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Gangliosides are sialic-acid-containing glycosphingolipids expressed on all vertebrate cells.
They are primarily positioned in the plasma membrane with the ceramide part anchored in
the membrane and the glycan part exposed on the surface of the cell. These lipids have
highly diverse structures, not the least with respect to their carbohydrate chains, with
N -acetylneuraminic acid (NeuAc) and N -glycolylneuraminic acid (NeuGc) being the two
most common sialic-acid residues in mammalian cells. Generally, human healthy tissue
is deficient in NeuGc, but this molecule is expressed in tumors and in human fetal tis-
sues, and was hence classified as an onco-fetal antigen. Gangliosides perform important
functions through carbohydrate-specific interactions with proteins, for example, as recep-
tors in cell–cell recognition, which can be exploited by viruses and other pathogens, and
also by regulating signaling proteins, such as the epidermal growth factor receptor (EGFR)
and the vascular endothelial growth factor receptor (VEGFR), through lateral interaction
in the membrane. Through both mechanisms, tumor-associated gangliosides may affect
malignant progression, which makes them attractive targets for cancer immunotherapies.
In this review, we describe how proteins recognize gangliosides, focusing on the molec-
ular recognition of gangliosides associated with cancer immunotherapy, and discuss the
importance of these molecules in cancer research.

Keywords: biological membranes, cancer immunotherapy, cell signaling, gangliosides, protein–carbohydrate
interactions, glycosphingolipids, sialic acid, tumor-associated antigens

INTRODUCTION
Few lipid species included in biological membranes have received
as much attention as glycosphingolipids (GSLs), and especially
gangliosides, sialic-acid-containing GSLs. They were discovered
by Ernst Klenk in the 1940s, who proposed the term “ganglioside”
due to the abundance of these molecules in“Ganglionzellen”(neu-
rons). Gangliosides were later classified by Svennerholm accord-
ing to the number of sialic-acid residues and chromatographic
mobility (1). In contrast to glycerolipids, the lipid anchor in
sphingolipids builds on the long-chain amino alcohol sphingo-
sine, which is coupled via its amino group to a fatty acid to form
ceramide (Figure 1). In gangliosides, the ceramide anchor is linked
to a hydrophilic glycan head group, which is characterized by the
presence of one or more sialic-acid residues (carbohydrates with
a nine-carbon backbone and a carboxylic acid group); however,
there is large variability of this structure. One example, the GM3
ganglioside, abundant in almost all healthy tissues, is shown in
Figure 1. The large structural variability is related to developmen-
tal stage and cell type, and hundreds of gangliosides are known
today (3–5). Variations in carbohydrate structure alone account
for over a 100 different structures, and this number significantly
increases, when ceramide variations are taken into account (4–7).
Accumulating evidence indicates that many cellular events, includ-
ing differentiation, growth, signaling, interactions, and immune
reactions are highly influenced by gangliosides, and that these
molecules may also cause malignancies. Positioned in the plasma
membrane, gangliosides interact with other lipids and proteins,

both laterally in the membrane and via their head groups, acting
as cellular receptors that can be recognized by antibodies and
other ganglioside-binding molecules. Here, we highlight the func-
tion and molecular interactions of gangliosides with high clinical
significance.

GANGLIOSIDES – GENERAL ARCHITECTURE, CELLULAR
LOCALIZATION, AND BIOSYNTHESIS
Gangliosides consist of a lipid anchor, the ceramide, decorated
by a glycan head group of various complexity. In cells, gan-
gliosides are mainly found in the outer leaflets of the plasma
membrane. Together with sphingomyelin and cholesterol, they
form membrane microdomains, which play important roles in
cell–cell communication and signal transduction (8–10). The syn-
thesis of gangliosides starts in the ER compartment with the
synthesis of the ceramide, the common precursor of all GSLs.
Aided by the ceramide-transfer protein, CERT, ceramide is then
transferred to the Golgi apparatus, and thereafter converted to
glucosylceramide (GlcCer) (11). Subsequently, other carbohydrate
residues are attached, one by one, catalyzed by glycosyltrans-
ferases, as described below (12, 13). The glycosyltransferases are
specific to the sugar residues that they transfer and are grouped
into families according to their specificity. Interestingly, all gly-
cosyltransferase promoters lack the TATA sequence, and hence
do not have any core promoter element characteristic for house-
keeping genes. Although some indications relate their transcrip-
tion to complex developmental and tissue-specific regulation, very
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Krengel and Bousquet Gangliosides – recognition, function, and applications

