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Propagating waves with complex dynamics have been widely observed in neural

population activity. To understand their formation mechanisms, we investigate a type

of two-dimensional neural field model by systematically varying its recurrent excitatory

and inhibitory inputs. We show that the neural field model exhibits a rich repertoire

of dynamical activity states when the relevant strength of excitation and inhibition

is increased, ranging from localized rotating and traveling waves to global waves.

Particularly, near the transition between stable states of rotating and traveling waves,

the model exhibits a bistable state; that is, both the rotating and the traveling waves

can exist, and the inclusion of noise can induce spontaneous transitions between

them. Furthermore, we demonstrate that when there are multiple propagating waves,

they exhibit rich collective propagation dynamics with variable propagating speeds and

trajectories. We use techniques from time series analysis such detrended fluctuation

analysis to characterize the effect of the strength of excitation and inhibition on these

collective dynamics, which range from purely random motion to motion with long-range

spatiotemporal correlations. These results provide insights into the possible contribution

of excitation and inhibition toward a range of previously observed spatiotemporal

wave phenomena.

Keywords: neural field, propagating waves, excitation, inhibition, spatiotemporal spectrum, traveling waves,

cortical waves

1. INTRODUCTION

Propagating waves have been observed at different neural levels within multiple recording
techniques, including multi-electrode arrays (Freeman and Barrie, 2000; Rubino et al., 2006;
Muller et al., 2014; Townsend et al., 2015; Zanos et al., 2015), voltage sensitive dye (VSD)
imaging (Wu et al., 2008; Huang et al., 2010; Muller et al., 2014), electroencephalography
(EEG), electrocorticography (ECoG), magnetoencephalography (MEG) and functional magnetic
resonance imaging (fMRI) (Goldman et al., 1949; Ribary et al., 1991; Lee et al., 2005; Patten
et al., 2012; Alexander et al., 2013). A growing body of evidence indicates that these waves
are not just an epiphenomenon but have functional significance: in spontaneous activity,
propagating waves have been shown to follow repeated temporal motifs instead of occurring
randomly (Mohajerani et al., 2013; Townsend et al., 2015). They are postulated to facilitate
information transfer across brain regions (Rubino et al., 2006; Sato et al., 2012) and carry
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out distributed dynamical computation (Gong and Van Leeuwen,
2009). In sensory and motor cortices, stimuli can elicit repeatable
propagating waves and the properties of these waves can be
linked to stimulus features (Prechtl et al., 1997; Xu et al.,
2007; Wu et al., 2008; Sato et al., 2012; Muller et al., 2014).
For instance, the phase and amplitude of traveling waves
in the motor cortex and visual cortex correlate with reach
target location (Rubino et al., 2006) and with saccade size
(Zanos et al., 2015), respectively, and the propagation direction
of moving waves in the visual cortex is sensitive to visual
movement orientation (Townsend et al., 2017). Waves in this
visual cortex are also implicated in perceptual phenomena
like binocular rivalry (Lee et al., 2005), reinforcement of recent
visual experience (Han et al., 2008) and visual hallucinations
(Ermentrout and Cowan, 1979). More broadly, they have been
observed during sleep with a possible role in memory
consolidation (Botella-Soler et al., 2012; Muller et al., 2016). This
body of evidence indicates that understanding the mechanisms
behind the formation and modulation of propagating neural
waves is essential for uncovering the principled dynamics of
neural population activity and for understanding the working
mechanisms of neural circuits (Muller et al., 2018; Townsend and
Gong, 2018).

Propagating neural waves in vivo exhibit complex dynamics
with variable propagation speeds and trajectories (Freeman
and Barrie, 2000; Ferezou et al., 2007; Luczak et al., 2007;
Han et al., 2008). It has been shown that such propagating
neural waves with complex dynamics can emerge from spatially-
extended, spiking neural networks (Keane and Gong, 2015),
and the collective complex dynamics of these waves provides
a mechanistic explanation for a range of irregular neural
dynamics, including the variability of spike timing, slow firing
rate fluctuations (Churchland et al., 2010), and correlated
membrane potential fluctuations (DeWeese and Zador, 2006;
Tan et al., 2016). The relative strength of excitation and
inhibition is important for the emergence of such complex
dynamics (Keane and Gong, 2015). In this study, we use a
recently developed 2-D neural field model (Qi and Gong,
2015) to further investigate the dynamical impact of the
neurophysiological mechanism of the relative E/I strength on
wave dynamics. By varying the relative strength of excitation
and inhibition, we find that a variety of propagating waves
can emerge from the neural field, including localized rotating
and traveling waves, splitting waves, and global waves. Based
on their dynamical properties, we map out their presence on
the E/I parameter space. Near the transition from the rotating
state to the traveling state, there are co-existing propagating
waves (i.e., plane and rotating waves); the noise-induced
switching dynamics between these waves are systematically
characterized. We further demonstrate that when there are
multiple propagating neural waves, their interactions give rise
to a range of pattern dynamics, including waves of purely
random, Brownian motion and waves with great fluctuating
dynamics that have long-range spatiotemporal correlations.
These collective dynamics are systematically characterized using
a range of methods including detrended fluctuation analysis and
spectral analysis.

2. MATERIALS AND METHODS

2.1. Neural Field Model
We consider a previously introduced two-dimensional neural
field model with refractoriness (Qi and Gong, 2015) which is
derived from a three-state spiking neural circuit model (Gong
and Robinson, 2012). The refractoriness in the neural field
model is in the form of non-linear negative feedback which is
analogous to models that feature linear recovery variables (Pinto
and Ermentrout, 2001), refractoriness (Meijer and Coombes,
2014) and synaptic depression (Kilpatrick and Bressloff, 2010;
Bressloff and Kilpatrick, 2011). This particular model supports
a wide variety of localized spatiotemporal patterns such as
bumps and propagating waves. In this study, we investigate the
effects of changing excitation and inhibition on the dynamics
of individual pattern formation and propagation as well as their
collective interactions.

