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Abstract: Dinoflagellates are important primary producers for marine ecosystems and are also
responsible for certain essential components in human foods. However, they are also notorious for
their ability to form harmful algal blooms, and cause shellfish poisoning. Although much work has
been devoted to dinoflagellates in recent decades, our understanding of them at a molecular level
is still limited owing to some of their challenging biological properties, such as large genome size,
permanently condensed liquid-crystalline chromosomes, and the 10-fold lower ratio of protein to DNA
than other eukaryotic species. In recent years, omics technologies, such as genomics, transcriptomics,
proteomics, and metabolomics, have been applied to the study of marine dinoflagellates and have
uncovered many new physiological and metabolic characteristics of dinoflagellates. In this article,
we review recent application of omics technologies in revealing some of the unusual features of
dinoflagellate genomes and molecular mechanisms relevant to their biology, including the mechanism
of harmful algal bloom formations, toxin biosynthesis, symbiosis, lipid biosynthesis, as well as species
identification and evolution. We also discuss the challenges and provide prospective further study
directions and applications of dinoflagellates.

Keywords: dinoflagellates; genomics; transcriptomics; proteomics; metabolomics; harmful algal
blooms; toxin; symbiosis; lipid biosynthesis

1. Introduction

Dinoflagellates are unicellular protists that have two distinctive flagella during their life cycle [1].
The size of dinoflagellates ranges from a few micrometers to two millimeters [2]. The life styles of
dinoflagellates include free living, parasitic, or mutualist [2]. So far nearly 4500 species of dinoflagellates
have been isolated, and the majority of them (approximate 4000 species) are free living, while only
a small percentage of them are found with parasitic or mutualist symbiotic life styles, such as
Syndinophyceae [2]. Three major nutrient mechanisms, phototrophy, heterotrophy and mixotrophy,
are all found and adopted by various dinoflagellates species, and among them approximately 50% of
dinoflagellates are phototrophic [2,3].

Dinoflagellates receive great attention mostly due to their important roles in natural ecosystems,
as well as being the producers of key components in human food (e.g., docosahexaenoic acids (DHA)
as essential supplements) [4]. First, together with diatoms and coccolithophores, the photosynthetic
species of dinoflagellates are among the most prominent primary producers in marine environments and
play vital roles in the global carbon cycle [5]. Second, a number of photosynthetic dinoflagellates form
a mutualism with other living organisms for maintaining the stability of ecosystems [6]. For example,
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reef-building corals are maintained based on symbiosis between the coral animal and Symbiodiniaceae,
a photosynthetic dinoflagellate. Corals provide shelter and inorganic nutrients for Symbiodiniaceae,
and in return, Symbiodiniaceae provides much more than energy metabolites to corals. They translocate
antioxidants, signaling compounds, and are vitally important in nutrient cycling [6,7]. Finally, some
heterotrophic dinoflagellates are important producers of highly-valued and essential food components.
For example, DHA which has various beneficial effects on human health [8–10], such as improving
cognitive development in infants and inhibiting hypertension, inflammation and certain cancers, cannot
be synthesized by human beings, but accumulates in heterotrophic dinoflagellates Crypthecodinium
cohnii [4]. The fraction of DHA in C. cohnii can be up to 25% of dry cell weight [11,12]. Therefore,
the fermentation of C. cohnii has been considered as a sustainable and alternative way of producing
high-quality DHA [4,12–15]. Meanwhile, dinoflagellates can also result in negative effects to the
environment. One notorious phenomenon is “harmful algal blooms (HABs)”, also known as “red
tides” [16], which are formed due to a sharp increase in dinoflagellates and bacteria, which can reach
up to twenty million cells per liter along the coasts [2]. These blooms are often associated with the
production of various secondary metabolites, which can be extremely toxic and can be more potent
than some agents used in chemical warfare [17].

Dinoflagellates have additional prominent biological features that are worth of further exploration.
For example, some species of dinoflagellates are capable of bioluminescence [18]. The bioluminescence
systems consist of luciferase (enzyme), luciferin (substrate), and a protein that binds luciferin [19].
Bioluminescence seems to be separated by discrete particles called “scintillons” within cells [20]. One
of the suggested functions is that it reduces the grazing behavior of copepods [21]. Some dinoflagellates
have photosensitive organelles called “eyespots”, which consist of lipid droplets wrapped within
stacked layers of membranes [22], and allow dinoflagellates to perform phototaxis: i.e., to move
relative to the direction and intensity of light. In addition, dinoflagellate plastids originate from either
secondary or tertiary endosymbiotic events, making them different from those found in plants or green
alga [23]. The most cytologically prominent feature of dinoflagellates is their abnormal genome size and
organization [24]. Typical dinoflagellate DNA content is estimated to be 3 to 250 pg·cell−1, equivalent
to about 3000–245,000 Mb [25,26], roughly 1- to 80-fold larger than a human haploid genome [27].
Moreover, dinoflagellate nuclear DNA is widely methylated, of which 12–70% of thymine is replaced
by 5-hydroxymethyluracil and cytosine is methylated to varying degrees [27–29]. In most eukaryotic
organisms, these modifications are due to oxidative damage of thymine or 5-methylcytosine, which is
quickly repaired by a DNA glycosylase [30]. Furthermore, the chromosomes of most dinoflagellates
are permanently condensed without the aid of nucleosomes throughout some or all stages of their
life cycle [24,31]. The protein content in the chromatin is usually low, with a ten-times lower protein:
DNA ratio than that in other eukaryotes [16]. Dinoflagellates are the only known eukaryotes to
apparently lack histone proteins [32]. Dinoflagellates are capable of recruiting other proteins, such as
histone-like proteins from bacteria and dinoflagellate/viral nucleoproteins from viruses, as histone
substitutes [32–34]. Finally, plastid genomes of dinoflagellates appear in the form of plasmid-like
minicircles [35], and their mitochondrial genomes contain only three protein-coding genes and lack
stop codons [36].

Due to their ecological and economical roles and nutrition contribution, a better understanding
of dinoflagellate biology at the molecular level is important. In recent years, omics technologies [37],
such as genomics, transcriptomics, proteomics, and metabolomics, have been successfully applied
to the systematic analysis of dinoflagellates, in revealing the organization and evolution of
dinoflagellates genomes [7,38–41], and molecular mechanisms related to HAB formation and toxin
biosynthesis [42–61], symbiosis [39–41,62–71], and lipid accumulation [11–13,15,72–76] (Figure 1).
In this review, we summarize recent progress on the omics studies of dinoflagellates biology. We also
discuss the challenges and provide prospects for further study.
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Figure 1. Application of omics technologies for dinoflagellate biology research. 
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(clade C) [7], and other Symbiodiniaceae species [41] (Table 1).

Figure 1. Application of omics technologies for dinoflagellate biology research.

