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Abstract

Background: Cluster randomized trials (CRTs) are increasingly used to study the efficacy

of interventions targeted at the population level. Formulae exist to calculate sample sizes

for CRTs, but they assume that the domain of the outcomes being considered covers the

full range of values of the considered distribution. This assumption is frequently incor-

rect in epidemiological trials in which counts of infection episodes are right-truncated

due to practical constraints on the number of times a person can be tested.

Methods: Motivated by a malaria vector control trial with right-truncated Poisson-distrib-

uted outcomes, we investigated the effect of right-truncation on power using Monte

Carlo simulations.

Results: The results demonstrate that the adverse impact of right-truncation is directly

proportional to the magnitude of the event rate, k, with calculations of power being over-

estimated in instances where right-truncation was not accounted for. The severity of the

adverse impact of right-truncation on power was more pronounced when the number of

clusters was �30 but decreased the further the right-truncation point was from zero.

Conclusions: Potential right-truncation should always be accounted for in the calculation

of sample size requirements at the study design stage.
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Background

Cluster randomized trials (CRTs) are trials in which ran-

domization of the intervention under study is applied to

groups. These groups are referred to as clusters and may

consist of individuals with shared characteristics.1 Thus,

outcomes within a cluster are expected to be correlated.2

CRTs are frequently used in epidemiology to the evaluate

the efficacy of interventions targeted at the population

level (see for example Hayes et al.1). One specific area of

application of CRTs within epidemiology is the control of

vector-borne diseases (VBD)—in which infection passes be-

tween vectors and human hosts. For such diseases, inter-

ventions frequently target the vector (through, for

example, the application of insecticides) whereas the out-

come of interest is infection or disease in the human host.

Since such tools are implemented at the level of a cluster,

their efficacy can only be evaluated through CRTs.3,4

The design of CRTs requires prior calculation of sample

sizes that would be sufficient to determine the efficacy of

the vector control intervention (often referred to as ‘power

calculations’). For CRTs, the required sample size is a func-

tion of the number of clusters, the corresponding cluster

sizes and the between-cluster variance for which the de-

sired power is achieved.2 The between-cluster variance

contributes to the computation of either the intracluster

correlation (ICC) or the coefficient of variation (CV) which

quantify the magnitude of similarity (correlation) in the

outcome within clusters.5 For continuous and binary out-

comes, the ICC (typically denoted by q) is defined as the

ratio of the between-cluster variance to the total variance

(both within and between the clusters6,7). On the other

hand, the CV, denoted by k, is defined as the ratio of the

between-cluster standard deviation to the parameter of in-

terest (e.g. mean, proportion or rate) within each cluster.8

Therefore, the between-cluster variance is typically

accounted for by incorporating q or k in the closed-form

sample size calculation formulae for CRT designs.5,8 It is

only in the case of binary outcomes that the CV may be

easily converted to the ICC (and vice versa).7,9 Generally,

an increase in q or k leads to a corresponding increase in

the number of clusters and/or cluster sizes required to

achieve the desired power, as the corresponding increase in

between-cluster variance results in decreased precision in

the estimates of parameters of interest.8,10

The closed-form formulae for calculating sample sizes

for the desired power for CRTs vary for different types of

outcomes (e.g. normal, binary, time to event, Poisson etc.)

and study designs (such as cross-over, stepped-wedge,

matched designs etc.). These formulae assume that the do-

main of the outcomes being considered (whether continu-

ous, binary, ordinal, count etc.) covers the full range of

values of the considered distribution as defined by the pop-

ulation parameters. However, in many epidemiological tri-

als where the outcome under consideration is the number

of times a host tests positive for an infection over a speci-

fied period, there are practical limits to the number of

times a person may be tested for the disease, introducing

truncation into this distribution. Thus, the computation

of sample size requirements from existing formulae in

such instances may result in incorrect estimates of

power5,8,11–13 and inconsistent parameter estimates from

subsequent statistical analysis of the trial data.14 Using a

motivating example from the design of a new vector-based

intervention for malaria, we investigate the consequences

of truncation on the calculations of statistical power.

