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Background: Obstructive sleep apnea (OSA) is associated with cerebral small

vessel disease (CSVD). Nonetheless, whether OSA-risk determined by a simple

screening questionnaire or indices quantifying nocturnal hypoxemia other than

the conventional apnea–hypopnea index (AHI) by the home sleep apnea test

(HSAT) associated with CSVD burden remains uncertain.

Methods: From 2018 to 2021, we recruited patients with transient ischemic

attack (TIA)/minor stroke from the Queen Mary Hospital Acute Stroke

Unit and TIA/Stroke Outpatient Clinics. Logistic regression models were

applied to determine the association of baseline OSA-risk (on STOP-BANG

questionnaire) or HSAT-derived indices quantifying nocturnal hypoxemia

with global burden/individual markers of CSVD on MRI. Indices included

oxygen desaturation (≥3%) index (ODI), minimum oxygen saturation (SpO2),

percentage of total sleep time with an oxygen saturation <90% (CT90%), and

desaturation duration (≥3%, DesDur).

Results: In 283 patients with TIA/minor stroke (mean age 65 years,

64% men), OSA-risk was significantly associated with total CSVD score

(multivariate-adjusted odds ratio: 1.23, 95% confidence interval 1.01–1.51),

presence of lacunes [1.39 (1.09–1.79)] and burden of basal ganglia PVSs

[1.32 (1.06–1.67)]. In 85/283 patients who completed HSAT, neither AHI,

minimum SpO2 nor CT90% was associated with CSVD burden. Nonetheless,

ODI and DesDur remained significantly associated with total CSVD score after

covariate adjustment: ODI [1.04 (1.01–1.07)] and DesDur [1.04 (1.01–1.08)].
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Conclusion: In patients with TIA/minor stroke, high OSA-risk was associated

with a greater CSVD burden. Oxygen desaturation indices (ODI and DesDur)

rather than AHI were independently associated with global CSVD burden,

indicating that longer and more severe desaturations may contribute to the

pathogenesis of CSVD.

KEYWORDS

obstructive sleep apnea, oxygen desaturation, nocturnal hypoxemia, small vessel

disease, stroke, transient ischemic attack

Introduction

Obstructive sleep apnea (OSA) is a common and modifiable

risk factor for stroke (1, 2). Left undiagnosed and untreated,

stroke patients with OSA may be at increased risk of impaired

functional and cognitive capacity (3), and may have a higher

risk of recurrent stroke and death (4). Recent meta-analyses

have shown thatmoderate-to-severe OSA is positively associated

with cerebral small vessel disease (CSVD) (5, 6), a chronic

vasculopathy that accounts for up to 20% of all strokes (7).

Screening for OSA after stroke using standard diagnostic tests,

such as polysomnography (PSG) or home sleep apnea test

(HSAT), is recommended (8, 9), but access to these tests is often

limited. Questionnaires have also been developed and validated

to identify patients at high risk, among which the 8-item STOP-

BANG questionnaire appears to have the highest sensitivity

within the stroke population (10, 11).

Several studies have shown that a high OSA-risk is

associated with an increased risk of intracerebral hemorrhage

(12), impaired cerebrovascular reactivity (13), and presence of

intracranial carotid artery calcification (14) after stroke. OSA

and CSVD may share similar pathophysiological mechanisms

via common vascular risk factors, such as hypertension.

Nonetheless, it is not knownwhether OSA-risk is associated with

the burden of CSVD in patients with transient ischemic attack

(TIA)/minor stroke.

The apnea–hypopnea index (AHI) is the most widely used

index to diagnose and define OSA severity using overnight

PSG and HSAT. But it has recently been shown to have

limited capacity to predict adverse clinical outcomes (15)

or response to nasal continuous positive airway pressure

(nCPAP) treatment in patients with OSA (16). In several large

prospective cohort studies, a number of indices [e.g., hypoxic

burden, desaturation duration, and percentage of total sleep

time with SpO2 < 90% (CT90%)] quantifying the depth and

duration of oxygen desaturation were shown to have better

prognostic value than AHI for outcomes, such as incident major

adverse cardiovascular events (17), heart failure (18), incident

stroke (19), and mortality (20). Yet, whether these indices are

associated with magnetic resonance imaging (MRI) markers of

CSVD has not been explored.

We aimed to determine whether OSA-risk estimated using

STOP-BANG and oxygen desaturation indices identified using

HSAT were independently associated with CSVD burden in

patients with TIA/minor stroke.