FIGURE 1 | Schematic drawing of NeuAc GM3, a common ganglioside in vertebrate tissues. Carbohydrate symbols follow the nomenclature of the
Consortium for Functional Glycomics (2); purple diamond – N -acetylneuraminic acid; yellow circle – D-galactose; blue circle – D-glucose.

FIGURE 2 | Structures and biosynthetic pathways of gangliosides. The glycosyltransferases catalyzing the synthesis of gangliosides are shown in italics.
Cer, ceramide; SA, sialic acid. Ganglioside nomenclature [according to Svennerholm (1)] is shown in boxes. Adapted from Ref. (5).

little is known about how glycosyltransferases are regulated (14).
The molecular products are further subject to remodeling, by
sialidases, sialyltransferases, and other enzymes, followed by vesicle
sorting and fusion with the plasma membrane (15). Ganglio-
sides are assumed to recycle to the plasma membrane from early

endosomes, and a degradation process is thought to take place at
the late endosomal level (16).

The biosynthetic pathways of gangliosides are shown in
Figure 2. After formation of the initial glucosylceramide, a
galactose moiety is added to GlcCer to yield lactosylceramide
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(LacCer), the common precursor for almost all gangliosides
(except GM4). Addition of one sialic-acid residue to LacCer sub-
sequently converts this precursor molecule to GM3. This reac-
tion is catalyzed by sialyltransferase I (ST-I) or GM3 synthase.
In the same manner, GD3 and GT3 can be generated by fur-
ther addition of sialic-acid residues, catalyzed by ST-II or GD3
synthase and ST-III or GT3 synthase, respectively. The num-
ber of sialic-acid residues linked to the inner galactose residue
(0, 1, 2, or 3) classify the gangliosides into asialo, a-, b-, or
c-series (Figure 2), however, only trace amounts of ganglio-
sides from the asialo- and c-series are found in adult human
tissue (17).

GANGLIOSIDES – BIOLOGICAL FUNCTION AND
EXPLOITATION BY PATHOGENS
Gangliosides are key molecules in cellular recognition and sig-
naling. They are primarily present in the plasma membranes of
vertebrates, but have recently also been found in nuclear mem-
branes, recognized as functionally important constituents (18,
19). Knock-out studies in mice have been essential for revealing
the functions of gangliosides, especially in embryonic develop-
ment and differentiation. For example, Yamashita et al. observed
that mouse embryos carrying a knock-out in the glycosylce-
ramide synthase enzyme did not survive more than 7.5 days
(20). Other examples are studies of mice with a knock-down of
GM3 synthase and GM2/GD2 synthase, which exhibit increased
insulin sensitivity and decreased ability to repair nervous tissues,
respectively (21, 22).

Because of the tight packing of lipids in membranes, gan-
gliosides associate with other types of lipids, forming membrane
subcompartments such as lipid rafts, to which specific proteins
can associate (8, 23, 24). The organization of gangliosides in
membranes will be further discussed in the Section “Organiza-
tion and Presentation of Gangliosides in Biological Membranes.”
Since gangliosides have the ability to interact with both sugars
and proteins (see Sections “Gangliosides – Structure and Molecu-
lar Recognition”, “Organization and Presentation of Gangliosides
in Biological Membranes”, and “Effect of Gangliosides on Mem-
brane Proteins and Cellular Signaling”), a large range of events can
be triggered or inhibited by these molecules. Cell growth, migra-
tion, differentiation, adhesion, and apoptosis are some examples
(25, 26). The terminal sialic-acid residue(s) in particular are tar-
gets for many important intercellular interactions, but can also be
exploited by pathogens that use these residues as a docking station
to enter the cell (27).

