are related with each other without additional information

•	 NA This type is used when a microbe disease entity pair appears in the instance, 
but the relation of these two entities has not been described as positive, negative, or 
relate. For example, “A diet of hydrolyzed protein increases can lead to growth inhi-
bition of Escherichia coli and Clostridium perfringens in rats suffering from chronic 
enteropathy.” (pmid: 32478040), the sentence described the relation between the pro-
tein and two microbes and has no description of the relation between Clostridium 
perfringens and chronic enteropathy, so we tag this instance with the “NA” type.

In terms of a comprehensive data set about micro-disease interaction, types “positive”, 
“negative”, “relate” and “NA” form a complete set of relations. Every instance is assigned 
with one unique relation type. We randomly extracted 1200 instances for annotation. 
Annotators search the pmid in PTC and then query the disease id and the microbe id 
in NCBI and Taxonomy separately to check whether the result of NER is correct. We 
removed the instance if the instance has no tag or has a wrong tag in PTC, which is 75 
instances in 1200 total instances. Then the instances were classified into the above four 
relations we defined. Finally, we got a set of 1100 manually annotated instances, and we 
use it as the gold-standard corpus for transfer learning and performance evaluation.

Silver‑standard corpus (SSC)

The cost of enlarging the size of GSC is very high as each sample needs to be carefully 
reviewed. Due to the high cost, the size of the GSC is very limited. To provide more 
training samples, we built a silver-standard corpus with automated tools rather than 
human annotation. This means SSC might contain many incorrect annotations (noise).

To do this, we applied PKDE4J on over 20,000 articles related to ‘microbe’. The results 
of PKDE4J include information on the relation between microbe and disease, ‘Relation-
MentionType’ and ‘Trigger words’ (shows in Fig.  2e), which can be used as auxiliary 
information for relation type annotation. For example, if one instance is tagged with the 
RelationMentionType ‘increased’, we assign the instance with a relation type ‘positive’. 
Results with RelationMentionType ‘JUXTAPOSE’ were removed. The ‘Trigger word’ tag 
was also utilized to define the relation type. We established a trigger word dictionary and 
used regular expressions to classify the instance. The trigger words with too few occur-
rences (less than five times) were not considered in the SSC.

At last, each instance will be classified in one relation type in positive, negative, relate, 
NA. Instances appeared in the GSC were removed from SSC. The resulting SSC dataset 
contains 12,959 samples, and it is used as a major training data source for the transfer 
learning procedure. Figure 3 shows the distribution of relation types for both GSC and 
SSC.

Transfer learning with BERE

Most machine learning application scenarios require a lot of labeled data for super-
vised learning. However, annotating data is a tedious and costly task. We address this 
problem via transfer learning. BERE is a deep learning framework to extract drug-
related relations from literature automatically. This model uses latent tree learning and 
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self-attention techniques to capture the syntactic information of the sentence. The input 
sentences firstly translate into the vector representations of words. Pre-trained word 
embedding is from http://​bio.​nlplab.​org/. Each word in sentence will be represented 
in a concatenation of a 200 dimensions word embedding and a randomly initialized 50 
dimensions POS embedding. Then Bi-GRU and self-attention mechanisms are applied 
to encode short and long-range dependencies between words. Gumbel Tree-GRU can 
implicitly learn the syntactic features of sentences. And it embeds the contextual ele-
ments of two entities into the sentence representation. Lastly, a classifier will predict the 
relation between two entities. It shows great performance on the relation between drug–
drug interaction, and the authors applied the model on a distantly supervised drug–tar-
get interaction dataset. A detailed description of BERE’s architecture is explained in [29].

In the study of BERE, they use the DDI’13 dataset to demonstrate the performance 
of their model, and it turns out that the BERE model is better than six other baseline 
methods on the DDI’13 dataset. They then construct a distantly supervised Drug–Tar-
get interaction (DTI) dataset, which inspired us to use BERE to build a disease–microbe 
interaction dataset. In this work, we used the INS mode of BERE, which predicts each 
sentence instance into an individual class.