Materials and methods

Design and setting

We prospectively recruited predominantly Chinese patients

with a new diagnosis of TIA/minor stroke [National Institute

of Health Stroke Scale (NIHSS) score<7] from the Acute

Stroke Unit and TIA/Minor Stroke Clinic of Queen Mary

Hospital, Hong Kong, from 2018–2021. Inclusion criteria were

age ≥18 years, availability of a brain MRI and completed

STOP-BANG questionnaire (21) at baseline (within 1 month

of symptom onset). Clinical and demographic variables were

recorded at baseline along with information about vascular risk

factors (hypertension, hyperlipidemia, diabetes mellitus, history

of stroke, atrial fibrillation, smoking, alcohol use), and type and

etiology of stroke using the Trial of ORG 10172 in Acute Stroke

Treatment (TOAST) criteria (22). Definition of vascular risk

factors is listed in Supplementary Methods.

Neuroimaging acquisition and analyses

All participants underwent a brain MRI at baseline

according to protocols that have been described previously

(23). One rater (XDL) who was trained by a consultant

neuroradiologist (HKFM) coded all MRI scans for the

presence and burden of white matter hyperintensities (WMH,

periventricular and deep), lacunes, basal ganglia and centrum

semiovale perivascular spaces (BG- and CSO-PVSs), cerebral

microbleeds, as well as the presence of recent subcortical infarct,

according to the STRIVE guidelines (24) and validated rating
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FIGURE 1

Study flow diagram. MRI, magnetic resonance imaging; TIA, transient ischemic attack; HSAT, home sleep apnea test.

scales (25–27). The global burden of CSVD was calculated

using the total CSVD score (23). Brain atrophy was assessed

in the deep (ventricular enlargement) and superficial (gyral

enlargement) regions against a validated normal aging reference

template from the lowest (1) to the highest atrophy quantile

(6, 28). The degree of medial temporal lobe atrophy (MTA)

was assessed using the MTA scale (29). Ten random cases were

cross-checked for each CSVD marker with excellent intra-rater

reliability (Cohen’s kappa 0.75–1).

Overnight HSAT sub-study

We invited all eligible subjects to compete in an overnight

home sleep study within 1 year after TIA/stroke onset

using a validated device (NOX-T3, Nox Medical Inc.

Reykjavik, Iceland) (30) unless they already had a known

history of sleep apnea diagnosed by overnight PSG or

HSAT. Details of the manual scoring methods are listed

in Supplementary Methods. OSA severity was categorized
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as none or mild (AHI<15/h) or moderate to severe (AHI

≥ 15/h). In addition to AHI, ODI, minimum SpO2, and

CT90% were recorded. A novel index, desaturation duration

(DesDur), that has been recently described (31, 32) was

also extracted. ODI was calculated as the average events

during which oxygen saturation decreased by ≥3% from

baseline. DesDur was calculated as the total time of oxygen

saturation decrease ≥3% from baseline divided by the total

sleep time. CT90% was calculated as the proportion of

cumulative sleep time with SpO2 below 90% during total

sleep time.

Statistical analysis

We evaluated differences between a low (0–2) and an

intermediate–high (>2) OSA-risk group stratified by STOP-

BANG score, using independent t-tests for continuous normal

measures and the Mann–Witney U tests, or Chi-square tests

as appropriate.

The correlation of OSA-risk with CSVD markers was

evaluated by Spearman’s rank correlation, and the association

of OSA-risk with CSVD markers was further investigated using

ordinal logistic regression in: (1) an unadjusted model; (2) a

model adjusted for age and sex; and (3) a multivariate model

with additional adjustment of TIA/stroke history, vascular risk

factors (baseline blood pressure, hyperlipidemia, diabetes, atrial

fibrillation, smoking), and alcohol use, all potential confounders

associated with CSVD burden. We did not adjust for BMI as it

is already included in the total STOP-BANG score (one score

assigned in individuals with BMI > 30 kg/m2).

In the HSAT sub-study, the diagnostic performance of the

STOP-BANG score was assessed against AHI and similarly

examined the correlations and associations between AHI and

oxygen desaturation indices with global CSVD burden using

ordinal logistic regression models.

All statistical tests were two-sided with a p-value <0.05

considered statistically significant. All statistical analyses were

performed using R (version 4.1.0, R Foundation for Statistical

Computing, Vienna, Austria).

Standard protocol approvals and
participant consent

This study was approved by the Institutional Review

Board of the University of Hong Kong/Hospital Authority

Hong Kong West Cluster (UW18-361). All study participants

provided written informed consent at recruitment. This study

was performed and reported following the Strengthening

the Reporting of Observational Studies in Epidemiology

guidelines (33).