Methods

Motivating example—vector control trials for

malaria

Vector control tools (VCTs) are an integral part of control

for malaria. We consider an application to a new tool cur-

rently under consideration—attractive targeted sugar baits

(ATSB)15,16—which kill male and female mosquitoes after

feeding on synthetic baits. In doing so, ATSBs reduce the

overall mosquito population and additionally reduce the

probability that mosquitoes survive sufficiently long to

transmit infection.17–19 This results in a reduction in the

total and infectious mosquito population (entomological

endpoints) which consequently is expected to result in a

Key Messages

• Right-truncation attenuates (statistical) power.

• This attenuation is more pronounced when the numbers of clusters is less than or equal to 30 and when the point of

truncation is closer to lower bound of the Poisson distribution.

• Closed-form formulae for sample size requirements for cluster randomized trials (CRTs) are not appropriate for right-

truncated Poisson-distributed outcomes.

• Sample size calculations for CRTs with right-truncated Poisson-distributed outcomes should include a correction to

the probability mass function (PMF) of the Poisson distribution.
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reduction in malaria prevalence and clinical incidence in

humans (epidemiological endpoints).

The efficacy of new VCTs for malaria is generally

assessed in CRTs with randomization conducted at the vil-

lage level. However, epidemiological endpoints are gener-

ally not assessed for the whole village, but rather within a

nested cohort. There are several reasons for this. First, chil-

dren are at higher risk of disease and detectable infection

than adults who develop partial immunity with continued

exposure, hence power can be improved by focusing on

children.20 Second, it is not ethically acceptable to detect

clinical malaria in a trial participant without providing

treatment—which in high transmission areas could result

in a large number of villagers receiving treatment and

therefore modifying onward transmission and thus biasing

the trial. Third, the cost of follow-up across the whole vil-

lage can become significant, and thus it is often more con-

venient and cost-effective to recruit a smaller cohort.

A typical design for a vector control trial is illustrated in

Figure 1. A subset of children in the intervention and con-

trol villages are recruited at the beginning of the trial and

their infections are cleared. They are then followed using

active case detection (either for clinical disease or presence

of infection), typically at 1-monthly intervals. The epidemi-

ological outcome is therefore the count of monthly malaria

episodes over the trial period. For most trials, children are

recruited in a single cohort and followed up over the entire

period of the trial (1 year). However, to overcome cohort

fatigue and reduce drop-out, an alternative design pro-

posed is to recruit multiple cohorts of children sequentially

three times, with each cohort followed for 4 months (a ter-

cile). The rationale for recruiting multiple cohorts is that a

single cohort followed up over a long period of time may

be characterized by high drop-out compared with multiple

cohorts followed up over a shorter period (tercile).

Altogether, the terciles comprise a 1-year trial period.

In areas of moderate to high transmission typical of ma-

laria in Africa, children experience on average one to three

episodes of clinical malaria a year, with several experiencing

five or more and some experiencing more than 10.21

However, the design of the trial can act to truncate the up-

per values of this distribution. In our example above, we

can theoretically observe a maximum of 12 malaria episodes

per child during a 1-year trial because active detection

occurs monthly. In practice, the detected number of epi-

sodes is likely to be fewer since: (i) malaria is often seasonal

and so episodes will be concentrated within a 4–6 month pe-

riod; and (ii) following a detected malaria episode (which

may not have been detected in the absence of the study),

treatment will provide a period of protection against re-

infection of up to 25 days.22,23 Thus, under this design it is

reasonable to expect to detect a maximum of six malaria

episodes per child per year in the first setting and a maxi-

mum of two in every tercile in the second setting.21

A model for cluster-randomized trial outcomes

We let Y denote the count of malaria episodes in a year

with Y � Poisson kð Þ. Let the event rate with a log-link be

denoted by:

ln kð Þ ¼ bo þ b1xþ ci (1)

where bo and b1 are the fixed effects representing the log

rate of the control and the intervention effect, respectively,

x denotes the allocation of the village to either control

(x¼ 0) or intervention (x¼ 1) and ci � Nð0; r 2
c Þ is a ran-

dom effect that models cluster-specific predictions for each

of the clusters i¼1, 2 . . . nc
24 where the term r 2

c denotes

the between cluster-variance used to compute ICC. Unlike

for continuous and binary outcomes, the ICC for count out-

comes is undefined.25 However, for count outcomes with

equal follow-up time,10 Stryhn et al.26 developed an ap-

proximate method of computing the ICC based on model

linearization as shown in equation (2). The approximation

makes use of the term (bo þ b1xÞ which is the linear pre-

dictor from the model in equation (1) as well as r 2
c and k

which represent the between-cluster variance and event

rate, respectively.