2. Omics Study on Dinoflagellates

2.1. Genomic Analysis

Genomic analyses help to examine the primary sequence and structural assembly of the complete
genome of an organism [77]. Due to the high sequencing cost of traditional methods, referred to as
Sanger sequencing, and the large sizes of dinoflagellates genomes, complete sequencing of a large
number of nuclear genomes of dinoflagellates has long been out of reach [24]. With the advent and
rapid development of next-generation sequencing (NGS), such as 454 sequencing, Solexa technology,
the SOLiD platform, the Polonator, and the HeliScope Single Molecule Sequencer technology, the total
cost of sequencing is sharply decreased and sequencing throughput is significantly enlarged [78–80],
which has facilitated rapid, economic sequencing of a number of dinoflagellates species, with improved
reliability and accuracy [7,38–41].

The most frequently used sequencing technologies for dinoflagellates are NGS 454 sequencing
and Illumina Hiseq 2000/2500 (Table 1), which use clonal amplification and sequencing by synthesis to
allow parallel sequencing [78]. Except for several thousand times higher sequencing throughput and
the dramatically increased degree of parallelism, a major advantage of NGS over Sanger sequencing is
the cost reduction by over two orders of magnitude [78]. Because the genomes of symbiotic species
are among the smallest (1~5 Gbp) compared with other dinoflagellates [81], the first available draft
genome of a dinoflagellate is Breviolim minutum (clade B) [38], soon followed by Fugacium kawagutii
(clade F) [39], Symbiodinium microadriaticum (clade A) [40], Cladocopium goreaui (clade C) [7], and other
Symbiodiniaceae species [41] (Table 1).
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Table 1. Genomic summary of six dinoflagellates draft genomes.

Breviolum
minutum [38]

Fugacium
kawagutii

CCMP2468 [39]

Symbiodinium
microadriaticum
CCMP2467 [40]

Cladocopium
goreaui

SCF055-01 [7]

Fugacium
kawagutii

CCMP2468 [7]

Symbiodiniaceae
[41]

Symbiodiniaceae
[41]

Clade B F A C F A C
Total assembled length (bp) 615,520,517 935,067,369 808,242,489 1,027,792,016 1,048,482,934 766,659,703 704,779,698

G+C content (%) 43.6 43.97 50.51 44.83 45.72 49.9 43.0
Genes Number of genes 41,925 36,850 49,109 35,913 26,609 69,018 65,832

Mean length of genes (bp) 11,959 3788 12,898 6967 6507 8834 8192
Mean length of transcripts (bp) 2067 1041 2377 1766 1736 1423 1479

Exons No. of exons per gene 19.6 4.1 21.8 10 8.7 13.38 11.27
Mean length (bp) 99.8 256 109.5 175.9 199.5 105 130
Total length (Mb) 82.1 38.4 117.3 63.4 46.2 98.2 97.3

Introns No. of genes with introns (%) 95.3 64.1 98.2 92.9 94 83.4 80.3
Mean length (bp) 499 893 504.7 575.1 619.4 561 622
Total length (Mb) 331.5 101.2 516.1 186.8 126.9 481.8 421.2

Intergenic
regions Mean length (bp) 2064 17,888 3633 10,627 23,042 2008 2202

platform

Roche 454
GS-FLX and

Illumina
(GAIIx)

Illumina HiSeq
2000 Illumina HiSeq Illumina HiSeq

2500
Illumina HiSeq

2500

Illumina
(GAIIx) and

Hiseq

Illumina
(GAIIx) and

Hiseq

Bioproject ID PRJDB732 SRA148697 PRJNA292355 PRJEB20399 PRJEB20399 PRJDB3242 PRJDB3243

GAIIx: Genome Analyzer IIx.
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Detailed genomic analysis shows that the gene structures of B. minutum and F. kawagutii have several
distinctive and divergent characteristics when compared to those of other eukaryotes. For example,
analysis of genome sequences of B. minutum [38] showed that: i) the genome contains nearly twice as
many gene families as that of its sister group, the apicomplexans; ii) only one-third of putative proteins
encoded by the permanently condensed chromosomes of B. minutum have eukaryotic orthologs; iii)
the identified genes are enriched in spliceosomal introns that use different recognition nucleotides
at 5′ splice site; iv) genes are arranged in one direction throughout the genome, forming a cluster
of genes, which was previously known only in trypanosomes, which are evolutionarily distantly
related [82]. What’s more, a novel promoter element (motifs TTTT instead of the TATA box used by
other eukaryotes) in the F. kawagutii genome, and a microRNA system potentially regulating gene
expression in both symbiont and coral were observed [39].

The draft genomes provide an important resource for understanding the characteristics of
Symbiodiniaceae biology and genetic differences between Symbiodiniaceae species (Figure 2). Global
annotated genome analysis revealed that: i) common metabolic pathways in typical photosynthetic
eukaryotes were found in the genomes of F. kawagutii and C. goreaui [7,39]; ii) Symbiodiniaceae-specific
gene families, such as genes related to sexual reproduction, cyst formation, and germination and
telomere synthesis, were identified in the assembled F. kawagutii and B. minutum genomes [39]; iii) some
genes were highly expanded in the Symbiodiniaceae genome, including genes encoding chlorophyll
a/b-binding proteins in B. minutum [38] and Symbiodiniaceae cladeA and Symbiodiniaceae cladeC [41],
ion channel proteins and DNA repair/recombination proteins in all sequenced Symbiodiniaceae
species [7,38–41,83], calcium channel and calmodulin families in B. minutum [38], heat shock proteins
in B. minutum [38] and F. kawagutii [39], antioxidant genes, including the large thioredoxin gene
family, superoxide dismutases and ascorbate peroxidases in F. kawagutii [39], as well as genes related
to meiosis and response to light stress in S. microadriaticum, C. goreaui, and F. kawagutii [7]; iv)
Symbiodiniaceae harbors a wide range of transport proteins [84], which are related to the supply
of carbon and nitrogen [40], are responsive to reactive oxygen species and can prevent ultraviolet
radiation [83], and all the studied dinoflagellates have more transmembrane transport proteins
involved in the exchange of amino acids, lipids, and glycerol than other eukaryotes through the
comparative analysis of genomes and transcriptomes [83]. Mycosporine-like amino acids (MAA) as
specific ultraviolet radiation blockers protect the photosynthetic machinery of the dinoflagellate [28].
The MAA biosynthetic pathway involves dehydroquinate synthase, O-methyltransferase, an ATP
(adenosine triphosphate)-grasp and non-ribosomal peptide synthetase [85]. It was found that the
ability to synthesize mycosporine-like amino acids varied significantly among different Symbiodiniaceae
clades [7,39,41]. The genome of Symbiodiniaceae (clade A) contains a gene cluster for the biosynthesis
of mycosporine-like amino acids, which may be transferred from an endosymbiotic red alga [41].
In the genomes of Symbiodiniaceae (clade C) and F. kawagutii, early research suggested that they have
completely lost the gene cluster [39,41]. However, a recent study using known proteins in bacteria,
fungi, and cnidarians as queries, allowed the identification of putative genes encoding all five enzymes,
including the short-chain dehydrogenase from the S. microadriaticum, C. goreaui, and F. kawagutii
genomes [7].