Results

Of the 325 patients recruited, 283 completed all baseline

assessments and were included in the analysis (Figure 1). Brain

MRI was performed at a median of 5 days (interquartile range,

IQR three–eight days) after stroke onset. The mean age of the

study population was 65.2± 12.0 years, and 64% were men. The

mean baseline NIHSS score was 1.5 ± 1.6 and the mean body

mass index (BMI) 24.2± 3.6. Minor stroke (98.1% ischemic) was

diagnosed in 165 patients (58.3%) and TIA in 118 (41.7%).

Based on STOP-BANG, 170/283 patients (60.1%) were

identified as being at intermediate–high OSA-risk. Compared

with patients with low OSA-risk, those with intermediate–high

OSA-risk were more likely to be men, with a higher prevalence

of hypertension (and hence higher blood pressure), and were

more likely to be smokers and alcohol drinkers. They were also

more likely to have diffusion-weighted imaging (DWI)-positive

lesions, higher CSVD burden, and more severe cerebral atrophy

(all p < 0.05) (Table 1). There were otherwise no significant

differences in age or proportion of patients with diabetes,

hyperlipidemia, atrial fibrillation, and stroke history between the

two groups (all p > 0.05). The subtypes, etiology, and severity of

stroke also did not differ between the two groups (all p > 0.05).

OSA-risk determined by total STOP-BANG score was

correlated with all MRI markers of CSVD (all p < 0.05)

except for cerebral microbleeds and periventricular WMH

(Supplementary Table 1). The positive association of OSA-

risk with global CSVD burden remained significant after

adjusting for age, sex, vascular risk factors, and alcohol use

[multivariate-adjusted odds ratio (OR): 1.23, 95% confidence

interval (CI) 1.01–1.51]. Compared with patients with low OSA-

risk (STOP-BANG score 0–2), those at intermediate–high OSA-

risk (STOP-BANG>2) tended to have worse CSVD burden

[multivariate-adjusted OR 1.89 (1.16, 3.12)]. Higher OSA-risk

was also significantly associated with the presence of lacunes

[multivariate-adjusted OR 1.39 (1.09–1.79)] and burden of BG-

PVSs [1.32 (1.06–1.67)] (Table 2). Significant associations of

OSA-risk with WMH, CSO-PVSs and cerebral atrophy scores

were also noted in univariate analysis and were attenuated after

adjusting for age and sex. No association of OSA-risk with the

presence of cerebral microbleeds was identified (Table 2).

Of the 229 eligible subjects, 85 (mean age 62.7 ± 11.0

years, 66% men) underwent overnight HSAT a median

of 13.4 months (IQR 12.3–14.3) after TIA/stroke onset

(Figure 1). Patients who did complete HSAT were older (p

= 0.038). There were otherwise no significant differences in

the demographics or vascular risk factors among patients

who underwent HSAT compared with those who did

not (Supplementary Table 2). STOP-BANG (area under

ROC curve: 0.626–0.701) showed acceptable diagnostic

performance compared with AHI (Supplementary Figure 1).

The mean AHI was 17.8 ± 14.4, and the mean ODI
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TABLE 1 Baseline clinical and imaging characteristics of the study population.

All, n = 283 Low OSA-risk, n = 113 Intermediate–high OSA-risk, n = 170 p-value

Clinical characteristics

Age, years 65.2± 12.0 63.9± 13.4 66.1± 11.0 0.215

Male, % 180 (63.6) 43 (38.1) 137 (79.6) <0.001

BMI, kg/m2 24.2± 3.6 23.1± 3.2 24.9± 3.7 <0.001

Hypertension, % 158 (55.8) 46 (40.7) 112 (65.9) <0.001

Hyperlipidemia, % 97 (34.3) 39 (34.5) 58 (34.1) 1

Diabetes, % 81 (28.6) 32 (28.3) 49 (28.8) 1

Atrial fibrillation, % 32 (11.3) 11 (9.7) 21 (12.4) 0.624

Prior TIA/stroke, % 35 (12.4) 12 (10.6) 23 (13.5) 0.587

Ever-smokers, % 84 (29.7) 19 (16.8) 65 (38.2) <0.001

Alcohol drinker, % 59 (20.8) 16 (14.2) 43 (25.3) 0.035

Systolic blood pressure, mmHg 136± 18 133± 18 137± 18 0.054

Diastolic blood pressure, mmHg 77± 13 75± 12 78± 13 0.019

Stroke characteristics

Stroke subtype, % 0.237

TIA 118 (41.7) 54 (47.8) 64 (37.6)