ICC � r 2
c � e�2ðboþ b1xÞ

ðfr 2
c � e�2ðboþ b1xÞg þ kÞ (2)

Truncated Poisson-distributed outcomes

The probability mass function (PMF) for the (untruncated)

Poisson distribution is shown in equation (3) where Y

denotes the random variable (the count of malaria episodes

per child), k denotes the mean count of malaria episodes

and y denotes the realization of the random variable which

can take any positive integer (including zero) and is un-

bounded from above.

P Y ¼ y : kð Þ ¼ e�kky

y!
; y ¼ 0; 1; 2; . . . (3)

Suppose that realizations of the Poisson distribution are

right-truncated at a value denoted by T such that

0�Y�T. The PMF then takes the form shown in equation

(4), which is equivalent to the product of an untruncated

Poisson PMF divided by the cumulative density function

(CDF) of the right-truncated Poisson distribution.27–29

Note that when T ¼ 1, this implies lack of truncation and

thus equation (2) is recovered.
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P Y ¼ y : k : y � Tð Þ ¼ e�kky

y!

XT

z¼0

e�kkz

z!

( )�1

(4)

Estimating power for right-truncated Poisson-dis-

tributed outcomes

For event rate data, formulae exist in the literature for the

estimation of power for CRTs.5,11 These formulae assume

that the count outcome is completely defined by the stan-

dard Poisson distribution and therefore do not account

for (right-) truncation as shown in equation (4). In instan-

ces of right-truncation, these closed-form sample size for-

mulae would not be appropriate to use. Therefore, as

recommended by Landau et al.30 in such instances where

closed-form formulae are inapplicable, a simulation-

based approach to computing power was undertaken.

The impact of the degree of truncation was evaluated in

three broad settings. First, the number of clusters and the

corresponding cluster sizes that would yield �80% to

85% statistical power given a specified k and r 2
c were de-

termined under the assumption that the count events were

not right-truncated (T ¼ 1). Second, an extreme case of

truncation was simulated by assuming T ¼ 1 whereby

only a maximum of one event (incidence or presence of

clinical disease) would be observed during the trial pe-

riod. Notice that this particular situation is equivalent to

the binary outcome in which the interest is in the presence

Figure 1. Conceptual design for the attractive targeted sugar baits (ATSB) trial. The treatment clusters have ATSB feeding stations outside the houses

(denoted by the green circle) in addition to insecticide-treated nets (ITNs) inside each house. The control clusters have only ITNs in the houses, the standard

of care recommended by the World Health Organization (WHO). Therefore, the effect size is the efficacy of the ATSB detectable over and above that of ITNs.
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of infection or clinical disease (Yes¼ 1, No¼ 0). This is

statistically important because for this special case of

right-truncation, formulae for statistical power5,8 and sta-

tistical models such as generalized estimating equations

(GEEs)31 and generalised linear mixed models

(GLMMs)32 account for binary nature of the outcome

and thus this type of right-truncation. However, for other

cases of right-truncated event outcomes (where T>1), the

impact of truncation on power is seldom considered or

dealt with. This formed the third setting of right-

truncation considered. Therefore, the PMF in equation

(3) for the three settings considered had T¼1, T¼ 1 and

T¼ t (where t was finite but greater than one), respec-

tively. The annual mean number of malaria episodes, k

=(1.25, 2.7), and ICC [computed from

r 2
c ð0:05; 0:1; 0:2; 0:3; 0:4Þ; see equation (2)] for the

simulations were all within the range of values informed

by past malaria epidemiological studies based on data de-

rived directly or indirectly from sub-Saharan Africa.33–37

Specifically, for annual mean number of malaria epi-

sodes of 1.25 and 2.7, the selected cohort of children were

followed up over 12 months with right-truncations consid-

ered at T¼1, 1, 3 and 6. The between-cluster variances

were pre-specified at r 2
c ð0:05; 0:1; 0:2; 0:3; 0:4Þ. In

addition, we considered the effect of cohort switching (ev-

ery 4 months) on power. For this scenario we assumed a

mean of 2.7 episodes per year to explore a region with suffi-

cient power, and considered truncation levels for each 4-

month period assuming year-round transmission (T¼1; 1

and 2, respectively). This in effect introduced a new cohort

in every tercile of the study (see Figure 1) which was

accounted for by introducing an offset term equal to log (4/

12 years) in equation (1). In all of the simulations, balanced

randomization was conducted (i.e. equal allocation to treat-

ment and control arms). For each of the simulated datasets

based on the PMF [equation (3) or (4) as appropriate based

on pre-specified values of T], the empirical between-cluster

variances were derived from the model fitted (equation (1).