The draft genomes also provide an important resource for understanding the molecular basis
of coral-Symbiodiniaceae symbiosis. For example, i) genes related to synthesis and modification
of amino acids were discovered in F. kawagutii, C. goreaui, S. microadriaticum, and B. minutum
genomes, as many amino acids cannot be synthesized by coral host that must be supplied by
Symbiodiniaceae [7,39]; ii) the recognition of Symbiodiniaceae by the hosts was considered to be
mediated through the binding of Symbiodiniaceae high-mannose glycans by lectins on the coral cell
surface [86], and the genes encoding a glycan biosynthesis pathway have been identified in F. Kawagutii,
C. goreaui, S. microadriaticum, and B. minutum genomes [7,39]; iii) the cytosine methyltransferase gene
family in C. goreaui, S. microadriaticum, and B. minutum genomes was shown to be expansive [7,39],
which may partially explain a high proportion of diverse methylated nucleotides in dinoflagellates



Microorganisms 2019, 7, 288 6 of 25

species [27]. Therefore, the observed decreases in fluorometrically assayed β-glucoronidase expression
over time in Amphidinium and Symbiodiniaceae might suggest transgene silencing by a mechanism
involving methylation [87]; iv) the new-found promoter elements and microRNA systems regulating
gene expression may be useful as potential regulatory elements for metabolic engineering in
dinoflagellates [39].Microorganisms 2019, 7, 288 7 of 25 
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Figure 2. Major metabolic pathways in F. kawagutii. Complete pathways for the mitochondrial
tricarboxylic acid cycle (TCAcycle), fatty acid oxidation and the urea cycle, the chloroplastic
Calvin cycle, dicarboxylic acid cycle (C4 cycle), crassulacean acid metabolism (CAM), fatty acid
biosynthesis, peroxisomal fatty acid oxidation, glyoxylate cycle, and photorespiration are found
in the F. kawagutii genome. FAS, fatty acid synthase; GOT1, aspartate aminotransferase; ppc,
phosphoenolpyruvate carboxylase; MDH2, malate dehydrogenase; maeB, malic enzyme; ALT,
alanine transaminase; ppdK, pyruvate, phosphate dikinase; rpe, L-ribulose phosphate epimerase;
tktA, transketolase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; PGK, phosphoglycerate
kinase; rbcL, ribulose-bisphosphate carboxylase large chain; PRK, phosphoribulokinase; rpiA, ribose
5-phosphate isomerase A; glyK, glycerate kinase; ACSL, long-chain acyl-CoA synthetase; ACOX1,
acyl-CoA oxidase; echA, enoyl-CoA hydratase; HADH, 3-hydroxyacyl-CoA dehydrogenase; ACAA1,
acetyl-CoA acyltransferase; acnB, aconitate hydratase; aceA, isocitrate lyase; AceB, malate synthase;
HAO, (S)-2-hydroxy-acid oxidase; katG, catalase; GGAT, glutamate–glyoxylate aminotransferase;
GCSH, glycinSe cleavage system H protein; GyaR, glyoxylate reductase; AGXT, alanine-glyoxylate
transaminase / serine-glyoxylate transaminase / serine-pyruvate transaminase; CS, citrate synthase; IDH,
isocitrate dehydrogenase; OGDH, α-ketoglutarate dehydrogenase; LSC, Succinyl-CoA synthesase; SDH,
succinate dehydrogetase; fumA, fumarase; CPS1, carbamoyl phosphate synthetase I; argF, ornithine
carbamoyltransferase; argG, argininosuccinate synthase; argH, argininosuccinate lyase; NOS, NO
synthetase; FA, fatty acid; OAA, Oxaloacetic acid; α-KG, α-ketoglutarate. (Schemed based on the
study [38]).

Besides whole genome sequencing, NGS can also be applied to other aspects of dinoflagellates
biology research, such as mapping of structural rearrangements, analysis of DNA methylation,
and identification of DNA-protein interactions [78]. Although NGS technologies are powerful, one of
their major limitations is the relatively short reads they generated, which may lead to: i) mis-assemblies
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and gaps, as many repeated sequences that are longer than NGS reads exist in dinoflagellates
genomes [88,89]; ii) more challenges to detect and characterize larger structural variations [90].
Another major limitation is that dinoflagellates genomes contain regions of extreme high content
of guanine and cytosine, leading to inefficiently amplification by polymerase chain reaction [91].
The last is that a common NGS approach, bisulfite sequencing, can only detect C modification on
treatment of DNA by bisulfite, but cannot distinguish 5mC and 5hmC [92]. In contrast, the emerging
third-generation sequencing (TGS) technologies (e.g., single-molecule real-time sequencing used by
PacBio, nanopore sequencing used by Oxford Nanopore Technologies and synthetic long reads used by
Illumina/10X Genomics) can generate very long reads (tens of thousands of bases per nanopore) at the
single-molecule level, which allows less sequencing bias and more homogeneous genome coverage [91].
In addition, Oxford Nanopore Technologies can directly detect DNA methylation 5mC and 6mA
without amplification by polymerase chain reaction [93,94]. In spite of the major drawback, a high
error rate (~15%), TGS technologies have been applied successfully in the analysis of repeated regions
and structural variations, haplotype phasing, and transcriptome analysis [91]. In combination of NGS
technologies, it is expected that TGS technologies have the potential to solve the sequencing bottleneck
of dinoflagellates with large and complex genomes.