The model takes the form of a set of scalar integro-
differential equations:

τ
∂f

∂t
= −f + gH(u− κ)

τ
∂g

∂t
= −gH(u− κ)+ ph

τ
∂h

∂t
= −ph+ f ,

(1)

where, f (r, t), g(r, t), and h(r, t) are temporal coarse-grained
variables that describe the probability that a neuron located at r ∈
R2 at time t is found in either a firing, refractory, or resting state,
respectively. The parameter τ is the membrane time constant
which we set to τ = 10ms, a typical value for cortical neurons
(Koch, 2004). The parameter p expresses the refractoriness of the
field: the rate at which a neuron transitions from a refractory state
to a resting state. H(x) is the Heaviside step function: H(x) = 1
if x ≥ 0 and 0 otherwise. Here, it expresses the response of a
neuron at r when its synaptic inputs u(r, t) exceed the threshold
firing parameter κ :

u(r, t) = (w ∗ f )(r, t) =

∫

R2
w(|r− r′)f (r′, t)dr′, (2)

where w(r) is a coupling function with short-range excitation
and longer-range inhibition; as in Folias and Bressloff (2005),
it is constructed from Bessel functions due to their
analytic tractability:

w(r) = WEwK(r/σE)−WIwK(r/σI),

wK(r) =
2

3π

[

K0(r)− K0(2r)
]

,
(3)

where Ki is the modified Bessel function of the second
kind; WE/WI are the excitatory/inhibitory strength parameters,
respectively; and σE/σI are their corresponding spatial scales.
Figure 1 shows the weight function vs. r for a set of fixed
parameter values which produce a shape that approximately
matches that of the original spiking model (Gong and Robinson,
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FIGURE 1 | (A) Synaptic feedback to the rest of the neural field due to activity at the origin, as expressed by the weight function (Equation 3) using typical parameter

values WE = 144.4, WI = 73.7, σE = 0.187 mm, σI = 0.324 mm. The labeled circle with radius 2.79 represents the transition between the excitatory region (w(r) > 0)

and the inhibitory region (w(r) < 0). Although inhibitory feedback is weaker in magnitude than excitatory feedback, it affects a much larger region of the field. We

account for this integrating over the excitatory and inhibitory region to obtain our excitation and inhibition parameters (Equation 5). (B) Weight function w(r) (solid line)

as a function of distance r for the same parameter values as in (A). The dotted line represents r × w(r), showing the synaptic feedback adjusted for the portion of the

neural field receiving that feedback. The magnitudes of g(±) are given by the areas of the red and blue shaded regions (Equation 5).

2012). As in that model, spatial scales σE, σI are chosen such
that the size of the localized waves generated in the neural field
matches that of waves observed in the cortex (Han et al., 2008).

For convenience, t is rescaled to the membrane time τ t → t.
Further, by using the normalization condition f + g + h = 1, the
neural field equations can be simplified to a pair of equations:

∂f

∂t
= −f + (1− f − h)H(u− κ)

∂h

∂t
= −ph+ f ,

(4)

2.1.1. Excitatory/Inhibitiory Parameters
In order to characterize the effect of varying excitation and
inhibition on the activity within the neural field, we must first
quantify the excitatory and inhibitory feedback as expressed by
the weight function (Equation 3). Because this feedback varies
with distance, we require a variable that reflects both the strength
of the feedback and its spatial extent. A natural place to start
is to consider the 2D integral of the weight function. For the
limits, we inspect the weight function, denoted by the solid line
in Figure 1B. We note that feedback is positive (excitatory) up to
a certain distance we label r0 and negative (inhibitory) beyond
that. We thus introduce the following variables to quantify
the excitatory and inhibitory feedback by integrating over two
separate regions in space r:

g(+) =

∫∫

|r|<r0

w(r)dr

g(−) =

∫∫

|r|>r0

w(r)dr (5)

The dotted line in Figure 1B represents the value of r × w(r).
Hence, the area of the shaded regions represents the total

excitatory and inhibitory inputs to the rest of the field. These
quantities vary non-linearly and in a coupled way with respect to
all four weight function parameters (the coupling strengths WE,
WI and the spatial scales σE, σI). We proceed by using g(±) as our
excitatory/inhibitory parameters.

In order to numerically characterize the dynamical effects
of excitatory and inhibitory feedback on the neural field, we
need to properly sample the g(±) parameter space. Since the
parameters g(±) vary non-linearly with respect to the weight

function parameters, it is not possible to evenly sample the
parameter space with a scheme of linear variation. Furthermore, a

given pair of values g(+) and g(−) does not correspond to a unique
weight function; different combinations of WE, WI , σE, and σI

can produce similar but not identical weight functions with the
same values of g(+) and g(−). In order to eliminate the sampling
biases that can arise from a particular scheme of variation, we
first use a Monte Carlo approach to sample the g(±) parameter
space by generating random values of WE,WI , σE and σI . We
use this to explore general trends and validate the use of g(±)

as a measure of excitation/inhibition in the model. For more
demanding calculations and simulations that would be unfeasible
to do for all of the g(±) pairs generated using the Monte Carlo
approach, we instead use a smaller set of parameters, found by
partitioning the g(±) parameter space into an evenly-spaced grid.
For each pair of g(±) values, we then find corresponding values of
WE,WI , σE, σI by applying a non-linear optimization algorithm
to Equation (5). To do so, we introduce an objective function
fobj = g2

(+)
+ g2

(−)
which can then be minimized using one of

many widely-available non-linear numerical solvers. We use the
algorithm outlined in Byrd et al. (2000), although the results do
not depend on the choice of algorithm.

For the Monte Carlo approach, we generate random
weight function parameters by uniformly sampling each
parameter (WE,WI , σE and σI) in the interval (0, 150). For each
combination, we evaluate Equation (3) and discard combinations
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FIGURE 2 | (A) Synaptic input at the boundary of a bump as a function of bump radius (as given by Equation 7). Solutions are indicated by the arrows. The blue

shaded region represents bumps whose synaptic input at the boundary is inhibitory, leading to contraction of the bump, while the red region represents bumps whose

synaptic input at the boundary is positive, leading to expansion. (B,C) Representation of the boundaries of two bump solutions from (A) in the neural field (black

circles). The arrows show the value of synaptic input at the boundary of bumps with different radii. Positive values (red arrows) result in expansion, while negative

values (blue arrows) result in contraction. This implies that the smaller bump in (C) is unstable while the larger bump in (B,C) is stable.

which do not result in a profile consisting of short-range
excitation and long-range inhibition. To explore the dynamics
of the field under varying excitation and inhibition, we first
consider the effects on the simplest form of spatiotemporal
activity: localized, radially symmetric bumps.