Minor ischemic stroke 162 (57.2) 58 (51.3) 104 (61.2)

Minor hemorrhagic stroke 3 (1.1) 1 (0.9) 2 (1.2)

TOAST classification, % 0.123

Small vessel occlusion 86 (30.4) 28 (24.8) 58 (34.1)

Other etiological subtypes 197 (69.6) 85 (74.2) 112 (65.9)

NIHSS score 1.5± 1.6 1.5± 1.6 1.5± 1.6 0.767

Imaging characteristics

Number with DWI positive lesion, % 176 (62.2) 59 (52.2) 117 (68.8) 0.007

Total CSVD score <0.001

0 82 (29.0) 46 (40.7) 36 (21.2)

1 74 (26.1) 28 (24.8) 46 (27.1)

2 52 (18.4) 22 (19.5) 30 (17.6)

3 47 (16.6) 10 (8.8) 37 (21.8)

4 28 (8.9) 7 (6.2) 21 (12.4)

Lacunes, % 114 (40.3) 32 (28.3) 82 (48.2) 0.001

Cerebral microbleeds*, %

Presence 59 (20.8) 17 (15.0) 42 (24.7) 0.047

≥5 24 (8.5) 6 (5.3) 18 (10.7) 0.287

Moderate-extensive WMH, % 90 (31.8) 26 (23.0) 64 (37.6) 0.014

Basal ganglia PVS, % <0.001

<10 133 (47.0) 68 (60.2) 65 (38.2)

10–20 115 (40.6) 40 (35.4) 75 (44.1)

>20 35 (12.4) 5 (4.4) 30 (17.6)

Central semiovale PVS, % 0.019

<10 112 (39.6) 56 (49.6) 56 (32.9)

10–20 126 (44.5) 43 (38.1) 83 (48.8)

>20 45 (15.9) 14 (12.4) 31 (18.2)

Total brain atrophy score, % 0.049

0–4 140 (49.5) 66 (58.4) 74 (43.5)

(Continued)
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TABLE 1 (Continued)

All, n = 283 Low OSA-risk, n = 113 Intermediate–high OSA-risk, n = 170 p-value

5–8 93 (32.9) 30 (26.5) 63 (37.1)

9–12 50 (17.7) 17 (15.0) 33 (19.4)

MTA score 2.2± 1.0 2.0± 1.0 2.3± 1.0 0.003

Data are presented as mean± standard deviation or number (percentage).

BMI, body mass index; DWI, diffusion-weighted imaging; PVS, perivascular space; MTA, medial temporal lobe atrophy; OSA, obstructive sleep apnea; CSVD, cerebral small vessel disease;

TIA, transient ischemic attack; TOAST, Trial of ORG 10172 in Acute Stroke Treatment; WMH, white matter hyperintensity.
*Missing data for one subject.

Moderate-extensiveWMH: periventricular WMH Fazekas score three or deepWMH Fazekas score 2–3; Total brain atrophy score, deep atrophy score+ superficial atrophy score, ranging

from 0 to 12.

Bold values indicate statistical significance with p value < 0.05.

TABLE 2 Association of OSA-risk with MRI markers of CSVD (n = 283).

OSA-risk CSVDmarkers Outcome variables Unadjusted

OR (95% CI)

Age and sex

adjusted OR

(95% CI)

Multivariate-adjusted*

OR (95% CI)

Intermediate–high

OSA-risk (STOP-BANG

score >2)

Global CSVD burden Total CSVD score 1.41 [1.19–1.69] 1.25 [1.03–1.52] 1.89 [1.16–3.12]

Total STOP-BANG score Global CSVD burden Total CSVD score 2.39 [1.55–3.71] 2.02 [1.25–3.28] 1.23 [1.01–1.51]

Lacune Presence of lacunes 1.47 [1.20–1.82] 1.39 [1.10–1.77] 1.39 [1.09–1.79]

Microbleeds Presence of microbleeds 1.16 [0.92–1.46] 1.08 [0.82–1.41] 1.15 [0.85–1.54]

WMH Periventricular Fazekas score 1.20 [1.00–1.45] 1.13 [0.90–1.41] 1.10 [0.87–1.39]

Deep Fazekas score 1.24 [1.04–1.49] 1.09 [0.89–1.35] 1.06 [0.86–1.32]