2.2. Transcriptomic Analysis of Marine Dinoflagellates

Although the enormous genome size of most dinoflagellates makes it challenging to obtain
a whole genome sequence, one promising strategy to understand the function and regulation of
both functionally known and unknown genes in an uncharacterized genome can be achieved by
examining gene expression by transcriptomics analysis [95,96]. Several common methodologies
for transcriptomics analysis used in dinoflagellates include: i) microarrays, a high throughput and
relatively inexpensive method, which is based on hybridization but is subject to a number of limitations
(e.g., relying upon existing genome sequence, high levels of background noise, and a limited dynamic
range of detection of different isoforms and allelic expression) [97–99]; ii) expressed sequence tag
(EST) sequencing, a method that is based on Sanger sequencing, and is relatively accurate but has
many inherent disadvantages, such as low throughput, high cost, and the lack of the ability of
quantification [97,100]; iii) massively parallel signature sequencing (MPSS), which is a tag-based high
throughput method for sequencing millions of templates cloned on the surface of microbeads, is still
subject to the limitations (e.g., high cost, a limited dynamic range of detection of isoforms, and disability
of mapping a part of short tags to the reference genome) [97,101]; iv) RNA-Seq (RNA-sequencing),
an high throughput approach employing NGS or TGS for direct sequencing of cDNA transcribed
from the whole transcriptomes [97]. RNA-Seq shows clear advantages and has good application
prospects, compared with other transcriptomic approaches [97]. First, it is not limited to the detection
of transcripts that have corresponding genomic sequences, which attracts non-model organisms whose
genome sequences have not yet been determined; second, it also has a high resolution to reveal
the precise location of transcription boundaries, wide dynamic range to quantify gene expression
level, and the ability to distinguish sequence variations, which are especially useful for complex
transcriptomes [97]. Finally, RNA-Seq has a relatively low background, high accuracy of quantitative
expression level, high technological reproducibility, and a much lower cost [97]. Thus, RNA-Seq
technology has been most widely used approach in the transcriptomic analysis of dinoflagellates in
recent years. A detailed summary on transcriptomics analysis of dinoflagellates is provided in Table 2.
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Table 2. Transcriptomics studies of marine dinoflagellates.

Species Propose Platform Ref./year

Dinoflagellates responsible for HABs and toxic

Karenia brevis To establish a database of K. brevis ESTs and identify
conserved eukaryotic genes microarray [102] 2005

Karenia brevis To compare gene expression in response to light
and dark microarray [103] 2007

Karenia brevis To investigate characterization and expression of
nuclear-encoded polyketide synthases (PKSs) microarray [104] 2010

Karenia brevis To address transcriptional responses to nitrogen and
phosphorus depletion and addition microarray [105] 2011

Karenia brevis
To compare global transcriptome changes that

accompany the entry and maintenance of stationary
phase up to the onset of cell death.

microarray [106] 2012

Alexandrium catenella To study the content and regulation of the
dinoflagellate genome MPSS [44] 2006

Alexandrium catenella
CCMP1719

To generate time-serial ESTs throughout a diel cycle
during bloom

Roche 454 GS
FLX [107] 2015

Alexandrium minutum To compare gene expression in toxic versus
non-toxic strains Microarray [47] 2010

Alexandrium minutum
To determine transcriptional changes during the

copepod-provoked induction of higher toxicity in A.
minutum.

microarray [108] 2011

Alexandrium tamarense
CCMP1598

To investigate global transcriptional regulation under
four different conditions, with xenic,

nitrogen-limited, phosphorus- limited, and
nutrient-replete

MPSS [46] 2010

Alexandrium monilatum
CCMP3105

To study transcriptional responses to limiting N and
P conditions

Illumina HiSeq
2000 [109] 2017

Alexandrium ostenfeldii To analyze gene composition, and structure and
peculiarities of gene regulation [110] 2011

Gambierdiscus
polynesiensis

To reveal the mechanisms of CTX biosynthesis using
transcriptomics

Roche 454 GS
FLX [54] 2014

Alexandrium catenella To construct an expressed sequence tag (EST) library
from Alexandrium catenella * [43] 2008

Alexandrium catenella To determine the gene repertoire based on (NGS)
technologies

Illumina
Genome

Analyzer.
[55] 2014

Alexandrium catenella
To study the mechanism of PSTs synthesis using

transcriptome profiles of a toxin-producing and its
non-toxic mutant form

Illumina Hiseq
2000 [56] 2014

Alexandrium catenella
(ACHK-T)

To study molecular mechanisms for PST biosynthesis
using the transcriptome profiles of a toxin-producing
dinoflagellates at different toxin biosynthesis stages

within the cell cycle

Illumina Hiseq
2000 [60] 2017

Amphidinium carterae To study de novo transcriptome for the identification
of enzymes with biotechnological potential

Illumina
HiSeq.1000 [111] 2017

Azadinium spinosum
Transcriptomic and genomic characterization of the
toxigenic dinoflagellate with emphasis on polyketide

synthase genes

Roche 454 GS
FLX [112] 2015

Prorocentrum minimum
CCMP 1329

To identify genetic modules mediating the Jekyll and
Hyde Interaction

Illumina HiSeq
2500 [113] 2015

Prorocentrum minimum
D-127

To evaluate genome-scale responses when exposed
to polychlorinated biphenyl microarray [114] 2018

Cochlodinium polykrikoides To compare transcriptional responses to the algicide
copper sulfate

Illumina HiSeq
2500 [115] 2016

Karenia mikimotoi
C32-HK

To reveal non-alkaline phosphatase-based molecular
machinery of ATP utilization

Roche 454 GS
FLX [116] 2017
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Table 2. Cont.

Species Propose Platform Ref./year

Dinoflagellates responsible for HABs and nontoxic

Scrippsiella trochoidea
CCMP 3099

To study the biochemical and physiological
adaptations related to nutrient depletion

Illumina HiSeq
2000 [117] 2016

Dinoflagellate producing ciguatoxin

Gambierdiscus caribaeus To trace the evolutionary history of C and N
pathways in this phylum using transcriptome data Illumina MiSeq [118] 2016

Dinoflagellates responsible for diarrheic shellfish poisoning

Prorocentrum lima CCMP
2579

To compare the molecular and cellular responses to
N limitation

Illumina HiSeq
2500 [119] 2018

Symbiotic dinoflagellates

Symbiodiniaceae (clade A)
Symbiodiniaceae (clade B)

To construct an EST dataset for the genetic study of
Symbiodiniaceae

Roche 454 GS
FLX [63] 2012

Symbiodiniaceae Type D2
Symbiodiniaceae Type C3K

To compare transcriptional responses to thermal
stress and the differences among physiologically

susceptible and tolerant types
Illumina HiSeq [64] 2014

Symbiodinium
microadriaticum clade A1,

CCMP 2467

To study the repertoire of endogenous smRNAs and
to identify potential gene targets in dinoflagellates

Illumina HiSeq
2000 [120] 2013

Symbiodiniaceae SSB01
To study transcriptional responses to immediate

changes in light intensity when grown under
autotrophic or mixotrophic conditions

Illumina HiSeq
2000 [66] 2015

Symbiodiniaceae type C1
To study physiological and transcriptional responses

to heat stress and to identify the gene related
thermal response

Illumina HiSeq
2500 [67] 2016

Symbiodiniaceae type C1 To study effects of viral infections to Symbiodiniaceae
when heat-stressed

Illumina HiSeq
2500 [70] 2017

Symbiodiniaceae (clade F) To study the transcriptional response of cellular
mechanisms under future temperature conditions

Illumina HiSeq
2000 [121] 2017

Fugacium kawagutii
CCMP2468

To study transcriptional responses to thermal stress
and varied phosphorus conditions * [122] 2019

The fastest swimming dinoflagellates

Ansanella granifera To study the structural and functional genes of
dinoflagellate flagelle