Various pathogens, from viruses to bacteria and parasites, rec-
ognize sialic-acid residues on host cell membranes, several of
these known to cause cancer. The most common recognition
module is NeuAc; in addition, NeuGc and 9-O-acetylated sialic
acids are also well-known receptors (28, 29). Examples of viral
pathogens recognizing gangliosides are the influenza virus (30),
simian virus 40 (SV40) (31), and polyomavirus (32, 33). Bacteria
interact with gangliosides via toxins and adhesins, with the cholera
toxin (34) and the Sialic-acid binding adhesin from the Class 1
carcinogen Helicobacter pylori, SabA (35, 36), being prominent
examples. Gangliosides may also suppress natural killer (NK) cell
cytotoxicity, through interaction with Siglec-7 (sialic-acid binding

immunoglobulin-like lectin 7), as elaborated further in the Section
“Gangliosides and Cancer.”

GANGLIOSIDES – STRUCTURE AND MOLECULAR
RECOGNITION
The molecular recognition of carbohydrates, with their large num-
ber of hydroxyl groups, is dominated by hydrogen bonds, with the
binding specificity determined by the recognition of the charac-
teristic OH-scaffolds of different sugars (37, 38). Many of these
interactions are water-mediated, and sometimes, metal ions are
involved. In addition, hydrophobic interactions contribute signif-
icantly to carbohydrate recognition, which may involve methyl
groups such as in the monosaccharide fucose or the stacking
against exposed hydrophobic patches of the sugar rings. A partic-
ularly typical molecular recognition mechanism of carbohydrates
involves the CH-π stacking of sugar rings against the side chains of
aromatic amino acids (so-called“aromatic stacking interactions”),
promoted by weak hydrogen bonds (39) (Figure 3).

Gangliosides are characterized by the presence of at least one
sialic-acid residue, which in contrast to many other sugars is
charged. This charge can be exploited by salt bridges with pos-
itively charged residues, but this is not necessarily the case (and
in fact quite rare). The carboxylate group is often not even the
most important recognition motif. For example, the fingerprint of
the most common sialic acid, N -acetylneuraminic acid (NeuAc),
which is derived from pyruvate and N -acetylmannosamine, gen-
erally involves the recognition of the N -acetyl group and the
adjacent 4-OH-group, originating from mannose (which corre-
sponds to 3-OH in hexoses) (41). Further H-bonding interactions
are provided by the sialic-acid glycerol chain (also originating from
mannose), which is recognized by a conserved binding motif com-
mon to a number of viral and bacterial sialic-acid binding proteins
(42). In addition, conformer selection and clustering play impor-
tant roles for the molecular recognition of gangliosides, as shown
for example for the recognition of GM1 by the cholera toxin or
galectin-1 (34, 43–45).

Carbohydrates in general are flexible molecules, but due to
internal carbohydrate–carbohydrate interactions, the influence of
the lipid anchor, or due to interactions with other molecules
in the immediate neighborhood, rigid molecular epitopes may
arise. As gangliosides are localized in the plasma membrane, the
presentation of the carbohydrate epitopes in particular depends
on the interaction with other lipids (8). However, the structural
characterization of anchored gangliosides is difficult to achieve.
State-of-the-art lipid simulations are described by Vattulainen and
Róg (46), but these often fail to take the glycan head groups into
account. Nevertheless a few studies have been undertaken that
do just that. One interesting example is the atomic-resolution
conformational analysis of GM3 in a bilayer composed of dimyris-
toylphosphatidylcholine (DMPC) (47). Two known GM3-binding
proteins [sialoadhesin, PDB ID: 1QFO (48), and wheat germ
agglutinin, PDB ID: 2CWG (49)] were studied in order to eval-
uate the importance of carbohydrate accessibility and ganglio-
side recognition. Probing the presentation and dynamics of the
glycan head group, DeMarco and Woods observed significantly
altered accessibility of the less exposed carbohydrate residues
Gal and Glc, even though the internal structural properties for
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FIGURE 3 | Example of ganglioside recognition [here: GT1b (analog) and
its interaction with botulinum neurotoxin type A (BoNT/A)].
(A) Experimental electron density (Fo–Fc omit map) of the ganglioside head
group. (B) Schematic drawing of the interactions between GT1b and BoNT/A.