3. RESULTS

3.1. Bump Solutions
3.1.1. Dependence of Radius on Excitation and

Inhibition
Localized radially symmetric bumps are solutions to the neural
field equations which have a constant, uniform value (f , h) within
their circular boundaries. Their simple form results in a closed
expression that is analytically tractable. For a bump of radius
ρ centered at the origin, these solutions have the following
form (Qi and Gong, 2015):

f (r) =

{

p
1+2p for r < ρ

0 for r > ρ
,

h(r) =

{

1
1+2p for r < ρ

0 for r > ρ
.

(6)

At the boundary of the bump, the sum of synaptic input u(r, t)
(Equation 2) must approach κ . This leads to the following
existence condition for all bumps:

p

1+ 2p

[∫ 2π

0

∫ ρ

0
w(|r− r′|)r′dr′dθ ′ − 2κ

]

− κ = 0 (7)

We solve this equation numerically to find the bump radius
ρ for a given weight function. Figure 2A shows the synaptic
input at the bump boundary u as a function of the bump radius
ρ, with the red line showing the value of the firing threshold
κ . Bump solutions occur where the curve intersects the line.
Due to the concave profile of u(ρ), there can be at most two
solutions. The gradient of u(ρ) at the solutions implies that the

FIGURE 3 | (A) Radius of large bump solutions as a function of g(+) and g(−).

We fix p = 0.42 as this was approximately the critical value identified by Qi and

Gong (2015) at which bump solutions were found to become unstable for the

weight function parameters used in Figure 1. Increasing excitation or

decreasing inhibition results in larger bumps. (B) Eigenvalues of large bump

solutions with respect to shift perturbations are positive for all values of g(+)

and g(−), becoming larger as excitation is increased or inhibition is lowered.

smaller bump is unstable while the larger bump is stable: if
the synaptic input at the boundary is negative, this results in a
decrease in activity and thus a reduction in the bump radius; if
the synaptic input is positive, this results in an increase in the
bump radius. The positive gradient of u(ρ) at the smaller bump
indicates that a small perturbation will result in either extinction
or expansion to the larger bump solution, while the negative
gradient of u(ρ) at the larger bump solution suggests that small
perturbations will tend to return the bump to its original solution.
This is in agreement with direct numerical simulations and is
presented in Figures 2B,C.

Since the smaller bump solutions are unstable, we proceed
by focusing on the larger branch of solutions. As shown
in Figure 3A, the radius of the larger bumps depends on
the parameters g(±). Decreasing inhibition g(−) or increasing
excitation g(+) results in an increase in the radius of the bumps.
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As experimentally observed waves in the cortex have a radius of
around 2–4 mm (Han et al., 2008), we only explore the region of
the g± parameter space that corresponds to patterns of this size.

3.1.2. Dependence of Stability on Excitation and

Inhibition
To quantify the influence that the level of excitation/inhibition
has on these solutions, we perform a linearly stability analysis
on the larger branch of solutions. We consider linear shift
perturbations, as these correspond to the transition from
stationary bumps to traveling waves. We follow the method
of Qi and Gong (2015) to numerically evaluate the largest
eigenvalue of the perturbation, as shown in Figure 3B. We find
that eigenvalues are positive for all values of g(±), increasing
significantly as excitation is increased or inhibition is weakened.
This indicates that for p = 0.42, radial bumps will always be
unstable even if the level of excitation and inhibition is changed.
Although Qi and Gong (2015) showed that lower values of p do
result in stable bump solutions with negative eigenvalues for shift
perturbations, we do not consider them as we wish to explore the
collective dynamics of interacting traveling waves, which are only
seen at higher values of p.

3.2. Propagating Waves
We now study the behavior of more complex patterns such as
traveling waves under varying excitation and inhibition. Though
we are interested in the behavior of waves in a two-dimensional
neural field, we begin by considering the one-dimensional
case in order to develop insights that are applicable to the
2D case and to validate subsequent observations made using
direct numerical simulations. By considering the mathematical
form of traveling waves we can quantify and semi-analytically
characterize the variation we observe when varying the level of
excitation and inhibition.

3.2.1. Traveling Waves in One-Dimension
When considering the 1D case, we can describe a traveling wave
with just two parameters: it’s length L and speed c. From Qi and
Gong (2015), the equations of a traveling wave whose front lies at
the origin and is traveling in the positive x direction are:

F(x) =















0, if x > 0
p

1+2p

{

1− exp(αx/c)[cos(βx/c)− A sin(βx/c)]
}

, if − L ≤ x ≤ 0

F(−L) exp[(x+ L)/c], if x < −L

H(x) =















0, if x > 0
1

1+2p

{

1− exp(αx/c)[cos(βx/c)− B sin(βx/c)]
}

, if − L≤x≤ 0

H(−L)+ F(−L)
1−p exp[p(x+ L)/c]− F(−L)

1−p exp[(x+ L)/c], if x < −L,

(8)

where α = (2+p)/2,β =
√

p(4− p)/2,A = (2−α+1/p)/β and
B = {α − 2− p[(α − 2)2 + β2]}/β . Since the synaptic input u(x)
at the two boundary points x ∈ {0,−L}must equal the threshold
κ , we can find solutions by numerically solving the following

equations over c and L:

u(0) =

∫ 0

−∞
w(x)F(x)dx = κ

u(−L) =

∫ 0

−∞
w(x+ L)F(x)dx = κ

(9)

The two curves described by Equation (9) are shown in
Figure 4A. They intersect at a single point, which we verify to be
a solution using direct numerical simulation. By simultaneously
solving both equations numerically for c and L, we can find
traveling wave solutions for any value of g±. To do so, we
introduce a single objective function formed by summing the
squares of Equation (9):

fobj = (u(0)− κ)2 + (u(−L)− κ)2)

Using a multi-parameter optimization algorithm (Byrd et al.,
2000), we find values of the wave speed c and length L that
minimize fobj. Figures 4B,C show the length and speed of
traveling waves in 1 dimension as a function g(+) and g(−). We
find that there exists a strong relationship between the strength
of excitation/inhibition and the behavior of traveling waves:
the speed and length of traveling waves increases as excitation
increases or inhibition decreases. Figure 4D shows how the speed
of the waves is correlated with their length. Most of the solutions
lie on a curve, with a strong positive correlation between the two
parameters. All the (c, L) solutions also lie on one side of this
curve, which suggest that there is a frontier bounding possible
(c, L) values and that there may be more than one solution for
a given value of g(±). This is also observed in direct numeric
simulations, where there can be several traveling wave solutions
for a given value of g(±), although one solution will have greater
velocity and length than all others.