These empirical between-cluster variances were tracked

across all the datasets (to ensure that the simulations were

in keeping with the pre-specified cluster variances) and

were also used to compute the empirical ICC as defined by

equation (2). When T ¼ 1, the Poisson outcomes were

simulated using the R software function rpois and were

analysed using the functions glmer from the R packages

lme438 and lmerTest.39 For other values of T (presence of

right-truncation), the Poisson outcomes were simulated us-

ing the R function rtrunc from the R package truncdist40,41

and were analysed using the R function gnlmm from the R

package nlmixr.42 The simulations were also replicated in

SAS using PROC NLMIXED.43,44 Hypothesis testing was

conducted (H1: b1 6¼ 0 where b1 < 0Þ with statistical

power calculated as the proportion of 1000 samples in

which the effect of intervention was detected. The SAS and

R code for the simulations are provided as Supplementary

files, available as Supplementary data at IJE online.

Results

Impact of truncation in a cluster randomized trial

with a single cohort

Table 1 summarizes the simulated impact of right-truncation

on statistical power for the setting where a single cohort was

recruited for the entire length of the trial (12 months). The

second and third column of the table show the numbers of

clusters and corresponding cluster sizes required to achieve a

power of approximately 80% when it is assumed that right-

truncation is absent (see column where T ¼ 1). Generally,

for any combination of k and r 2
c , the statistical power was

highest when no right-truncation was present and lowest

when right-truncation engendered a binary outcome (T¼ 1),

with the widest gap between these estimates observed when

k ¼ 2.7. For other values of T, the discrepancy in the esti-

mates of power from when T ¼ 1 was large when the num-

ber of clusters considered was �30, with the largest

discrepancy observed for k ¼2.7. The least discrepancy in

power estimated between the untruncated setting and right-

truncated setting was observed for T¼ 6. As expected, an in-

crease in ICC led to an increase in the sample size required

to maintain power at 80%.

Impact of truncation in a cluster randomized trial

with multiple cohorts

Table 2 shows the results for k¼ 2.7 where three cohorts

were recruited over the trial period. Each cohort was fol-

lowed up over a period of 4 months.

Compared with the setting where k¼ 2.7 and only a sin-

gle cohort is followed up over the trial period, the recruit-

ment of multiple cohorts leads to a slight a loss in

statistical power. For example, for r 2
c ¼ 0:05, T¼ 2 per

tercile which is equivalent to T¼ 6 over the entire trial pe-

riod had power estimated at 70.8% and 79.8%, respec-

tively. However, the corresponding overall sample sizes

involved over the trial period were 25*10*3¼ 750 and

25*20¼ 250, respectively. As may be seen from the fig-

ures, the recruitment of multiple cohorts may result in a

substantial increase in the cost of the trial with no corre-

sponding gain in power compared with when a single co-

hort is recruited. However, in instances where the rate of

drop-out is extremely high after 4 months of follow-up due

to cohort fatigue, the recruitment of multiple cohorts

would turn out to be more cost-effective, as the setting
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with a single cohort recruited would result in massive loss

of power over the 12 months.

Discussion

Cluster randomized trials are costly but are a critical part

of the evidence-gathering framework that is necessary for

effective decision making for VCTs.3 For them to be cost-

effective, they need to be well-designed with appropriate

methodology. The estimation of power is critical to ensure

that CRTs are of sufficient size to detect the effect of the

intervention if it exists. Underpowered CRTs are unlikely

to determine the efficacy of VCTs which, as well as wast-

ing the resources committed, could additionally result in

effective interventions not being identified. Power calcula-

tions for VCTs are therefore recommended irrespective of

whether the endpoint is epidemiological or/ and entomo-

logical.3 Guidelines for the design of robust CRTs

including power calculations formulae are well-docu-

mented in the literature.1,5,8,10 For the specific case of

Table 1. Summary of results highlighting the impact of right-truncation (denoted by T¼ 6, 3 and 1) on the calculations of statisti-

cal power over a range of settings where statistical power was initially between 80% and 85% when no truncation was present