Hydrogen bonds are shown as dotted lines (red: intermolecular interactions;
black: intramolecular carbohydrate–carbohydrate interactions). (C) Close-up
view of the ligand-binding site. Please note the aromatic stacking interactions
with Trp 1266 and Tyr 1117. Printed with permission from Ref. (40).

membrane-bound versus soluble GM3 were unchanged. On the
other hand, the terminal NeuAc-residue remained almost fully
exposed. The difference in accessibility is likely of considerable
importance for the initial recognition of GM3 by a receptor pro-
tein, although subsequent recognition events may include the gly-
can residues embedded deeper in the membrane. The less exposed
residues may also indirectly affect recognition, by ceramide–Glc
and Glc–Gal rotations, altering NeuAc presentation. Furthermore,
the hydrophobic ceramide together with the polar Glc residue may
regulate the insertion depth.

ORGANIZATION AND PRESENTATION OF GANGLIOSIDES IN
BIOLOGICAL MEMBRANES
Cellular membranes serve both as segregation barriers and as
facilitators of cellular communication. Positioned in the cell mem-
brane, lipids interact laterally with other membrane components
(lipids or membrane proteins), and also serve as cellular receptors,

through their exposed head groups. In the past decade many stud-
ies have focused on the lateral characterization of membranes and
it is now well-established that highly unsaturated components,
like glycerophospholipids, provide the membrane with flexibility,
while saturated components, such as GSLs, create order in bio-
logical membranes (10). Furthermore, the shape and length of
the lipids determine the shape, size, and stability of cellular mem-
branes (50). The ceramide part of gangliosides is characterized by
a rigid and planar structure, composed of saturated acyl chains,
which can be more tightly packed. Together with other mem-
brane sphingolipids and cholesterol, they can segregate and form
dynamic nanoscale “clusters”, also called lipid rafts (8, 24, 51), to
which specific proteins associate, hitching a ride.

Apparently, the density of GSLs can also influence their struc-
ture, affecting antigen specificity. For example, an antibody estab-
lished by immunizing mice with syngeneric B16 melanoma,
named M2590, reacted only with melanoma and not with healthy
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tissues (52). Remarkably, the target epitope was later identified as
GM3, an abundant ganglioside in membranes of normal cells (53).
Further studies showed that a ganglioside density above a thresh-
old value was required for reactivity, suggesting that this antibody
recognized more densely packed GM3 (54). These results indicate
that ganglioside antigens can be differently organized in tumor
cells compared to normal cells and that some ganglioside anti-
gens are fully antigenic when organized in clusters, but fail to bind
antibodies when their density is under a threshold value (54, 55).

How can this be explained? This brings us back to the structural
characterization of GSLs in biological membranes. One example
has already been described [GM3 in DMPC bilayer; (47)]. Two
other interesting studies evaluate the effect of cholesterol on GSL
structure (56, 57), building on earlier work by Pascher and cowork-
ers (58). Notably, cholesterol was found to introduce a tilt in the
glycolipid head group from a conformation almost perpendicular
to the membrane surface to an alignment parallel to the mem-
brane (Figure 4). The culprit appears to be an H-bonding network
involving the cholesterol OH-group, the sphingosine amide, and
the oxygen of the glycosidic bond (56). Similar lipid-raft-specific
conformational changes of GSLs may be critical for the entry of
bacterial toxins or viruses into host cells (8, 59).