PVS Basal ganglia PVS score 1.47 [1.23–1.78] 1.33 [1.07–1.66] 1.32 [1.06–1.67]

Central semiovale PVS score 1.36 [1.13–1.64] 1.21 [0.99–1.50] 1.20 [0.97–1.48]

Brain atrophy Total brain atrophy score quantile 1.24 [1.03–1.49] 0.98 [0.78–1.23] 0.98 [0.77–1.25]

MTA score 1.22 [1.02–1.46] 0.96 [0.78–1.18] 0.93 [0.75–1.16]

CI, confidence interval; MTA, medial temporal lobe atrophy; OR, odds ratio; CSVD, cerebral small vessel disease; PVS, perivascular space; WMH, white matter hyperintensities.
*Adjusted for age, sex, history of TIA/stroke, vascular risk factors (baseline blood pressure, hyperlipidemia, diabetes, atrial fibrillation, smoking), and alcohol use.

Bold values indicate statistical significance with p value < 0.05.

was 16.7 ± 13.9. The median value of DesDur, CT90%,

and minimum SpO2 was 12.2% (IQR 8.3–21.5%), 1.7%

(0.4–4.6%), and 83.0% (79.0–86.0%), respectively. Using

HSAT, 41 patients (48.2%) were classified as having

moderate-severe OSA.

The correlation was stronger for ODI, DesDur, and

CT90% with total CSVD score than for AHI or minimum

SpO2 (Supplementary Table 3). The associations of ODI

and DesDur with CSVD burden remained significant after

adjusting for confounding factors: ODI [1.04 (1.01–1.07), p

= 0.036], DesDur [1.04 (1.01–1.08), p = 0.036]. However,

no significant associations between AHI and total CSVD

score were noted after adjustment of confounding factors

[1.03 (1.00–1.06), p = 0.056] (Table 3). AHI, ODI, and

DesDur were also significantly associated with burden

of BG-PVSs: AHI [1.04 (1.01–1.07)], ODI: [1.04 (1.01–

1.08)], DesDur: [1.05 (1.01–1.10)] (all p < 0.05). Only ODI

remained significantly associated with deep WMH burden

after covariates adjustment: [1.04 (1.01–1.08), p = 0.049]

(Supplementary Tables 4, 5).

Discussion

In this study, we demonstrated that TIA/minor stroke

patients with higher OSA-risk as determined by the STOP-

BANG questionnaire had a greater CSVD burden. We also

found that hypoxic burden, as determined by ODI and DesDur,

was more significantly associated with global CSVD burden

than AHI. Our findings indicate that features of nocturnal

hypoxemia, such as the duration of intermittent desaturation,

may provide additional information about OSA severity and

may be important in the pathogenesis of CSVD.

In our main study, we used STOP-BANG to estimate the

risk of OSA, with around 60% of participants categorized as

intermediate–high OSA-risk. This feature is consistent with
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TABLE 3 Association of AHI and oxygen desaturation indices with

total CSVD score (n = 85).

Indices Unadjusted

OR (95% CI)

Multivariate-adjusted*

OR (95% CI)

AHI 1.03 [1.00–1.06] 1.03 [1.00–1.06]

ODI 1.03 [1.00–1.06] 1.04 [1.01–1.07]

DesDur 1.04 [1.00–1.08] 1.04 [1.01–1.08]

Minimum SpO2 , % 0.99 [0.93–1.05] 1.00 [0.93–1.07]

CT90% 1.04 [1.00–1.09] 1.02 [0.97–1.07]

Bold values indicate statistical significance with p-value < 0.05.

AHI, apnea–hypopnea index; CI, confidence interval; CT90%, percentage of total sleep

time with an oxygen saturation<90%; DesDur, percentage of total desaturation time from

total sleep time; CSVD, cerebral small vessel disease; ODI, oxygen desaturation index; OR,

odds ratio.

*Adjusted for age, sex, vascular risk factors (hypertension, diabetes, atrial fibrillation,

history of stroke/TIA, BMI, smoking), alcohol use, and total sleep time.

recent meta-analyses that have demonstrated a high prevalence

of OSA among patients with stroke (2, 34, 35). In our HSAT

sub-study, STOP-BANG also showed acceptable diagnostic

performance against HSAT. These results are also in-line with

a recent meta-analysis in which of intermediate–high OSA-risk

detected using STOP-BANG had excellent sensitivity (>90%)

against PSG testing (36).