(T¼ 1) for a single cohort recruited over the trial period. The pre-specified between-cluster variance, r 2
c ; is the value of the be-

tween-cluster variance inputted for simulation of the trial data, and the average empirical between-cluster variance is the mean

between-cluster variance estimated from the simulated datasets for each combination of k and r 2
c . The average empirical ICC

is the mean intracluster correlation computed as described by Stryhn et al.26 from the simulated datasets

Statistical power (%)

Number

of clusters

Cluster

sizes

Pre-specified

between-cluster

variance (r2
c )

Average

empirical

between-cluster

variance

Average

empirical

ICC

T ¼1 T¼6 T¼3 T¼1

Annual event rate (k) ¼ 1.25 30 15 0.050 0.043 0.038 83.4 80.6 73.4 43.3

30 45 0.100 0.091 0.078 80.0 77.7 75.7 64.2

60 35 0.200 0.191 0.150 82.7 82.9 82.2 69.4

90 40 0.300 0.292 0.210 83.5 85.2 83.4 76.6

110 40 0.400 0.389 0.260 82.6 80.2 79.8 75.8

Annual event rate(k) ¼ 2.7 25 10 0.050 0.041 0.074 82.5 79.8 56.9 24.8

30 30 0.100 0.092 0.153 82.4 79.6 73.2 49.6

55 20 0.200 0.189 0.269 82.7 78.4 74.4 53.7

80 30 0.300 0.294 0.360 82.6 79.7 76.8 64.6

110 25 0.400 0.392 0.427 82.9 82.0 79.8 66.4

Table 2. Summary of results highlighting the impact of right-truncation in every tercile (denoted by T¼ 1 and 2) on the calcula-

tions of statistical power over a range of settings where statistical power was initially between 80% and 85% when no truncation

was present (T ¼ 1) for multiple cohorts recruited over the trial period. The pre-specified between-cluster variance, r 2
c ; is the

value of the between-cluster variance inputted for simulation of the trial data, and the average empirical between-cluster vari-

ance is the mean between-cluster variance estimated from the simulated datasets for each combination of k and r 2
c . The aver-

age empirical ICC is the mean intracluster correlation computed as described by Stryhn et al.26 from the simulated datasets

Statistical power (%)

Number

of clusters per tercile

Cluster

sizes

Pre-specified

between-cluster

variance (r2
c )

Average

empirical

cluster

variance

Average

empirical

ICC

T ¼1
per tercile

T¼2

per tercile

T¼1

per tercile

Annual event rate(k) ¼ 2.7 25 10 0.050 0.041 0.378 82.5 70.8 44.1

30 30 0.100 0.092 0.592 82.4 78.5 70.9

55 20 0.200 0.189 0.751 82.7 76.0 70.9

80 30 0.300 0.294 0.823 82.6 77.7 75.1

110 25 0.400 0.392 0.861 82.9 81.8 80.5
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closed-form formulae for the estimation of power for

CRTs with Poisson-distributed outcomes,5,11 none of these

formulae is appropriate when the count outcome is right-

truncated. Therefore, for right-truncated Poisson-distrib-

uted outcomes, power calculations for CRTs may be con-

ducted using Monte Carlo simulations.30

Our results, based on Monte Carlo simulations, show

that for any combination of the event rate, k, and ICC, sta-

tistical power was highest when right-truncation was ab-

sent. Right-truncation had an attenuating effect on power,

with the lowest power observed when right-truncation

resulted in the binomial situation of a maximum of one

event (T¼ 1 over the trial period) and when the number of

clusters considered was less than or equal to 30. The ad-

verse effect of right-truncation was less pronounced as set-

tings moved away from binomial situation (i.e. T>1), with

situations where T¼6 resulting in modest discrepancies in

power compared with when truncation was absent.

Moreover, the adverse impact of truncation for any right-

truncation value (T) was more pronounced for k¼2.7

than for k¼ 1.25, suggesting that the impact of right-

truncation worsens with increased rate of events especially

where the difference in value between k and T is small.

This means for instance that for T¼ 3, the impact of right-

truncation will be worse for k¼2.7 than for k¼1.25, be-

cause a significant portion of the distribution is ‘cut out’

for higher rates.