Glycosphingolipids are not always fully accessible, however.
Their short head groups may be hidden in the “jungle” of mem-
brane proteins or even masked by sialic-acid binding proteins posi-
tioned near the GSLs in the membranes (i.e., in cis). Such a scenario
is postulated, e.g., for Siglecs, a family of lectins that modulate
innate and adaptive immune functions. Trans interactions may
still occur, e.g., for higher-affinity ligands that can out-compete
the cis ligands, however, in general, accessibility will be reduced.

EFFECT OF GANGLIOSIDES ON MEMBRANE PROTEINS AND
CELLULAR SIGNALING
It has been suggested that also the activation of membrane pro-
teins can be influenced by lipid cluster association. In addition to
lateral interaction with the lipid tails in the cell membrane, such
interactions may exploit the unique properties of sphingolipids,
bearing a carbonyl oxygen, a hydroxyl group, and an amide nitro-
gen, thus being able to act as both H-bond donors and acceptors
(60). As described in the previous section, gangliosides and other
GSLs may further cause conformational changes of the glycan head
group, which may either interact directly with amino acids of the
extracellular part of the protein or alternatively interact with the
sugar residues of a glycosylated protein, affecting protein activity.

Most growth factor receptors are known to be regulated by
gangliosides (9). Here, we will discuss two examples of mem-
brane proteins important for cancer research and immunotherapy:
the epidermal growth factor receptor (EGFR) and the vascular
endothelial growth factor receptor (VEGFR) (Table 1). A num-
ber of cancers are characterized by hyper-activated EGFRs, either
caused by mutations or over-expression (61–63). Another impor-
tant factor for tumor progression is the growth of new blood
vessels. Tumor cells produce and release the growth factor VEGF,
stimulating the VEGFR, and ultimately resulting in proliferation
and migration of vascular endothelial cells (64).

The EGFR is known to undergo ligand-dependent dimeriza-
tion, resulting in an autophosphorylation of tyrosine residues at

FIGURE 4 | Glycosphingolipid interaction with cholesterol, an
important constituent of lipid rafts. (A) GalCer, extended conformation.
(B,C) GalCer, tilted conformation, induced by H-bonding interactions with
cholesterol OH-group, shown in (C) [(A,B): space-filling representation,
(C): stick representation]. Printed with permission from Ref. (56), in an
extension of earlier work by Nyholm et al. (58).

Table 1 | Gangliosides affecting the growth factor receptors EGFR and

VEGFR.

Ganglioside Growth factor receptor Reference

GM3 EGFR (65–68)

GM1 EGFR (68, 69)

GM2 EGFR (70, 71)

GM4 EGFR (70)

GD3 EGFR (70, 72)

GD1a EGFR (68, 73)

GT1b EGFR (68)

GM3 VEGFR (74, 75)

GD1a VEGFR (75, 76)

GD3 VEGFR (77)

the C-terminal tail of the protein (78). This initiates downstream
signaling, leading to adhesion, cell migration, and proliferation
(79). More recently, the EGFR has also been shown to undergo
ligand-independent dimerization, a phenomenon that is poorly
understood (80). Such ligand-free dimers can also be functionally
active, but this is not always the case.

Several membrane ligands have been shown to affect signaling
by the EGFR and the VEGFR. The GM3 ganglioside, a well-
known regulator of the insulin receptor (81), has an inhibitory
effect on both the EGFR and the VEGFR, while the ganglioside
GD1a strongly induces VEGFR-2 activation (26, 66, 70, 75, 82,
83). Moreover, the proangiogenic effects of GD1a can be effi-
ciently reduced by GM3 (75). GM3 has been suggested to inhibit
VEGFR-2 activation by blocking both growth factor binding and
receptor dimerization through direct interaction with the extra-
cellular domain of the VEGFR (74). The molecular interaction
between the EGFR and GM3 is not fully elucidated, although it
has been studied extensively. It has been shown that the inhi-
bition of EGFR activation by GM3 involves the binding of the
ganglioside to the GlcNAc-terminated N -glycans on the EGFR,
suggesting carbohydrate–carbohydrate interactions (65, 67, 84,
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85). In addition, increasing evidence points to the integral impor-
tance of ganglioside organization in the membrane for signal
transduction (affecting the localization and activation of growth
factor receptors). For example, recent computer simulations of the
EGFR embedded in the membrane suggest that membrane lipids,
especially anionic species, interact extensively with the EGFR (86).
These interactions are more pronounced for the inactive EGFR,
due to electrostatic interactions with the EGFR’s intracellular
domain, which may explain the inhibitory effect of GM3 on EGFR
activation.