Illumina HiSeq
2500 [123] 2017

high DHA yields dinoflagellate

Crypthecodinium cohnii
ATCC 30556

To compare transcriptional differences on a high
lipid producing mutant with the wide-type strain

Illumina HiSeq
4000 [12] 2017

Crypthecodinium cohnii
ATCC 30556

To compare transcriptional difference following the
growth course during fed-batch fermentation

Illumina HiSeq
2500 [72] 2017

Basal dinoflagellates

Perkinsus olseni To study distribution and evolution of peroxisomes
in the super ensemble Alveolata

MiSeq and
HiSeq 2000 [124] 2017

Pyrocystis lunula
To study gene expression in Pyrocystis lunula in

responsive to the addition of sodium nitrite
and paraquat

microarray [125] 2003

Pyrocystis lunula To analyze circadian regulation at transcriptional
levels in Pyrocystis lunula microarray [126] 2003

Lingulodinium polyedrum To study molecular underpinnings of cold-induced
cyst formation Sin the dinoflagellate L. polyedrum Illumina HiSeq [127] 2014

Oxyrrhis marina To study transcriptional responses to salinity [128] 2011

Dinophysis acuminata To determine whether the dinoflagellates contain
nuclear-encoded genes for plastid function

Roche 454 GS
FLX [129] 2010

*, not mentioned; HABs: harmful algal blooms; ESTs: expressed sequence tags; MPSS: Massively Parallel Signature
Sequencing; CTX: Ciguatoxins; NGS: next-generation sequencing; EDCs: Endocrine disrupting chemicals; PST:
paralytic shellfish toxins.
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Through transcriptomics analysis, several important aspects of genome structure and gene
expression regulation in dinoflagellates have been discovered: i) transcriptomic analysis had recognized
transcripts for all core histones (H2A, H2B, H3, H4) and their variants (H2A.X and H2A.Z) [125,130,131],
despite the fact that dinoflagellates had been previously considered to completely lose histones
genes [132]; ii) using the EST library, the genomic structures of 47 genes from the dinoflagellate
Amphidinium carterae were identified and addressed [133]. The study showed that almost all highly
expressed tags exist in large tandem gene arrays with short intergenic spacers, while the second class
of genes showed high intron density and significantly lower copy number. A polyadenylation signal
was also discovered in genomic copies at the exact polyadenylation site and was conserved between
species; iii) the presence of 5′- trans-spliced leader addition in mRNA processing was found in several
dinoflagellates using EST data, suggesting that dinoflagellates heavily rely on the posttranscriptional
regulation of gene expression [131,133–135]; iv) compared to other eukaryotes, a reduced role for the
transcriptional regulation of gene expression was discovered. For example, the analysis showed that
only about 3% of the genes were significantly changed at transcriptional level in response to a circadian
clock [126] and only 4% in response to oxidative stress in Pyrocystis lunula [125].

Transcriptome profiling also allows for the study of the metabolic and physiological response of
dinoflagellates responsive to various stresses. As summarized in Table 2, transcriptional changes of
dinoflagellates under different growth conditions have been extensively studied. First, for some species
of dinoflagellates responsible for forming HABs, studies have been conducted on how environmental
conditions conductive to HABs [46,105,109,114,115] affect the expression of toxin related genes and the
toxin biosynthesis pathway [47,56,60,108] as well as physiological processes of HABs outbreak [107].
For example, in Alexandrium tamarense, MPSS results showed that transcripts of chlorophyll a/b binding
protein, histone family protein, S-adenosylmethionine synthetase, and S-adenosylhomocysteine
hydrolase were the highest expressed among all tested conditions that provoke the formation of
HABs [46]. Microarray-based comparative transcriptome profiles of dinoflagellate Alexandrium minutum
suggested that many genes were more highly expressed in the toxic than in the non-toxic strain,
and several genes were even expressed only in the toxic strains [47]. In addition, a variety of metabolic
pathways specially related to various N (cyanate, urea, nitrate/nitrite, and ammonium) uptake and
assimilation were enriched, which is likely to confer competitive advantages for bloom formation or
maintenance in Alexandrium catenella [107]. Using time sequential metatranscriptomic, they analyzed a
natural assemblage that evolved from diatom (Skeletonema) dominance to a dinoflagellate (Prorocentrum
donghaiense) bloom [136]. The results showed that during the dominant period, a similar series of most
active metabolic processes (energy and nutrient acquisition, stress resistance) promoted growth and
distinct metabolic pathways were used by diatom and dinoflagellates in their respective dominance,
while P. donghaiense possessed more diversified light energy and phosphate acquisition strategy and
antimicrobial defense, which might cause them to grow faster than diatoms and form blooms. Second,
due to the potential significance in coral bleaching, transcriptional changes of Symbiodiniaceae in
response to thermal stress or light have been widely investigated [64,66,67,121,122]. Transcriptomic
responses to heat stress in F. kawagutii were determined, and the results showed that 357 genes were
differentially expressed under heat stress, and most of them were involved in regulating cell wall
modulation and the transport of iron, oxygen, and major nutrients. What’s more, the expression of
heat shock proteins was strongly elevated during heat stress, within expectations. The results also
showed that the demand for nutrients, iron, and oxygen in F. kawagutii might be higher under heat
stress [122]. When grown under autotrophic or mixotrophic conditions, the expression levels of many
Symbiodiniaceae SSB01 genes seemed to be significantly affected by light, such as a cryptochrome 2
gene (declined in high light), regulators of Chromatin Condensation (RCC1) (declined in the dark),
a light harvesting AcpPC protein (increased in high light autotrophic conditions), and several cell
adhesion proteins (rapidly declined when the culture was moved from low light to darkness) [66].
The increased transcript level of AcpPC gene suggests that it is involved in photo-protection and the
dissipation of excess absorbed light energy. The decreased cell adhesion protein level is related to the
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significant change in cell surface morphology, which may reflect the complexity of the extracellular
matrix [66]. These results provided valuable insights into the molecular basis of thermal or light
resistance of dinoflagellates and coral bleaching. Third, to characterize the mechanisms during DHA
production, a transcriptional analysis of the heterotrophic C. cohnii under different cultivation stages
and conditions was carried out. By analyzing and comparing the differential gene expression profiles
during lipid accumulation and DHA formation stages, core metabolism pathways in C. cohnii were
proposed (Figure 3) [72]. In addition, transcripts related to fatty acid biosynthesis, starch and sucrose
metabolism, and unsaturated fatty acids biosynthesis were significantly up-regulated during late-stage
fermentation [72]. The study also found that some polyketide synthases and fatty acid desaturases
may be involved in the biosynthesis of DHA. In addition, some enzymes involved in reducing power
metabolism, such as malic enzyme and isocitrate dehydrogenase were up-regulated 1.7- to 2.3-fold
during the lipid and DHA accumulation stages respectively, while the transcript of glucose-6-phosphate
1-dehydrogenase was downregulated 0.86- to 0.57-fold, suggesting that C. cohnii might use the malic
enzyme and isocitrate dehydrogenase instead of glucose-6-phosphate 1-dehydrogenase to produce
NADPH (nicotinamide adenine dinucleotide phosphate) [137]. Furthermore, C. cohnii mutants with
high DHA productivity were also examined through transcriptomics analysis [12]. It was found that
gene expression levels involved in fatty acid biosynthesis, energy, central carbohydrate, and amino
acid metabolism were upregulated in the mutant with high DHA productivity, compared to the wild
type. These results provide a basis for understanding for improving lipid accumulation and DHA
production by rational engineering of C. cohnii in the future.