Training and evaluation metrics

To better verify the effectiveness of BERE on the MDI dataset with transfer learning, we 
compared the performance of BERE_TL and BERE_g. The SSC datasets were split into 
three disjoint subsets, 12,000 samples for training the model, and 1000 of those data as 
the validation set. The rest of the samples were used as a test set for the final evaluation. 
This split operation on SSC was applied twice to take the average result to reduce the 
prediction bias. We randomly separated the GSC as 800 for the train set, 100 for the 
valid set, and 200 for the test set.

Fig. 3  The distribution of relation types for GSC and SSC

http://bio.nlplab.org/
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To better demonstrate the role of transfer learning, we conducted fivefold cross-val-
idation of the BERE_TL and BERE_g on GSC. We randomly split the GSC dataset into 
train set, validation set, and test set five times. Table 2 shows the result of the validation. 
We averaged the results of the five experiments. The typical evaluation indicators Preci-
sion, Recall, and F1-score were used as evaluation metrics. The precision rate calculates 
the correct classified samples in all model samples, and the recall rate calculates the pro-
portion of correct predicted correct positive samples. F1 is a measure of precision and 
recall. We also compute the average percent reduction in F1-score as the same as [25]:

Web implementation

The website of MDIDB is implemented in the framework of Django, with AJAX load-
ing dynamic data from a database based on MySql. The visual front-end page is built on 
the basis of Bootstrap 4, and the chart is based on the visual plug-in echart. The website 
provided data access and operations in a user-friendly way. Users can browse the whole 
relevant microbe and disease list and the relevant statistical chart information of the 
corresponding word cloud chart and pie chart by clicking the related term. Simultane-
ously, the website provides a search function for users to retrieve the information they 
are interested in. The relevant result data set of the paper can also be obtained from the 
download page.

The whole system is based on NLP algorithms for text mining of massive biological 
literature. Figure 4 shows the workflow of the entire text-mining system. After a series 
of post-processing, text mining results are stored in the database and operated by the 
backend server. Finally, we got a visual website containing 1198 diseases, 165 microor-
ganisms, and 44,900 records of their relationship data.

Results
To prove that the BERE model can lay a solid foundation for detecting microbe–disease 
relations, we compared the performance of BERE on several datasets with the rule-based 
baseline PKDE4J(MDI). Table 1 compares the micro-averaged performance metrics of 

F
TL
1

− F
baseline
1

100− F
baseline
1

∗ 100

Fig. 4  The procedures of mining information from literature



Page 9 of 15Wu et al. BMC Bioinformatics          (2021) 22:432 	

each dataset. The learning rate was set to 0.0001, the dropout rate to 0.5. BERE_g(MDI) 
is generated by fine-tuning the original BERE model only on the GSC training set. 
Results of BERE(DDI) and BERE(DTI) come from the origin BERE paper.

As of yet, it is not clear whether the introduction of transfer learning on BERE can 
improve the performance of MDI detection. Thus we evaluated the performance on the 
MDI dataset with two modes: BERE_TL(MDI) introduces transfer learning on the GSC 
training set while BERE_g(MDI) directly applied the original BERE model.

As Table  1 shows, we can see that compared with PKDE4J(MDI), BERE_g(MDI) 
achieves a higher score of precision, recall, and F1-score on the same MDI dataset. 
Moreover, BERE_g(MDI) achieves a comparable performance with BERE(DDI) and 
BERE(DTI).

Table 1  Comparison of baseline performance on different datasets

Precision Recall F1-score

BERE (DDI) 76.8 71.3 73.9

BERE (DTI) 73.8 54.2 62.5

BERE_g (MDI) 68.8 71.4 70.1

PKDE4J (MDI) 55.3 41.3 47.3

Fig. 5  Comparisons of the precision–recall curves between BERE with or without transfer learning. The 
AUPRC and F1-score for each method are on the top right contains

Table 2  Results of fivefold cross-validation

The best result of each performance index is boldfaced

BERE_TL(MDI) BERE_g(MDI)

Precision (%) Recall (%) F1-score (%) Precision (%) Recall (%) F1-score (%)