Cellular biological membranes are complex and the dynam-
ics difficult to study. Even small modifications like the fluorescent
labeling of lipids may critically affect bulk membrane properties
as well as ligand–receptor interactions in biological environments
(87). To generate a more controllable system, Coskun et al. recon-
stituted EGFR into proteoliposomes with defined lipid composi-
tion, with either uniform liquid-disordered (ld) membrane phases
or a combination of disordered and ordered (ld/lo) domains.
Adding gangliosides to this system, they found that GM3 had a
strong inhibitory effect on EGFR activation, without interfering
with ligand-binding, but in ld/lo proteoliposomes only (66). It
would be of significant clinical interest to investigate how target-
ing GM3 by immunotherapy affects EGFR and VEGFR signaling,
and whether the presence of both targets (GM3 clusters and
EGFR/VEGFR) affect antibody efficiency and affinity.

GANGLIOSIDES AND CANCER
Gangliosides play important roles in many normal physiological
processes, such as cell growth, differentiation, and embryogene-
sis (20), but also in pathological events like cellular malignancy
and metastasis (88) (see Table 2 for examples of gangliosides
expressed in human cancer cells). Tumor formation results from
autonomous uncontrolled proliferation of neoplastic cells, while
metastasis occurs when tumor cells are released from the primary
tumor and continue to proliferate at a distant site. Multiple fac-
tors affect these processes, in which gangliosides may serve both
as inhibitory and stimulating molecules. For example, it has been

shown that highly metastatic melanoma cells have high expres-
sion levels of GD3. This is in contrast to poorly metastatic cells
or the normal counterpart, melanocytes, which express very low
levels of GD3 (89–91), suggesting a role of GD3 in transforming
melanocytes into melanomas and promotion of metastasis. Gan-
gliosides may suppress NK cell cytotoxicity through interaction
with Siglec-7, which preferentially binds to gangliosides of the
b-series, as found for cells engineered to overexpress GD3 (92).
The high expression levels of the GD3 ganglioside in melanoma
may hence reflect the suppressed efficiency of NK cell cytotoxicity
against these tumor cells. The function of gangliosides as sup-
pressors of the anti-tumor immune response is well-documented
in many studies, with tumor-associated gangliosides reported to
down-regulate the activity of T and B cells, NK cytotoxicity and
active dendritic cells, among others (93–95). For instance, T-
cell dysfunction is promoted by the GM2 ganglioside, however,
an antibody targeting GM2 was able to block 50–60% of T-cell
apoptosis (94).

Gangliosides are also shed from the tumor to the microenviron-
ment in greater quantities than normal cells. Shed gangliosides can
interact with proteins or be incorporated into the membrane of
other cells, leading to signaling events or interactions with healthy
cells (112–114). For example, the addition of exogenous GD3 to
the culture medium of glioma cells was found to stimulate the
release of VEGF (115). Taken together, these observations suggest a
multitude of mechanisms by which tumor-associated gangliosides
may contribute to malignancy and cancer progression.