Although transcriptomic analysis provides a “snap shot” of gene expression under specific
environmental and physiological conditions, it was also found that mRNA expression levels sometimes
have a poor correlational relationship with the phenotype in dinoflagellates. For example, oscillating
RNAs were not detected over the circadian cycle of the dinoflagellate Lingulodinium polyedrum [138].
They also discovered that the timing of the bioluminescence and photosynthesis rhythms remained
unchanged, even when transcription rates had decreased to about 5% of the levels of untreated cells
with the addition of inhibitors actinomycin D and cordycepin. Furthermore, there were no detectable
changes in gene expression across the two types of Symbiodiniaceae (one was thermotolerant type
and the other was more susceptible type) under thermal stress, even as the symbiosis was breaking
down [64]. Some of these phenomena could be partially due to many cellular mechanisms acting at a
post-transcriptional level. Another important feature is the generally low degree of congruency between
mRNA and protein expression. For example, for the 167 proteins in Symbiodiniaceae downregulated at
variable temperatures, only two corresponding mRNAs were differentially expressed between different
treatments, while for 378 differentially expressed genes, none of their corresponding proteins was
differentially expressed [68]. Therefore, it is worth noting the inherent risk of inferring cellular behavior
based on transcriptional data alone. More and integrated omics or physiological analysis should be
carried out for the full confirmation of metabolic and physiological behaviors of dinoflagellates.
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Figure 3. Metabolic pathways in C. cohnii. Pathways associated with central carbohydrate,
fatty acid and TAG biosynthesis, fatty acid oxidation, glyoxylate cycle, and nitrogen
metabolic pathways. GK, glucokinase; G6PD, glucose-6-phosphate 1-dehydrogenase; G6PD2,
6-phosphogluconate dehydrogenase; PFK, 6-phosphofructokinase; FBA, fructosebisphosphate aldolase;
GPD1, glycerol-3-phosphate dehydrogenase; GUT2, glycerol-kinase; PCK, phosphoenolpyruvate
carboxykinase; PK, pyruvate kinase; ME, malic enzyme; MDE, malate dehydrogenase; ACL, ATP
citrate lyase; ACC, acetyl-CoA carboxylase; PUFAS, polyunsaturated fatty acid synthase; FAS, fatty
acid synthase; MCAT, malonyl-CoA: ACP transacylase; ACSL, long-chain acyl-CoA synthetase; DHA,
docosahexaenoic acid; PUFA, polyunsaturated fatty acid; TAG, triacylglycerol. (Schemed based on the
study [72]).

2.3. Proteomic Analysis of Marine Dinoflagellates

As the main component of cellular structure and communication, protein is believed to be a
more relevant indicator of an observed cellular phenotype than RNA [139]. Two major strategies for
the separation and visualization of proteins are applied in proteomics: i) the two dimensional gel
electrophoresis (2-DE) strategy, which separates proteins based on their masses and isoelectric
points, followed by mass spectrometric identification; ii) gel-free profiling procedures, which
rely on multidimensional separations coupling micro-scale separations with automated tandem
mass spectrometry [140,141]. In the past decades, the proteomics technology has been rapidly
developed, which make it possible to more directly probe the cellular behaviors of dinoflagellates than
before [26,142].
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Gel-free proteomics techniques, such as matrix-assisted laser desorption ionization-time-of-flight
mass spectrometry (MALDI-TOF-MS) [143] and capillary liquid chromatography followed by tandem
mass spectrometry (LC-MS) [144], have been applied to dinoflagellates proteomes. In particular,
a non-gel based quantitative proteomic method named iTRAQ (isobaric Tags for Relative and Absolute
Quantification), which quantifies proteins based on peptide labeling and allows large-scale identification
and accurate quantification of proteins from multiple samples within broad dynamic ranges of protein
abundance, have been conducted for A. catenella [58] or Karlodinium veneficum [145]. In the study, a total
of 3488 or 4922 proteins were successfully identified from the proteomics of A. catenella or K. veneficum
respectively, which are the highest number of proteins identified in dinoflagellates. Comparing the
protein profiles of a toxin-producing dinoflagellate A. catenella (ACHK-T) and its non-toxic mutant
(ACHK-NT) using a combination of iTRAQ-based proteomic approach and a transcriptomic database,
they found different carbon and energy utilization strategies between ACHK-T and ACHK-NT,
and discovered seven cyanobacterial toxin-related proteins and sxtG of dinoflagellates, which were
identified as candidates involved in toxin biosynthesis but had no obvious difference between the two
strains [58]. In K. veneficum, the changes in non-photochemical quenching and molecular mechanism
under phosphorus deprivation were studied [145]. Proteomics results based on iTRAQ showed that
non-photochemical quenching in K. veneficum increased significantly under phosphorus deprivation.
Correspondingly, three light-harvesting complex stress-related proteins and energy production- and
conversion-related proteins were up-regulated, while many proteins related to genetic information
flow were down-regulated. It is expected that the iTRAQ-based proteomic approach could be utilized
more frequently in future work as increasing genomic information on the dinoflagellates appears.
However, proteins identified by iTRAQ-based proteomic approach are still far fewer than genes
identified by genomics and transcriptomics approaches. One of the important reasons for this is
the tedious and immature protein extraction procedures (including cell wall disruption and protein
extraction), as most dinoflagellates have a tough and complex cell cortex leading to incomplete cell
wall breakage and chemical contamination during extraction, which can interfere protein analysis [142].
Another important reason is protein identification, which is detailed below.