Fold-1 74.43 77.51 75.94 71.43 68.05 69.70

Fold-2 74.53 71.01 72.73 65.73 69.23 69.23

Fold-3 70.59 71.01 70.80 62.83 71.01 66.67

Fold-4 75.71 80.24 77.91 69.02 76.05 72.36

Fold-5 73.01 70.41 71.69 68.04 79.04 73.13

Average 73.65 74.04 73.81 67.41 72.68 70.22
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Quantifying the performance of transfer learning

To highlight the effect of transfer learning, we compared the performances with or 
without transfer learning. The experiment was performed under five-fold cross-Vali-
dation, and the final result was computed by average. Table  2 lists the results for the 
BERE_g(MDI) against BERE_TL(MDI). It is evident that transfer learning significantly 
improved precision, recall, and F1-score. In addition, it brings an average reduction in 
error of 12% on GSC. Figure 5 shows the precision–recall curve of and the AUPRC result 
of BERE with transfer learning.

Error analysis

We manually inspected some reported results of our model and we have the following 
observations:

Firstly, sentences with too many compound clauses may give rise errors. To improve 
this, we will need better NLP tools for semantic parsing or syntactic analysis of texts.

Secondly, some errors can be attributed to the NER tools. DNorm occasionally failed 
in cases of abbreviations and acronyms. For instance, ‘WS’ refers to wheat sensitivity in 
the article, but DNorm tagged it as an abbreviation of the disease ‘Williams Syndrome’. 
Pathologically related words can bring some misunderstanding too, ‘syntrophic growth’ 
was wrongly recognized as the disease ‘Growth Disorders’. To reduce such errors, we will 
need better NER tools.

In addition, some texts might not even constitute a proper sentence. We noticed one 
example “Gastric cancer H. pylori, Porphyromonas, Neisseria, Prevotella pallens, Strep-
tococcus sinensis, Lactobacillus coleohominis.” (PMID: 31236389), which was due to 
an improper representation of a table into text segments in the corresponding full-text 
XML document.

We selected 1000 predicted instances from the results of our model randomly and 
checked each instance manually. 731 out of 1000 were verified to be correct, and 268 
were proved to be wrongly predicted, which gives an accuracy of 73.1%. 914 instances 
were not found in the aforementioned database MicroPheno, but our manual inspection 
found that 633 (69.2%) of them are correct and should be included.

To note, the recall of our method is around 74%, which means some useful informa-
tion in literature might not be recovered. For instance, we know Bacillus cereus is a 
gram-positive bacteria that can produce toxin and causes diarrhea and we find some evi-
dence by literature review [30–32]. However, this information was not included in our 
database. The reason is that our model only considers relation extraction at the sentence 
level. In some cases, useful information can only be mined across multiple sentences. 
We will leave that for future work.

Searching on MDIDB website

This section gives examples on how to access MDIDB and retrieve useful information 
from our database.

To demonstrate how to get related microbes by searching for disease names, we que-
ried “Colonic Neoplasms”, as illustrated in Fig. 6a. We obtained a list of microbe–disease 
relation records about colonial neoplasms, and each record has one evidence to support 
the classification of entity relation. The statistical chart result is shown in Fig. 7a, b.
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We can also search by microbe names. By searching microbe “Bacillus cereus” 
(Fig. 6b), we got a list of related diseases, which includes Meningitis [33], Diabetes Mel-
litus [34], Dysentery, Endotoxemia [35], shown in Fig. 7c, d.

MDIDB can generate top-ten pie charts for different queries and present an informa-
tive word cloud for the most relevant microbes or diseases. For instance, the study [36] 
shows probiotics Lactobacilli can bring less abdominal discomfort for patients with 
colon cancer. Keku et  al.  [37] discussed the relations between Fusobacterium species 
and colon cancer. Parisa et al. [38] had ’protective’ anti-cancer properties for colon can-
cer. Fusobacterium nucleatum is a gram-negative obligate anaerobic bacteria and can 
activate Wnt/beta-catenin signaling to accelerating proliferation of colon cancer cells 
[39, 40]. The relation of Clostridium and colon cancer was demonstrated in work [41], 
Clostridium is associated with progression of colonic cancer [42]. Moreover, Vacca 
et al. [43] proves that Lachnospiraceae is linked to colon cancer, Cueva et al. [44] found 

Fig. 6  Query results in MDIDB
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that Prevotella is associated with colon cancer, Bolourian and Mojtahedi [45] suggested 
that Streptomyces can suppress colon tumorigenesis, Boleij et al. [46] shows that some 
Streptococcus species are associated with colon cancer. Colorectal Neoplasms and 
Colonic Neoplasms have a similar statistic chart, and as we know, colon cancer and colo-
rectal cancer are equivalent in some literature.