3.2.1.1. Two-dimensional case

We now consider the case of propagating waves in a two-
dimensional neural field. For this, we must use direct numerical
simulation as the inclusion of refractoriness in the neural field
model means there are no simple methods for finding a closed-
form traveling wave solution which would be necessary for an
analytical approach. Direct simulation, however, still requires
an appropriate initial condition for the neural field in order to
simulate a wave, as they do not always emerge spontaneously.
As with the one-dimensional case, the form of these waves (their
shape and propagation speed) varies with the parameter values.
Hence, we cannot use the same initial state for every simulation,
particularly as for some parameter values, the neural field can
support other types of activity such as rotating waves. In these
cases, it is important that the initial state be very close to the
traveling wave solution.

In order to generate suitable initial states, we develop a
method to numerically find an approximate traveling wave
solution for any given set of parameter values. We note that
we can apply Equation (8) along the direction of propagation
to find the value of (f , h) inside the wave boundary, but we
must know both the speed of the wave and its shape (boundary)
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FIGURE 4 | (A) Method of finding the speed and length of waves in 1

dimension by simultaneously solving Equation (9). (B) Length of traveling

waves in 1 dimension vs. the parameters g(±) using p = 0.3. (C) Speed of

traveling waves in 1 dimension vs. g(±) using p = 0.3. (D) Wave speed vs.

wave velocity in both 1D (blue) with p = 0.3 and 2D with p = 0.42 (red). The

method used to obtain the results for 2D waves is outlined in section 3.3.

beforehand. We proceed by trying to find an empirical equation
for the general boundary of a traveling wave. As a start, we use
the shapes of waves that emerge spontaneously from an initial
state consisting of a deformed bump solution. Varying p leads to
various types of waves; these are presented in Figure 5A.

We first note that traveling waves have a characteristic
teardrop or comet shape with a distinct front and tail which we
separate by a line through their widest point.We thus propose the
following general parametric form for the boundary of a traveling
wave centered at the origin in polar coordinates, with ρtrav(θ)
being the boundary of the traveling wave and θ ∈

[

−π
2 ,

3π
2

)

:

ρtrav(θ) =

{

ρfront(θ) if θ ≤ π/2

ρtail(θ) if θ > π/2
(10)

This gives three global parameters: the front length Lf , tail length
Lt and the width Lw. We find that the front is well described by
the equation of an ellipse:

ρfront(θ) = Lf Lw/
√

L2w cos2 θ + L2
f
sin2 θ

The tail, however, has a more complex shape. From testing
various families of equations, we find that the following equation
is a good fit to the boundary obtained from numeric simulations

and only requires one additional parameter:

ρtail(θ) = Lw − La
[

1− 1/(1− Lb cos
2 θ)

]

. (11)

La and Lb are parameters that describe the curvature of the tail
and are related to the tail length Lt by: Lt = Lw + LaLb/(1− L2

b
)

and 0 < Lb < 1. Using Equations (8) and (10), we have a
total of five parameters that describe a traveling wave uniquely:
c, Lf , Lw, La, Lb. One such wave is shown in Figure 5B. In order
to find traveling wave solutions for a given value of g±, we must
find parameters such that the synaptic input along the boundary
of the wave equals the threshold value κ :

u(r(ρtrav(θ), θ)) =

∫

R2
w(|r− r′|)F(r′)dr′ = κ , (12)

where F is a traveling wave moving in the positive x direction:

F(r) = F(σ+(y))
∣

∣

(L=σ+(y)−σ−(y))
,

and σ±(y) is the x-coordinate of the front (+) or tail (−) of the
wave for a given y-coordinate.

Unlike the one-dimensional case where we only had two
discrete boundary conditions, here we have a continuous
boundary. In order to solve Equation (12) numerically, we can
discretize the boundary θ ∈

[

−π
2 ,

3π
2

)

over n points and
minimize the following objective function over a finite number
of points θi on the boundary:

fobj(c, Lf , Lw, La, Lb) =

n
∑

i=1

[

u(r(ρtrav, θi))− κ
]2
. (13)

This function is highly nonlinear with many local minima, so
we apply a pattern search algorithm as outlined in Audet and
Dennis (2002) in order to find values of c, Lf , Lw, La, Lb that
minimize Equation (13). What we observe, however, is that this
does not give us a unique solution: it is possible to find several
similar but distinct traveling waves that minimize Equation (13).
We verify the validity of these solutions using direct numerical
simulation. We discretize spatially and temporally and apply
a numerical scheme (Fourth-order Runge-Kutta as in Butcher,
2007) to the integro-differential equations (Equation 4). We use
a spatial resolution of 0.1 mm with a grid size of 601 × 601 and
a temporal resolution of 0.1 ms. We set κ to 1 and p to 0.42. In
order to explore the parameter space, we linearly sample g± pairs
as outlined earlier in section 2.1. We simulate the neural field
and then plot the final length and speed of the traveling waves
on Figure 4D, alongside that of the one-dimensional waves. As
with 1Dwaves, we observe that 2D traveling waves have a positive
correlation between wave speed and velocity, with a similar
“frontier” bounding possible values. When the wave velocity is
low, we find that traveling waves tend to transition to rotating
waves; when wave velocity is higher, they tend to split into pairs
of waves moving in opposite directions. The length of the wave
appears to be a crucial to this behavior: shorter waves are more
likely to transition to rotating waves, while longer waves are stable
up to a critical length at which local excitation in the tail of
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FIGURE 5 | (A) The changing appearance of patterns as the neural field parameters are varied, either by changing p or the excitation/inhibition parameters g±. As

patterns become more unstable, they transition from rotating waves to traveling waves and unstable waves which undergo periodic division. (B) Empirically fitting a

function curve to the wave front (green line) and tail (red line) for a traveling wave. Crosses show boundary points obtained from numeric simulation.

the wave becomes stronger than the inhibition from the front,
resulting in the formation of a secondary front moving in the
opposite direction. This critical length is approximately twice the
radius of a stable bump solution.