Many of the tumor-associated gangliosides are also found in
normal healthy tissues, but are over-expressed in tumors, while
other antigens are only found in cancer cells. An interesting exam-
ple is the sialic-acid NeuGc, which is found in several tumor types,
such as melanoma and breast cancer (116). Among all variants of
sialic acids, NeuAc and NeuGc are the most abundant; however,
humans are a notable exception. Due to a 92-bp deletion in the
gene coding for CMP-NeuAc hydroxylase (cmah), humans lack a
functional enzyme required for generation of NeuGc (117, 118).
Nevertheless, NeuGc is present in fetal tissues and malignant cells

Table 2 | Gangliosides expressed in human cancer cells.

Ganglioside Structure Cancer type Reference

NeuAc GM3 αNeu5Ac(2-3)βDGal(1-4)βDGlc(1-1)Cer Melanoma, NSCLC, breast carcinoma, renal carcinoma (89, 96–100)

NeuGc GM3 αNeu5Gc(2-3)βDGal(1-4)βDGlc(1-1)Cer Colon cancer, retinoblastoma, melanoma, breast

carcinoma, neuroectodermal cancer, Wilms tumor

(98, 99,

101–104)

GM2 βDGalNAc(1-4)[αNeu5Ac(2-3)]βDGal(1-4)βDGlc(1-1)Cer Melanoma, neuroblastoma, SCLC, t-ALL, breast

carcinoma, renal carcinoma

(74, 96, 99,

100, 105–107)

GM1 βDGal(1-3)βDGalNAc[αNeu5Ac(2-3)]βDGal(1-4)βDGlc(1-1)Cer SCLC, renal carcinoma (99, 106)

GD3 αNeu5Ac(2-8)αNeu5Ac(2-3)βDGal(1-4)βDGlc(1-1)Cer Melanoma, neuroblastoma, glioma, SCLC, t-ALL, breast

carcinoma

(25, 89, 96, 97,

105, 107–111)

GD2 βDGalNAc(1-4)[αNeu5Ac(2-8)αNeu5Ac(2-3)]βDGal(1-

4)βDGlc(1-1)Cer

Melanoma, neuroblastoma, glioma, SCLC, t-ALL (89, 96, 97,

105–109)

αNeuAc = 5-acetyl-α-neuraminic acid, αNeuGc = 5-glycolyl-α-neuraminic acid, βDGal = β-D-galactopyranose, βDGalNAc = N-acetyl-β-D-galactopyranose, βDGlc = β-D-

glucopyranose, Cer = ceramide, NSCLC = non-small-cell lung carcinoma, SCLC = small-cell lung carcinoma.
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(99, 119, 120). For this reason, NeuGc was assumed to classify as
an “onco-fetal” antigen, being expressed in the fetus, suppressed
during adult life and re-expressed in malignant cells. However,
since humans lack the putative active site of the enzyme, other
explanations must lie at the heart of this change in carbohydrate
profile. Diet incorporation, hypoxic conditions, and endogenous
metabolic mechanisms are currently being discussed as possible
origins of the increased levels of NeuGc (116, 121–124). Get-
ting to grips with the high NeuGc-ganglioside levels is important,
since this property appears to correlate with a poor prognosis.
Specifically, recent studies indicate that non-small-cell lung cancer
(NSCLC) patients with high NeuGc-ganglioside expression exhibit
a low overall survival rate and a significantly lower progression-
free survival rate (125). These findings are consistent with recent
experiments demonstrating that the silencing of the cmah gene
in NeuGc GM3-expressing L1210 mouse lymphocytic leukemia B
cells caused a shift to NeuAc GM3 expression and a concomitant
reduction of tumorigenicity (126).

Interestingly, it has been shown that serum from healthy
humans contains antibodies recognizing glycoconjugates exhibit-
ing NeuGc (127, 128). These antibodies are called Hanganutziu–
Deicher (HD) antibodies, and were first described by Hanganutziu
(129) and Deicher (130) [as cited in Ref. (131)] independently
in the 1920s. HD antibodies attract complement molecules to
malignant cells (132, 133). The level decreases with age, which
may correlate with an increased cancer risk at higher age (133).
Characteristic for natural antibodies is that they recognize highly
conserved antigens (134). Importantly, auto-antibodies against
tumor-associated antigens can arise and be detected early, before
symptoms occur, and hence have potential for early diagnosis
(135–137). In line with this hypothesis, a recent study reported
that healthy donors exhibited low levels of anti-NeuGc GM3 anti-
bodies (decreasing with age), while these antibodies were absent
in NSCLC patients (138).