Several large cohort studies in patients with OSA have

explored the association of novel desaturation metrics with

clinical outcomes. For instance, the SAVE trial showed that

desaturation duration and desaturation/resaturation time ratio

were predictive of future risk of heart failure (18). In

the Osteoporotic Fractures in Men Sleep Study, nocturnal

hypoxia measured by CT90% was independently associated with

subsequent risk of stroke (19) and cardiovascular mortality

(37). Our previous sleep cohort study also determined that

CT90% was a robust predictor of major adverse cardiovascular

events (17). Nonetheless, few studies have evaluated the

relationship between nocturnal hypoxemia and global CSVD

burden. One study showed that ODI and minimum SpO2 were

significantly correlated with burden of PVSs (38), while two

other studies demonstrated that decreased arterial SpO2 and

oxyhemoglobin saturation<90% were independently associated

with more severe WMH load (39, 40). An animal model

of CVSD demonstrated that OSA, simulated by intermittent

tracheal balloon occlusion, could accelerate CSVD progression

(41). Our findings reveal that the frequency and duration of

oxygen desaturation, rather than the minimum SpO2, were

associated with global CSVD burden covering a full range

of individual MRI markers. Moreover, desaturation indices,

including DesDur, can be extracted from limited channel sleep

studies without electroencephalograms and are potentially more

readily accessible.

The mechanisms linking OSA and CSVD may be

multifactorial. OSA-related intermittent hypoxemia triggers

endothelial dysfunction, vascular oxidative stress, systematic

inflammation and glymphatic system dysfunction leading

to brain dysfunction (42). A recent pilot neuroimaging

study utilizing diffusion tensor imaging revealed that

chronic hypoxic ischemia in the watershed region may

contribute to the development of WMH (43), and another

pilot study found both AHI and ODI were correlated

with PVS burden (44). Given that OSA is a complex and

heterogeneous disorder, and that AHI only measures the

frequency of apnea and hypopneas and cannot provide

information about the duration of respiratory events, indices

such as DesDur and ODI incorporating the magnitude of

hypoxemia might provide additional information. Although

we cannot infer causality from our cross-sectional data,

our findings have shown an association between oxygen

desaturation and global CVSD burden, suggesting that

nocturnal hypoxemia may contribute to the pathogenesis

of CSVD.

NCPAP, the standard treatment for moderate-severe

OSA, has been shown to improve white matter integrity

(45) and microstructural changes in normal-appearing

white matter (46) among patients with OSA, but failed

to have long-term cardiovascular benefits among patients

selected based on AHI only (47). A recent study in our

sleep center found that sleep-related hypoxemia and

mean heart rate on polysomnographic studies rather

than AHI were determinants of incident major adverse

cardiovascular events on longitudinal follow-up over a

median of 8 years (17). Our results indicate that metrics

quantifying nocturnal hypoxemia may be useful for selecting

TIA/minor stroke patients at high risk of adverse effects

of sleep apnea and thus may be useful to evaluate the

effectiveness of CPAP treatment, as well as its impact on clinical

outcomes relevant to CSVD, such as stroke recurrence and

cognitive performance.

This study has some methodological limitations. First,

this is a cross-sectional study of relatively small sample size

involving predominantly Chinese. Our findings will need to

be validated in larger prospective cohorts and randomized

trials involving other ethnic groups to confirm the potential

causal relationship and prognostic value of various indices

of nocturnal hypoxemia in the development of CSVD, over

and above conventional indices, such as AHI. Second, and

largely due to the COVID-19 pandemic, only a small subset

of the study population received HSAT, and hence, the

results from the HSAT sub-study should be interpreted with

caution. Moreover, HSAT cannot determine sleep stages. Third,

we assumed that the CSVD burden remained largely the

same during the one-year period after TIA/stroke onset.

It is possible that a small proportion of individuals with

uncontrolled vascular risk factors or severe OSA may have

had CSVD progression during the follow-up period. Fourth,

we used CSVD visual rating scales rather than more sensitive
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imaging markers to detect CSVD, such as WMH volume or

cerebrovascular reactivity.

In this study, we demonstrated that in patients with

TIA/minor stroke, OSA-risk measured by STOP-BANG and

indices relating to the severity of nocturnal hypoxemia (ODI

and DesDur) rather than AHI were significantly associated with

a higher CSVD burden. Further large-scale prospective studies

to determine whether OSA and related nocturnal hypoxemia

may contribute to the pathogenesis of CSVD and whether these

indices provide additional information on cerebral prognosis

under nCPAP treatment, over and above AHI, are warranted.
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