3.3. Segmentation of Parameter Space
Based on Behavior of Propagating Waves
Using the method outlined in section 3.2.1.1, we are now able
to generate a traveling wave for any set of parameters. For many
values of g±, we find that the traveling waves are unstable and
either periodically divide or transition to a rotating wave. We
use this property of how individual waves behave in order to
separate the parameter space into four distinct regions based on
the dominant form of activity, as shown in Figure 6A. Region
I - Rotating waves: Asymmetrical patterns which move in a
circular orbit about a fixed point as in Figure 6D. Region II
- Traveling waves: Symmetric patterns which move in linear
trajectory with constant speed and length as in Figure 6E. Region
III - Unstable waves: Traveling waves whose length and speed
keeps increasing until they split into two waves propagating in
opposite directions as seen in Figure 5A. Due to this, over time
the field becomes filled with patterns that are spatially confined
to a small region of the field as shown in Figure 6C. Region IV
- Global waves: Extended, slowly-moving patterns with multiple
“fronts” or bands of activation that fill the neural field, shown
in Figure 6B.

3.4. Characterization of Stability Using
Direct Numerical Simulations
The non-linearity present in the neural field equations (Equation
4) makes it difficult to determine the stability of the traveling
wave solutions analytically, so we use a computational approach
to produce a phase portrait and identify its equilibria, similar
to methods that have been applied to experimental data from
unstable dynamical systems (Wiebe and Virgin, 2016). For our
state variables, we track the trajectories of the waves using their
center of mass coordinates, which we then use to calculate their
velocity and acceleration over time. The instantaneous values of

these variables can be used to distinguish between the different
types of patterns. The variables also show a smooth transition
between them in phase space.We outline these variables and how
they describe different pattern types below.

The center-of-mass coordinates Eρ(tk) of the wave S at each
time step tk, are found using:

∑

r∈S

(f (r, tk)− Eρ(tk)) = 0 (14)

The wave velocities are numerically calculated using the finite
difference method: v(tk) = 0.5 × [r(tk+1) − r(tk−1)]/1t.
Smoothing is then applied using a 10-point moving average.
Acceleration a(tk) is calculated similarly from the velocity.
The norm of the velocity and acceleration vectors is taken
to calculate their total velocity v(tk) = |r(tk)| and total
acceleration a(tk) = |a(tk)|.

Different pattern types have unique trajectories which give rise
to varying velocity and acceleration profiles. For a single wave,
the velocity in a fixed direction (e.g., along the x-axis) along
with total velocity and acceleration are the most useful quantities
for classifying them numerically. In Figure 6D, we show the
center-of-mass trajectory of a rotating wave, with the figures
below showing its velocity and acceleration. Isolated rotating
waves have constant positive total acceleration and total velocity,
i.e., atot > 0 and vtot > 0. In Figure 6E, we repeat this for
traveling waves, which have constant velocity in the direction of
propagation. Hence, they have atot = 0 and vtot > 0.

We now focus on the region near the boundary separating
rotating waves and traveling waves to explore their stability
and the nature of the transition between these two regimes.
Figures 6D,E show a snapshot of the neural field at two values
of g(±) around the transition region. Figures 6F–I show the
corresponding wave velocity and acceleration. We see that after
a transient period approximately 50 ms, both waves stabilize with
vtot > 0 and atot > 0 for the rotating wave and vtot > 0
and atot = 0 for the traveling wave. In Figure 7A, we show
the trajectories of the waves shown in Figures 6D,E on a phase
diagram with vtot and atot on the x and y axes, respectively.
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FIGURE 6 | (A) Characterization of the parameter space based on the dominant type of pattern seen in numeric simulations. (B–E) Snapshot images of the neural

field at various parameter values. Center of mass trajectories (xt, yt ) for isolated waves are overlaid in (D,E). (F,G) Velocity time series vx , vy , vtot of the trajectories of

individual waves as plotted in (D–E), found by differentiating xt, yt numerically. (H,I) Total acceleration time series atot found by differentiating vtot numerically. The total

velocity and acceleration of individual waves are both constant and positive for rotating waves while stable traveling waves have vtot > 0 and atot = 0.

To better explore the dynamical nature of the wave behavior,
we initialize the neural field with a traveling wave and apply
a single perturbation in the form of uniform Gaussian noise.
From their initial state, we see a smooth transition toward
their final state with several oscillations before they settle into a
steady state.

At the critical point of transition between the two regimes,
both types of waves coexist as bistable equilibria; rotating waves
and traveling waves can be observed and a sufficiently strong

perturbation can induce a transition from one to the other.
To demonstrate this, we apply continuous perturbations to the
traveling waves at each integration step, represented as an added
noise term µ to Equation (4):

∂f

∂t
= − f + (1− f − h)H(u− κ)+ µ

∂h

∂t
= − ph+ f − µ

Frontiers in Computational Neuroscience | www.frontiersin.org 8 July 2019 | Volume 13 | Article 50

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Naoumenko and Gong Complex Dynamics of Propagating Waves

FIGURE 7 | (A) Velocity-acceleration phase portrait showing the trajectories of traveling waves after a single perturbation. The different paths correspond to different

levels of inhibition near the critical point of transition between region I and II as shown in Figure 6A. Stationary bumps are represented by a single point at the origin;

rotating waves have non-zero acceleration, hence they lie in the positive region of the y-axis; stable traveling waves have zero acceleration and lie along the x-axis.

(B–D) Phase portraits of traveling waves with continuous noisy inputs. The green shaded regions indicate the location of stable solutions in the absence of noise.

(B) At parameter values lying in region I (as outlined in Figure 6), the trajectory of waves in phase space oscillates around the region corresponding to stable rotating

waves (shown in green). (C) At parameter values in between region I and II, the trajectory of waves in phase space oscillates between the regions corresponding to

stable traveling waves and rotating waves. (D) At parameter values in region II, the trajectory only oscillates around the region corresponding to stable traveling waves.

FIGURE 8 | Average time spent in either traveling or rotating wave state in

terms of the strength of noise inputs. The initial state was a traveling wave.