Discussion
Extracting structured knowledge from a large number of scientific literature can assist 
researchers retrieve interested information quickly. In this part, we compare and discuss 
several existing microbial disease databases and their extraction methods. Table 3 shows 
the difference between three databases in microbe and disease data.

HMDAD (http://​www.​cuilab.​cn/​hmdad) [11]: This is the first database of microbe and 
disease association. The data were collected by manual work, the scope of microbes, dis-
eases, and even literature are limited.

Disbiome (https://​disbi​ome.​ugent.​be) [27]: Didbiome provides a database of the asso-
ciation between the health situation of the host and the composition of its microbiota. It 
collects microbe–disease associations by text mining from peer-reviewed publications.

Fig. 7  Example searching result of disease “Colonic Neoplasms” and microbe “Bacillus cereus” in MDIDB

Table 3  Database contents of MDIDB compared with other databases

The best result of each performance index is boldfaced

Microbe Disease Record Publication Method

HMDAD 292 39 673 61 Traditional method

Disbiome 1622 372 10934 1194 Traditional method

MicroPhenoDB 1781 542 5677 1150 Traditional method + manual work

MDIDB 1065 1198 44900 8458 NLP + deep learning + transfer learning

http://www.cuilab.cn/hmdad
https://disbiome.ugent.be
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MicroPhenoDB (http://​www.​liwzl​ab.​cn/​micro​pheno​db) [16]: This database uses man-
ual review and calculation methods to systematically integrate the associated data of 
pathogenic microorganisms, microbial core genes, and human disease phenotypes. The 
scoring model is optimized by assigning different weights to different research shreds of 
evidence to quantify the correlation between microorganisms and human diseases.

Though MicroPhenoDB is rich in data, it takes a lot of time and effort to manually 
evaluate and audit the data.

MDIDB includes a vast amount of text-mined information from a comprehensive 
collection of related literature. It also provides a structured way to present the classi-
fied relationship between microbial diseases and specific sentences in specific litera-
ture. 24,256 is the number of input articles that are processed by our methods, while 
8458 is the number of articles with detected relations.

Our system only contains 1065 microbial entities due to the lack of specification in 
the microbial dictionary. Besides, many abbreviated microorganisms can not be rec-
ognized in the NER stage, such as B. fragilis. For the current version, we only consider 
the microbe disease relationship at sentence level. In the future, we will add relation 
extraction across sentences.

Conclusion
Interactions of microbes and diseases are of great importance in the biomedical 
domain. Much valuable information is buried in the large-scale biomedical literature, 
which has not yet been effectively explored. In this work, we applied text mining to 
automatically detect the interaction between microbes and diseases from literature 
via a transfer learning framework. We manually annotated a gold-standard corpus. 
Then we utilized a state-of-art automated biomedical relation extraction model and 
fine-tuned it on the GSC. The introduction of an automatically generated corpus SSC 
greatly enlarged the number of training samples and led to satisfactory performance 
of 73.85% F1-score. We conducted five-fold experiments to verify the effectiveness of 
our transfer learning method, and it provides approximately 10% reduction in error of 
F1 score. A total number of 44,900 interactions were extracted from over 20,000 arti-
cles. We randomly sampled 1000 results to analyze the accuracy of the predicted data, 
and 731 of 1000 were confirmed correct manually.

Extraction results were utilized to construct a microbe–disease interaction data-
base with a web interface, which is freely available at http://​dbmdi.​com/​index/. Our 
framework allows large-scale analysis of microbe–disease interactions with evidence 
of complex sentences.
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