GANGLIOSIDE-BASED THERAPY
Cancer immunotherapy is a highly promising approach to cancer
treatment, which has been gaining grounds only recently (139). In
contrast to traditional therapies like chemo- or radiation-therapy,
immunotherapies constitute a much more targeted approach that
promises higher specificity while eliciting fewer side effects. As
the name states, this type of therapy uses the immune system
to treat cancer. There are two main approaches (139, 140): (i)
tumor-associated antigens or derivatives or mimics of these may
be used as active therapeutic vaccines, priming the body to launch
an immune attack against these molecules and hence the tumor
cells (overcoming the body’s tolerance of self-antigens); (ii) alter-
natively, antibodies may be used for passive immunotherapy,
either coupled to toxins, radioactivity or on their own, relying
on processes like antibody-dependent cell-mediated cytotoxic-
ity (ADCC) or complement-dependent cytotoxicity (CDC). In
both cases, effective immunotherapy relies on the choice of the
antigen. Notably, in a recent project for prioritization of can-
cer antigens, 4 of the 75 selected antigens were gangliosides
(GD2, GD3, fucosyl-GM1, and N -acetyl GM3), and additional
targets, like the EGFR and the VEGFR, are known to interact with
gangliosides (141).

Several antibodies targeting tumor-associated gangliosides are
currently under investigation in pre-clinical or clinical studies, also
including molecular vaccines. One example, the antibody 3F8, tar-
gets GD2, which is highly expressed in aggressive cancer, such as
pediatric neuroblastoma (142). Other examples are 14F7 and chP3,
both of which specifically recognize NeuGc GM3, discriminating
it from the highly similar NeuAc GM3. So far, no crystal struc-
tures of these complexes have been reported, however, computer
docking studies, in silico site mapping and phage display studies
are contributing to reveal the recognition mechanisms of these
promising tools (143–146). In addition, two NeuGc-ganglioside-
based vaccines are currently tested in clinical trials (phase III);
these are Racotumomab, an anti-idiotypic antibody1 registered
and launched in Cuba and Argentina under the trade name Vaxira
(147) and NeuGc GM3/VSSP, a NeuGc GM3 ganglioside conju-
gated into very small proteoliposomes. In the ongoing clinical
trials, the NeuGc GM3/VSSP and Racotumomab vaccines show
efficacy and are well-tolerated by patients with advanced cuta-
neous melanoma (148) and NSCLC (149), respectively. This repre-
sents a significant step forward from the first, unsuccessful, attempt
of developing a ganglioside-based vaccine – the GMK (GM2-
based) vaccine for melanoma (150, 151). These molecules are part
of a growing arsenal of targeted molecular weapons against cancer,
which may be used as stand-alone therapy, but will more likely be
employed as adjuvant therapy, in combination with or following
standard treatment such as surgery, radiation, or chemotherapy.
For example, based on the important roles of NeuGc GM3 and the
EGFR for tumor cell immune evasion and proliferation, a combi-
nation therapy targeting both molecules may provide a rationale
for fighting tumor cells. This combination is currently tested using
Racotumomab and a vaccine targeting EGF in NSCLC patients,
showing, so far, promising clinical results (152).

CONCLUSION
Today, we are still far from fully understanding the roles, structures,
and mechanisms of gangliosides in biological systems, and only at
the beginning of the exploitation of these molecules in potential
therapies. However, the importance of these molecules is evident,
and technology development is picking up pace (7, 46, 153, 154).
We are looking forward to a bright future, in which gangliosides
are fully appreciated, and unfold their full potential in targeted
therapies.
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