When noise is weak (σξ < 0.026), no transitions occur. As noise is increased

(σξ > 0.026), traveling waves transition to rotating waves, which have a longer

lifetime. When noise is very strong (σξ > 0.06), the waves do not settle into

single configuration and their trajectories explore the full state space.

Where µ = f × ξ , and ξ is Gaussian white noise with zero mean
and variance σ 2

ξ . Modeling noise in this way allows us to ignore
the effect of noise on other aspects of the neural field, such as
modifying the radius of bumps or spontaneously generating new
patterns in other regions of the field.

Figures 7B–D show the resulting trajectories in phase space
for the same parameter values as in Figure 7A as well as an
additional parameter value that lies between these. For the noise
term, we use σξ = 0.2. The region of phase space corresponding

to the stable value in the absence of noise highlighted in green.
For parameter values drawn from the “Rotating waves” region
of Figure 6A, the trajectory oscillates around the equilibrium
corresponding to a stable rotating wave (Figure 7B). For a wave
in the “Traveling Wave” region of parameter space (Figure 7D),
it oscillates about the equilibria for traveling waves. If we adjust
the parameters to lie in between these two regimes (Figure 7C),
then the trajectory in phase space passes through both equilibria,
demonstrating the bistability of the system.

The probability of a transition occurring is dependent on σξ ,
as shown in Figure 8, which shows the average lifetime of each
state when the neural field is simulated for 60 ms for the same
parameter value as Figure 7C. At low levels of σξ , traveling waves
do not transition to rotating waves, but as σξ is increased above
0.26, transitions happen with increasing frequency, although
rotating waves appear more often than traveling waves.

3.5. Characterization of Collective
Dynamics of Interacting Patterns
In addition to the behavior of isolated patterns, we study the
impact of varying excitatory and inhibitory strength on the
collective behavior of multiple interacting patterns and quantify
these differences using the statistical properties of their motion.
In order to reduce the variance that may arise due to the spatial
discretization, field size, and periodic boundary conditions, we fix
the size of the neural field and the size of patterns while varying
the excitation and inhibition. As the value g± influences the size
of the patterns, as shown earlier in Figure 3A, we simulate only
a subset of all the possible g± values. This subset was found by
calculating the upper bump radius for the g± values obtained
using the Monte Carlo method using Equation (7) and then
filtering only those whose bump radius corresponds to around
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FIGURE 9 | Different types of collective behavior emerge when the excitatory/inhibitory strength is varied. (A) Dots indicate parameter values used for simulations of

collective activity. Values were chosen so that the size of patterns remained relatively constant (as measured by the radius of bump solutions given by Equation 7).

(B–G) Snapshots of neural field activity at various parameter values show the change from global waves and Turing patterns (B) to interacting bumps of irregular sizes

(C), bumps of similar size aligned to a grid (D), interacting traveling waves (E) and isolated rotating waves (F,G). (H–L) Velocity time series vx of a single wave along a

fixed direction shows the changing characteristics of wave movement as parameter values are changed, from irregular movement driven by frequent collisions

(H–J) to regular oscillations (F,G). (M–Q) Periodogram (Fourier transform) of the time series vx shows a transition from a relatively flat power spectrum (M) to one with

a clear peak corresponding to the frequency of the rotating waves’ oscillation (K,L).

(3.00±0.01) mm, consistent with the size of experimentally
observed waves in the cortex (Han et al., 2008). These values lie
near a curved region in the parameter space, shown in Figure 9.
As the size of rotating and traveling waves is very close to that of
radial bumps, this ensures that the pattern size remains constant
over the range of parameters.

For the initial state of the simulation, we fix the number of
patterns present. If there are too few patterns, they interact rarely
and the resulting behavior is similar to that of isolated patterns.
There is also a maximum number of patterns that can exist in

the neural field at the same time, which depends on the size of
the patterns and the strength of the long-range inhibition. For
patterns of length 6 mm with a square grid length of 60 mm, this
limit is in the range of 9–14 patterns. At this limit, the patterns
will be spatially confined to a grid due to repulsive interactions
arising from long-range inhibition. In order to observe and
quantify the changing nature of the interactions between the
patterns, we simulate a constant, fixed amount; we chose 7 so
that interactions between patterns would occur regularly but they
would initially not be spatially confined to a grid.
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We initialize the patterns as traveling waves with random
orientations and positions. After simulating for sufficiently long
time to eliminate transient activity (4s), we inspect the activity
visually and calculate their trajectories through their center-of-
mass coordinates. Figures 9C–G shows snapshots of the neural
field and the motion of the patterns as g(±) is varied. Shown in
Figures 9F,G is the behavior at high levels of inhibition, with
the spatiotemporal patterns following periodic, isolated rotating
trajectories. As inhibition is weakened, the trajectories become
more varied and dynamic due to increased interactions between
the patterns and the increasing stability of traveling waves
(Figure 9E). As inhibition is weakened further, past the transition
point where traveling waves become unstable (Figures 9C,D),
the waves multiply and divide, filling the neural field and

becoming confined to isolated positions within a hexagonal grid.
As inhibition is weakened further, near the region where global
waves dominate (Figure 9C), the patterns begin to show much
more diversity in their size and appearance and are no longer
confined to a grid. In the region where global waves dominate
(Figure 9B), we no longer see isolated bump-like patterns but
long, slowly-moving wave fronts.