Proteomics has shown its powerful utilization in exploring the physiological and metabolic
characteristics of dinoflagellates. Proteomics analysis has been used to identify new dinoflagellates
species [48,143,146–149]. Traditional morphological approaches have been widely applied in
dinoflagellate species identification, but these methods exhibit weaknesses in distinguishing
closely related species with similar morphologies [26]. Using two-dimensional gel electrophoresis
(2-DE) proteomics technology, species-specific protein expression profiles and standards of species
identification in ten dinoflagellate species were established [147]. 2-DE has also been used to
differentiate morphospecies (toxic and nontoxic) of A. minutum, and differentially expressed proteins
between different morphospecies were observed at the proteome level [143]. Proteomics has also been
employed to discover proteins of Symbiodiniaceae [150] and to reveal proteins involved in symbiosis
and responses to environmental stress [151]. Using proteomics based on LC–MS/MS, 417 protein
spots were identified in the endosymbiotic zooxanthellae from Euphyllia glabrescens and three marker
proteins (green fluorescent protein R7, Histone H2B, and peridinin chlorophyll-a binding protein)
were also found [150]. A total of 8098 MS/MS spectra relevant to peptides from the fraction of
endosymbiont were identified, while only 26 peptides showed a significant change when treated with
thermal stress or ion limitation. Surprisingly, the expression levels of proteins related to antioxidant
or heat stress phenotypes were roughly the same, while proteins involved in protein biosynthesis
were highly expressed. Proteomics has also been used to compare the performance of different
Symbiodiniaceae species [144,152]. Using LC-MS based proteomics, they compared proteomes of the
model sea anemone Exaiptasia pallida colonized by different dinoflagellate symbiont (B. minutum and
Durusdinium trenchii) [144]. Results showed that in anemones containing D. trenchii (heterologous
symbiont), Niemann-Pick C2 proteins, and glutamine synthetases were lowly expressed, while
methionine-synthesizing betaine–homocysteine S-methyltransferases and proteins with predicted
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oxidative stress response functions were highly expressed when compared with anemones containing
B. minutum (homologous symbiont). In another study, the researchers found that high-density symbiotic
colonization required avoiding the immune responses of host cells, enhancing ammonium regulation,
and inhibiting the phagocytosis of host cells after colonization [152]. iv) Proteins related to toxin
biosynthesis were identified in A. catenella through proteomics analysis [153]. The proteomic results
showed that the abundance of nine proteins with known functions in paralytic shellfish toxin-producing
cyanobacteria was differentially regulated between toxin biosynthesis stages, suggesting that they
might be involved in toxin biosynthesis in A. catenella.

In spite of the progress made, proteomics analysis of dinoflagellates still faces some technical
challenges, especially for protein identification and validation. Protein identification largely depends
on relevant genomic sequences, but so far only six draft whole genome sequences of dinoflagellates
are available, and transcriptomes are still insufficient as a substitute for the query due to low coverage.
In addition, peptides often contain post-translational modifications that lead to mass change of the
fragments, thus hindering identification. Nevertheless, with the rapid development of genomics and
transcriptomics in the near future, it is expected that proteomics will become a more powerful tool for
studying dinoflagellates biology.

2.4. Metabolomic Analysis of Marine Dinoflagellates

Metabolomics is a global interrogation of cellular components, and has been gradually considered
as a crucial supplement to other omics in exploring the mechanisms of dinoflagellates biology [154].
The advantages of metabolomics lie in its ability to detect qualitative and quantitative changes in a large
number of metabolites using mass spectrometry and nuclear magnetic resonance spectroscopy [154].
Although there are a number of high-resolution technologies capable of detecting and identifying
changes in metabolite profiles, our understanding of how these differently expressed metabolites affect
overall biological function is still in infancy [155–157]. Currently, gas chromatography time-of-flight
mass spectrometry (GC-TOF-MS), high-performance liquid chromatography mass spectrometry
(LC-MS), and 13C-labeling based metabolic flux analyses have been mainly used in dinoflagellates
metabolomics analysis (Table 3) [69,73,158,159].

Table 3. Metabolomics studies of marine dinoflagellates.

Species Propose Methods Ref./year

Symbiodiniaceae (clade B) To analysis fatty acid composition in cellular
TAGs GC-MS [160] 2014

Symbiodinium
microadriaticum,

Breviolum minutum,
Breviolum psygmophilum,

Durusdinium trenchii,

To study the metabolite profile of marine
symbiotic dinoflagellates of Symbiodiniaceae GC-MS [161] 2015

Symbiodiniaceae To compare widespread change in carbon fate
during coral bleaching

13C labelling
coupled to GC-MS

[158] 2017

Symbiodiniaceae To map carbon fate during bleaching
13C labelling

coupled to GC-MS
[69] 2017

Breviolum minutum
to determine metabolomic changes of Breviolum
minutum in acidification condition, and explore

the possible mechanisms
LC-MS/MS [162] 2019

Crypthecodinium cohnii
ATCC 30772

To study mechanism of antioxidant butylated
hydroxyanisole on lipid accumulation LC-MS and GC-MS [13] 2014

Crypthecodinium cohnii
ATCC 30556

To reveal mechanisms related to glucose
tolerance of C. cohnii through adaptive

laboratory evolution
GC-MS [11] 2017
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Table 3. Cont.

Species Propose Methods Ref./year

Crypthecodinium cohnii
ATCC 30556

To study physiological metabolism of C. cohnii
for increased DHA production GC-MS [72] 2017

Crypthecodinium cohnii
ATCC 30556

To gain understanding of the lipid metabolism
and mechanism for the positive effects of

modulator ethanolamine

13C labelling
coupled to GC-MS

[73] 2018

Crypthecodinium cohnii
ATCC 30556

To study metabolic responses to different
dissolved oxygen levels during DHA

fermentation
GC-MS [74] 2018

Crypthecodinium cohnii
ATCC 30556

To compare molecular mechanisms of lipid
accumulation in different strains LC-MS and GC-MS [75] 2018

Crypthecodinium cohnii
M-1-2

To determine the metabolic changes under
different nitrogen feeding conditions GC-MS [76] 2018

Crypthecodinium cohnii
ATCC 30556

To comparative analyze C. cohnii mutants
obtained from laboratory evolution LC-MS and GC-MS [15] 2018