A CRT design which mitigates the impact of high drop-

out rates through the recruitment of multiple cohorts was

also considered. The results suggest that under such a de-

sign, right-truncation has a far more negative impact com-

pared with the design where a single cohort is recruited.

This is because the use of multiple cohorts results in shorter

follow-up times for each cohort recruited, which further

limits the number of events that may be observed. In effect,

this inadvertently induces stricter right-truncation scenar-

ios. Thus, compared with the sample size that would be re-

quired if a single cohort was recruited for the entire

duration of a trial, the use of multiple cohorts increases the

sample size required to maintain the targeted level of

power. This increase in sample size would lead to adverse

cost implications. That said, the recruitment of multiple

cohorts may turn out to be cost-effective in instances where

the drop-out rate for a recruited cohort is substantial after

a few months (4 months for the case considered).

Therefore, the impact of multiple cohorts on statistical

power needs to be carefully weighed against the drop-out

rate at the trial design stage.

This study has several limitations. First, the correction

for right-truncation in equation (4) results in a non-linear

function which may become intractable and is prone to

convergence difficulties, especially when the between-

cluster variance is substantial. Second, the motivating ex-

ample considered only the impact of right-truncation on

Poisson-distributed outcomes. However, the correction for

truncation in equation (4) may be generalized to other set-

tings to cater for other types of truncations (i.e. left, right

and interval which is also referred to as double truncation)

for the normal,45 Poisson, negative binomial46 and other

families of truncated distributions.47 As such, there is a

need to validate the results in those settings.

In summary, CRTs are an important component of the

evidence required to support the introduction of many

interventions against infectious diseases, in which the unit

of intervention is the community rather than the individ-

ual. In order to ensure that adequate statistical power for

CRTs is maintained, the presence of right-truncation on

count outcomes should be accounted for. Moreover, subse-

quent analysis of the trial data should account for right-

truncation to ensure that the parameter estimates obtained

are consistent, to facilitate correct inferences.

Supplementary Data

Supplementary data are available at IJE online.
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Mwandigha et al. have presented an interesting case and

accompanying simulation studies to explore issues of trun-

cation on count data in a cluster randomized setting.1 The

results support the notion that researchers planning these

complex cluster randomized trials (CRTs) consider explor-

ing the impact of this truncation in sample size and power

calculations early on to avoid underpowered studies.

Although the overall results are not surprising and can

likely be deduced from the theoretical underpinnings, or

intuitively for the savvy researcher (i.e. more severe cases

of this truncation will result in more severe consequences

for power), the magnitude of impact and the particularly

vulnerable study scenarios require special attention.

In any CRT setting, whether involving truncation or

not, power and sample size calculations involve a very

complex interplay between cluster size, number of clusters

and intra-cluster correlation coefficient (ICC),2 and these

parameters must be considered simultaneously in the plan-

ning of CRTs. Although the authors use example cases in-

volving vector-borne diseases—where the infection passes

between vector and human hosts, intervention tends to tar-

get the vector (e.g. mosquitoes in the case of malaria) and

the outcome of interest tends to be infection rate or count

among human host(s)—the ideas, methods and results are

not unique to this situation, and they can be extended to

other study settings.

Relevant study scenarios to which results may be ap-

plied include CRT designs involving an outcome measured

at the individual participant level (i.e. a cohort design

rather than a cross-sectional design) and expected trunca-

tion. Turner et al.3 provide an overview of cohort designs

compared with cross-sectional designs; briefly, a cohort

CRT implies researchers intend to follow individuals

within a cluster over time, and it is this scenario to which

the authors’ results apply. Additionally, simply put, trunca-

tion may be viewed as having access to only a part of the

distribution of outcome, analogous to right censoring in

the time-to-event data setting.

Mwandigha et al. use simulation studies to illustrate the

magnitude of the effects of truncation under several scenar-

ios: (i) no truncation, (ii) extreme truncation and (iii) vary-

ing levels of more realistic truncation under multiple study

design assumptions. The number of clusters ranged from

25 to 110 and the cluster size ranged from 10 to 40 in these

simulations. Notably, in a review of 300 CRTs across mul-

tiple fields and journals, Ivers et al.4 report the median

[and interquartile range (IQR)] number of clusters as 21

(12–52) and the median (IQR) cluster size as 33.9 (12.5–
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