To quantify these differences, we use the trajectories of the
waves over time for time series analysis. We calculate the center-
of-mass coordinates and velocities as previously described using
Equation (14). These are shown in Figures 9H–L. We apply a
Hanning window to the velocity data then take a Discrete Fourier
Transform (DFT), after a sufficient transient period (3s). We
calculate the N normalized coefficients of the power spectrum Si

FIGURE 10 | (A) Spectral degrees of freedom parameter vs. the inhibitory strength for the motion of waves in Figure 9. This parameter quantifies the uniformity of the

spectral distribution and shows that the distribution is uniform at low levels of inhibition and non-uniform when inhibition is high, reflecting the transition from random

motion to periodic oscillation. (B) Approximate Entropy vs. the inhibitory strength. This quantifies the degree of irregularity in the motion of the waves which peaks for

unstable waves, around the point of transition between similarly-shaped waves aligned to a grid (Figure 9D) and waves of varying size (Figure 9C). (C) Detrended

fluctuation analysis of the time series of wave velocity for two parameter values, the exponent α is represented by the gradient of the trend line. A value of 1.5

corresponds to a Brownian motion process (random walk), while a value of 1 corresponds to 1/f noise; a value of 1/2 is associated with white noise. (D) DFA

exponents α of the wave velocity for various parameter values. For most parameter values, the DFA lies in the range 1.5–2, consistent with a non-stationary process

that can be modeled as fractional Brownian motion. At decreasing levels of inhibition, the motion becomes increasingly random, reflect by the DFA exponent

decreasing and reaching a minimum of 0.5.
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and use it to produce the periodograms in Figures 9M–Q. The
regular oscillations seen in the states in Figures 9F,G are reflected
in the peak in their respective periodograms around 9 Hz. This
disappears as inhibition is reduced and themotion becomesmore

chaotic, as shown in Figure 9E. The other components of the
spectrum, however, remain fairly consistent until the onset of
chaotic behavior as seen in Figure 9C. For global wave activity
as in Figure 9B, we did not calculate the wave velocity as the

FIGURE 11 | Spatiotemporal spectra for two parameter values alongside a snapshot of the neural field activity. (A,B) Unstable waves confined to grid. Most of the

spectral power is concentrated at lower frequencies and falls off at higher frequencies. (C,D) Stable traveling waves. Spectral power is also concentrated at lower

frequencies, however, the power drops off rapidly once it crosses a line of constant f/ω, which is consistent with the maximal velocity of the waves.

FIGURE 12 | (A) Total spectral power vs. velocity, expressed as the ratio of temporal and spatial frequency. (B) The peak value of velocity-power curves as in (A) vs.

the parameter g(−). The color scale represents the velocity value of the peak, which increases near the transition between stable and unstable traveling waves.
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large spatial extent of the wave fronts made the center of mass
coordinates a less useful metric for quantifying the wave behavior.
To quantify the changes in spectral profile and the velocity time
series, we use three different statistics: The degrees of freedom
(DoF) of the power spectrum, the approximate entropy (ApEn)
of the wave velocity time series, and the Detrended Fluctuation
Analysis (DFA) exponent of the wave velocity. The DoF statistic
measures the uniformity of the power spectrum (Vaillancourt
and Newell, 2003) and is defined as:

DoF =
N

(

∑N
i Si

)2

∑N
i S2i

(15)

For a uniform power spectrum (white noise), the DoF is equal
to 1, whereas for a delta-function shaped power spectrum, it
approaches 0. The DoF statistic increases as inhibition is reduced
(Figure 10A), indicating that the power spectrum of the motion
of the waves becomes more uniform as the periodic components
associated with the motion of isolated rotating waves disappear
and the motion becomes more random.

The ApEn quantifies the amount of regularity and
unpredictability of the fluctuations in a time series. The ApEn
returns a value between 0 and 2 which reflects the predictability
of future values of a time series based on previous values. To
calculate ApEn, we followed the method outlined in Pincus
(1991). As shown in Figure 10B, the Approximate Entropy peaks
around the transition between similarly-shaped waves aligned to
a grid and waves of varying size, indicating that the motion at
these parameter values is the most chaotic.

We next perform a Detrended Fluctuation Analysis (DFA)
on the time series vx(tk) to analyze the scale-free decay of
temporal (auto)correlations, also known as long-range temporal
correlations (LRTC). The DFAmeasures the power-law scaling of
the root-mean-square fluctuation of the integrated and linearly
detrended signals as a function of time window size. It is
calculated as follows (Chen et al., 2002):

1. The velocity time series vx(tk) is integrated and the mean

subtracted using y(k) =
∑k

i=1[vx(ti)− 〈vx(ti)〉].
2. The integrated signal is divided into boxes of equal length n.
3. In each box we fit a linear trend to the time series which we

denoted yn(k).
4. The integrated signal is detrended by subtracting the local

trend yn.
5. For a given box size n, the root-mean-square (rms) fluctuation

for this signal is calculated:

FDFA(n) =

√

√

√

√

1

Nmax

Nmax
∑

k=1

[y(k)− yn(k)]2. (16)

6. The above calculation is repeated for a broad range of n to give
a relationship between FDFA(n) and n.

7. A power-law exponent α is fitted to the fluctuation
function FDFA(n) n

α .

The DFA exponent α is the slope of the fluctuation function
and can be related to the power-law scaling exponent of the

autocorrelation function. For a particular time series, a DFA
exponent of 0.5 indicates a signal that is without autocorrelations
(white noise), whereas a DFA exponent between 0.5 and
1.0 indicates the presence of scale-free temporal correlations
(autocorrelations) (Linkenkaer-Hansen et al., 2001; Chen et al.,
2002; Gao et al., 2006). A value of 1 is associated with 1/f noise
(pink noise); a value above 1 is associated with an unbounded,
non-stationary signal, with a value near 1.5 associated with
Brownian noise. We follow the method outlined in Linkenkaer-
Hansen et al. (2001) to calculate the DFA exponents. The results
for two distinct states - rotating waves and traveling waves - are
presented in Figure 10C to highlight how this metric quantifies
the changing behavior of the neural field.

We find that most states where characterized by an
exponent slightly above 1.5, however this decreased suddenly for
unstable states (Figure 10D), indicating that the motion becomes
increasingly random and uncorrelated. The decrease in α as
inhibition decreases can be explained by considering the impact
of decreasing inhibition on the stability of patterns. This decrease
in stability allows for a much wider range of accessible states
and interactions. At any one point in time tk, a diverse range of
pattern shapes and sizes can be seen, as seen in Figure 6E.

3.6. Characterization of Long-Range
Spatiotemporal Correlations Using
Spectral Analysis
We then study the spatiotemporal spectrum of the neural field
activity. To do so, we simulate the neural field for 4 s (3,000 time
steps) in order to eliminate transient states and apply a Discrete
Fourier Transform (DFT) to the final portion of the neural field
output using the FFTW library (Frigo and Johnson, 2005). As
before, our choice of initial condition is 7 randomly distributed
traveling waves. This configuration allows us to observe the
collective dynamics of patterns in the regime where traveling
waves interact regularly but still have some freedom to move (i.e.,
not confined to a grid due to their repulsive interactions). As
we have periodic boundary conditions in the spatial dimensions,
we only apply a Hann (Hanning) window function along the
temporal dimension, as outlined in Oppenheim et al. (1999). We
take the absolute value of the complex output and, assuming
rotational invariance, we average the spatial dimensions radially
similar to Dong and Atick (1995). As a result, the final spectrum
has one spatial and one temporal dimension.