Scrippsiella trochoidea
CCMP 3099

To development single-cell metabolomics
methodologies for small protists such as

marine dinoflagellates
‘Single-probe’ MS [163] 2018

Ostreopsis cf. ovata
To determine allelopathic interactions between

the benthic toxic dinoflagellate Ostreopsis cf.
ovata and a co-occurring diatom

LC-MS [61] 2018

Although the application of metabolomics to dinoflagellates is relatively new, it has already
made significant contributions to dinoflagellates biology research (Table 3): i) metabolomics studies
focusing on lipogenetic mechanisms of C. cohnii have been conducted. For example, metabolomic
analysis has been used to identify metabolic modules and hub metabolites related to the positive role
of the antioxidant butylated hydroxyanisole on lipogenesis in C. cohnii [13], to determine mechanisms
relevant to glucose tolerance through adaptive laboratory evolution [11], the responsive metabolites
associated with varying dissolved oxygen levels [74], as well as the metabolic changes among different
nitrogen feeding fermentation conditions in C. cohnii [76]; ii) metabolite profiles related to several
growth conditions of marine symbiotic dinoflagellates of Symbiodiniaceae were also examined using
GC-MS based metabolomic analysis [161], and the results showed that both the production of sterols
and sugars and the abundance of hexose and inositol were different between different Symbiodiniaceae
species. As acidification markedly inhibited B. minutum growth [164], the responsive metabolite profile
of B. minutum to acidification was studied [162]. The results showed that: a) saturated fatty acids
and oligosaccharides were accumulated when B. minutum was cultured in the acidification condition,
which was considered as an important strategy to adapt to acidification; and b) the inhibition of the
growth rate was possibly due to the affection of acidification to the biosynthesis of amino acids and
proteins of B. minutum; iii) 13C labelling coupled with GC-MS was used to track carbon changes in
metabolic flux dinoflagellates. For example, autotrophic carbon fate was mapped in both Aiptasia and
Symbiodiniaceae (a model cnidarian-dinoflagellate symbiosis) exposed to thermal stress [69]. A newly
fixed carbon fate in the model cnidarian Exaiptasia pallida was characterized with colonized with either
native B. minutum or non-native D. trenchii using 13C-labeling coupled with GC-MS [159]. Different
abundance and diversity of metabolites were detected between anemones colonized with different
Symbiodiniaceae species and significant alterations to host molecular signaling pathways were also
revealed. For heterotrophic C. cohnii, 13C-labeling based metabolic flux analysis has been used to
explore the central flux distribution after addition of ethanolamine to stimulate lipid accumulation [73].
It was found that activity of the glycolysis pathway and citrate pyruvate cycle was increased, while
that of the pentose phosphate pathway and TCA cycle was attenuated after adding ethanolamine;
iv) exometabolomics, which focused on the research of complete small molecules cells secret into
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their environments [165], was also used for investigating interactions of different dinoflagellates
species. For example, when Ostreopsis cf. ovata was co-cultivated with diatom Licmophora paradoxa,
the exometabolome of L. paradoxa was found impair the growth and the photochemistry of Ostreopsis
cf. ovata in both bioassays and co-cultures, and some biomarkers possibly involved in the inhibition
effects were later identified using a metabolomic approach [61].

Although the comprehensiveness and measurement accuracy of metabolomics still needs further
improvements [155–157], early research has demonstrated that metabolomics is a powerful tool in
exploring metabolism and filling the phenotype-genotype gap because it presents a closer picture of
cellular activity than other omics methods [157]. Furthermore, metabolomics is considered as a more
promising approach for interpreting the basic characteristics of dinoflagellates without sequencing
entire genomes.

2.5. Integrated Omics Analysis of Marine Dinoflagellates

In recent years, it has been realized that single “omics” analysis is not sufficient for characterizing
the complexity of dinoflagellate biological systems. Therefore, integration of multiple “omics” approach
is required to obtain a relatively precise picture of dinoflagellates. Some attempts have been made
recently to integrate heterogeneous “omics” datasets in various microbial systems, and the results
have demonstrated that the “multi-omics” method is a powerful tool for understanding the functional
principles and dynamics of total cellular systems [37,166–170].

The integration of the “multi-omics” approach was also applied to explore complex metabolic
networks and global regulatory mechanisms in dinoflagellates [68,71,72,171]. For example, i) integrated
transcriptomic and metabolomic analysis was applied to characterize the molecular and physiological
processes of DHA synthesis in the fed-batch fermentation of C. cohnii, and differently expressed genes
involved in fatty acid and DHA biosynthesis were discovered [72]; ii) integrated transcriptomic and
metabolomic analysis was also used to compare the effects on the sea anemone Exaiptasia pallida when
colonized by a homologous symbiont B. minutum and a heterologous, opportunistic, and thermally
tolerant symbiont D. trenchii [171]. It was shown that the catabolism of fixed carbon storage, metabolic
signals, and immune processes were increased in E. pallide accompanied with heterogenous symbiosis
D. trenchii, in comparison with homologous B. minutum colonized hosts; iii) integrated transcriptomic
and proteomic analysis was used to study the temperature adaptation mechanism of Zooxanthellate
cnidarians (the Red Sea (RS), North Carolina (CC7), and Hawaii (H2)) [71]. A common core response to
thermal stress (24 h at 32 ◦C), containing protein folding and oxidative stress pathways, was highlighted
through comparisons. The level of antioxidant gene expression was increased in all three anemones,
while RS anemones showed the greatest increase. Reactive oxygen species production was different
between three strains, which were symbiont-driven, while RS anemones showed significantly lower
levels in hospite [68].

When using the multi-omics approach, there still are many tough challenges. For example,
low correlation between the transcript and protein levels, which might be due to posttranscriptional
regulation of gene expression or a lack of the proper statistical tools for biological interpretation [37].
In addition to the risk of using single omics analysis, these is also a need to develop new bioinformatics
tools and improve the availability of public data repositories.

3. Conclusions and Prospective Research

Omics research on dinoflagellates has attracted great interest in the past few decades, as it has
substantially contributed to the better understanding of the dinoflagellates at the molecular level.
However, there are still challenges in omics analysis, and the risks of only using one kind of omics
technology to explore dinoflagellates biology deserve attention.

In future studies, several aspects of omics research on dinoflagellates should be strengthened.
First, more attention should be paid to the complete genome sequencing of dinoflagellates. The newly
developed DNA sequencing technologies, such as single-molecule DNA sequencing, could compensate
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for the shortcomings of NGS for this purpose, by acting as long scaffolds to resolve highly repetitive
genomic regions [172], and make whole-genome sequencing of dinoflagellates much more feasible.
Second, strengthening the description of the proteome/metabolome of a dinoflagellate, and establishing
a reference proteome/metabolome of a dinoflagellate. These would will greatly increase the rate of
discovery in dinoflagellate biology and reveal biomarkers for certain functional characteristics or
responses of dinoflagellates. Third, integrated multi-omics analysis is important for exploring dynamic
process spanning multiple cellular components in dinoflagellates [37]. Functional genomics data sets,
such as transcriptomics, proteomics, and genome-wide mutant screens, can provide additional layers
of gene-specific functional data. This integrated approach can minimize errors during analysis and
the result will be more comprehensive and accurate. Fourth, it is urgent that the mechanism of HABs
formation and toxin biosynthesis receive intensive study. In recent years, there has been a negative
influence of dinoflagellate blooms on the environment and human society, as they are occurring
more frequently and becoming larger in scale [173]. Finally, as transformation systems for selective
species of dinoflagellates, such as Amphidinium, S. microadriaticum, Symbiodiniaceae, and C. cohnii,
have been reported [75,87,174], the results obtained from omics analysis can provide more targets
and pathways to accelerate the process of genetic engineering in dinoflagellates. More mutants with
superior characteristics, such as C. cohnii, with higher fractions of DHA, or Symbiodiniaceae, with the
ability to tolerate higher temperatures will be constructed.
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