We present the spectrum for two parameter values in
Figures 11A,C. Alongside each spectrum is a snapshot image of
the corresponding neural field (Figures 11B,D). The parameter
values chosen lie on either side of the transition from stable
to unstable traveling waves. In both spectra, the power peaks
at the origin and is concentrated along lines of constant
spatial/temporal frequency ratios, i.e., ω

f
. This can be explained

by considering the Fourier transform of a single object moving
with velocity v. As demonstrated by Watson and Ahumada
(1985), the resulting spectrum is a distortion of the power
spectrum of a stationary object which lies along a line
described by:

vf + ω = 0. (17)
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For multiple objects moving in two dimensions with a range
of velocities, the resulting spectrum reflects the distribution of
velocities among the objects (Dong and Atick, 1995). Following
the approach of Rivait and Langer (2007), we explore this by
calculating the total power along lines of constant velocity i.e.,
v = ω

f
. That is, for a range of velocity values v and temporal

frequenciesω, we linearly interpolate the power spectrum Ŝ above
and below the line f = ω

v and sum the resulting values:

Ŝtot =
∑

ω

Ŝ(v,ω) (18)

We show the result in Figure 12A and observe that for both
parameter values, the power peaks at a particular value of
v and decays away from this value. The peak value and
the corresponding v value varies between different parameter
values, reflecting the changing distribution of velocities due to
interactions between patterns and their maximum velocity. We
characterize this by simulating the neural field for the same range
of parameter values as in the previous section and calculating
their spectra. In Figure 12B, we show the peak power values as
a function of the parameter g(−), with the color scale showing the
corresponding velocity. We observe that the power and velocity
peaks near the previously identified transition point between
stable and unstable traveling waves. This reflects that near this
point, waves in the neural field are most mobile; their velocity is
maximized and they are able to propagate with fewer interactions
with other waves than when the neural field is filled with patterns.

4. DISCUSSION

In this study we have investigated the neural mechanism of
the formation of complex propagating wave dynamics in a 2D
neural field model. We have found that, as excitation increases
or inhibition decreases, the dominant form of activity transitions
from stationary bumps to rotating waves, to traveling waves, to
unstable waves, and finally to global waves. These transitions
can be used to define distinct regions in the parameter space.
Using linear stability analysis, we verified these results by showing
that an increase in excitation and a decrease in inhibition both
resulted in the system moving further away from the region
where stationary bumps are stable. At the transition between
these regions, we have observed bi-stability of different kinds of
spatio-temporal patterns: under isolated conditions, each pattern
is stable, but perturbations can induce transitions between the
states. Furthermore, continuous switching between stable states
is possible in the presence of constant external noise.

This provides insight into the underlying mechanisms of
the behavior of spatiotemporal patterns seen in experiments,
such as switching between different types of activity patterns
in local cortical circuits. This type of switching has been
observed between spiral, plane, ring and irregular waves in
disinhibited mammalian cortex (Huang et al., 2004), as well
as a range of source/sink, spiral, saddle, and other patterns in
primate and mouse cortex (Townsend et al., 2015). The exact
mechanisms behind these changes are still unclear, however our
results show that two possible factors are the effects of external
noise and short-term modulations in the level of excitation or

inhibition which could shift the phase landscape and induce a
transition between states. In our neural field model, the level
of excitation and inhibition is given by the weight function
(Equation 3), which expresses the synaptic inputs to a point
in the field based on activity in the rest of the field. This is
affected by the synaptic connectivity, as well as the action of
neurotransmitters, external inputs, and neural “noise.” There are
several mechanisms by which this could be modified, including
synaptic plasticity (Sussillo and Abbott, 2009; Vogels et al., 2012),
the influence of endogenous substances and drugs (Behrends
and ten Bruggencate, 2017), and changes in external inputs due
to shifts in behavioral states (Taub et al., 2013; Zhou et al.,
2014). These various mechanisms operate across a range of
timescales that vary over several orders of magnitude, which
could help account for the diverse range of spatiotemporal
phenomena, such as the stable, rhythmic waves seen in human
primary motor cortex (Takahashi et al., 2011). Future studies
could experimentally verify these mechanisms and compare to
the output of our model, similar to the work of Golomb and
Amitai (1997) and Richardson et al. (2005).

In addition to single patterns, we have also studied
the collective dynamics of multiple interacting patterns and
the influence of the level of excitation/inhibition. Analyzing
the statistical properties of the collective motion reveals a
range of collective propagation dynamics, including interacting
propagating waves with Brownian motion, random motion
within patterns spatially confined to a grid, irregular patterns
with unstable dynamics and slowly moving global waves. The
quality of the motion, as revealed by statistical methods such
as DFA, is influenced by the level of excitation and inhibition
and shows dramatic changes at particular transitions in state
space, such as when traveling waves become unstable. Long-
range spatiotemporal correlations are also revealed by the spatial
and temporal power spectrum of the neural field activity. These
spatiotemporal correlations arise from the unique distribution of
traveling waves in space and their motion within the neural field.
Consistent with our analysis using other methods, we observe
a shift in the spectrum as the activity changes due to changing
levels of excitation and inhibition. This is linked to a change
in the distribution of velocities among patterns in the neural
field. Our results thus advance existing studies of neural fields
which have mainly focused on single waves or multiple waves
with regular dynamics (Kilpatrick and Bressloff, 2010; Bressloff
and Kilpatrick, 2011; Meijer and Coombes, 2014).

The presence of balanced excitation and inhibition in cortical
activity has been well established experimentally in vivo (Haider,
2006; Okun and Lampl, 2008; Xue et al., 2014) and it is
believed to be essential for normal brain function. Our results
show that changing levels of excitation and inhibition could
be a mechanism for regulating the dynamics of spatiotemporal
activity in neural systems.
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