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Abstract

The light-harvesting complex (LHC) is an essential component in light energy capture and
transduction to facilitate downstream photosynthetic reactions in plant and algal chloro-
plasts. The unicellular dinoflagellate alga Symbiodinium is an endosymbiont of cnidarian
animals, including corals and sea anemones, and provides carbohydrates generated
through photosynthesis to host animals. Although Symbiodinium possesses a unique LHC
gene family, called chlorophyll a-chlorophyll c.-peridinin protein complex (acpPC), its ge-
nome-level diversity and evolutionary trajectories have not been investigated. Here, we de-
scribe a phylogenetic analysis revealing that many of the LHCs are encoded by highly
duplicated genes with multi-subunit polyprotein structures in the nuclear genome of Sym-
biodinium minutum. This analysis provides an extended list of the LHC gene family in a sin-
gle organism, including 80 loci encoding polyproteins composed of 145 LHC subunits
recovered in the phylogenetic tree. In S. minutum, 5 phylogenetic groups of the Lhcf-type
gene family, which is exclusively conserved in algae harboring secondary plastids of red
algal origin, were identified. Moreover, 5 groups of the Lhcr-type gene family, of which mem-
bers are known to be associated with PSI in red algal plastids and secondary plastids of red
algal origin, were identified. Notably, members classified within a phylogenetic group of the
Lhcf-type (group F1) are highly duplicated, which may explain the presence of an unusually
large number of LHC genes in this species. Some gene units were homologous to other
units within single loci of the polyprotein genes, whereas intergenic homologies between
separate loci were conspicuous in other cases, implying that gene unit ‘shuffling’ by gene
conversion and/or genome rearrangement might have been a driving force for diversifica-
tion. These results suggest that vigorous intra- and intergenic gene duplication events have
resulted in the genomic framework of photosynthesis in coral symbiont dinoflagellate algae.
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Introduction

Light harvesting complex (LHC) proteins are peripheral components of photosystem (PS) I
and PSII and essential for receiving and transferring light energy to the core machinery of the
photosystems as well as dissipating such energy as heat under excess light conditions [1,2].
LHC proteins typically possess three transmembrane helices and bind photosynthetic pigments
such as chlorophylls and xanthophylls, and a variety of LHC protein families have evolved in
photosynthetic eukaryotes. Genes encoding LHCs are phylogenetically conserved across eu-
karyotes and are conceivably derived from a cyanobacterial gene encoding the single trans-
membrane helix polypeptide Hlip [3]. Although the function and composition of the
photosystems, including their LHCs, have been extensively studied using the model land plant
Arabidopsis thaliana and the model green alga Chlamydomonas reinhardtii, far fewer studies
have investigated LHCs in other lineages, e.g., chlorophyll a-binding LHCs encoded by Lhcr
genes in ‘red lineage’ organisms including red algae and algae harboring secondary plastids of
red algal origin, fucoxanthin chlorophyll a/c-binding LHCs (FCP) encoded by Lhcf genes in
stramenopiles (e.g., diatoms, brown algae), and chlorophyll a-chlorophyll ¢,-peridinin protein
complex (acpPC, also known as ACP or iPCP) in dinoflagellates [3,4]. Although chlorophyll-
binding sites on three transmembrane helices are shared by almost all LHCs, canonical carot-
enoid-binding sites found in green plant LHCs are less or minimally conserved in the ‘red line-
age’ LHCs [3,5,6].

Dinoflagellates are known for their unique cellular and genetic features. Their chloroplasts
(plastids), which originated from ancestral red algal endosymbionts, are surrounded by three
membranes, unlike the four-membrane-bound chloroplasts in other algae possessing second-
ary plastids of red algal origin, such as stramenopiles, cryptophytes and haptophytes [7]. Dino-
flagellate LHCs are expressed as multi-unit polyproteins and cleaved into single protein units
for functionalization [8]. Among eukaryotes, these unique characteristics are shared with few
other eukaryotic taxa, e.g., euglenophytes. These distantly related algal lineages include second-
ary algae of green algal origin, which are believed to represent conspicuous examples of conver-
gent evolution in different lineages [9]. The structural and functional roles of repetitive DNA
have been extensively studied in many organisms [10], and duplicated genes are often consid-
ered a functional backup to compensate for the loss of the gene copies [11]. Dinoflagellates rep-
resent a ‘showcase’ for the molecular evolution of repetitive DNA and gene duplication,
exemplified by their high gene copy numbers associated with unusual trans-splicing-mediated
transcription from histone-lacking chromosomes [12-14]. One of the prominent characteris-
tics unique to dinoflagellates is their possession of a class of water-soluble pigment-binding an-
tenna protein, called peridinin chlorophyll a protein (PCP), showing no sequence similarity to
any LHC-related proteins [15]. Genes encoding PCP are highly duplicated and arranged in tan-
dem on a single chromosomal locus and are present in 5000 identical gene copies without in-
trons in the dinoflagellate Gonyaulax polyedra [16]. The in vivo function and structural
composition of LHCs and PCP as well as their mutual interaction in the dinoflagellate chloro-
plasts remain under debate [17,18].

A previous study of the dinoflagellate genus Symbiodinium, known to be a symbiont in cni-
darian animals such as corals and sea anemones, showed that the expression of LHCs was de-
creased under heat stress, causing the loss of the light-harvesting antenna and the bleaching of
the algal cells in a high temperature-sensitive Symbiodinium strain [19]. Nevertheless, much re-
mains to be investigated regarding the antenna proteins of this genus at the genomic level, and
it is unclear which LHC subfamily binds to which photosynthetic pigments in what ratio and
in which photosystem complexes it is assembled. Recently, the nuclear and chloroplast minicir-
cle genomes of Symbiodinium minutum were sequenced, illustrating its unique gene repertoire
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and genome structure [20,21]. This study was the first nuclear genome reported in photosyn-
thetic alveolates, and the sequencing identified many duplicated nuclear-encoded ‘plastid-
transferred’ genes [21], which were originally encoded in the plastid genome of a red algal en-
dosymbiont in the ancestral dinoflagellate and then transferred to the nuclear genome via en-
dosymbiotic gene transfer [22]. To our surprise, in addition to the duplicated plastid-related
genes, over 100 gene models encoding LHCs were found in the nuclear genome of S. minutum
[20,21].

In the green plant lineage, the land plant Arabidopsis thaliana possesses 5, 4 and 1 genes en-
coding the type L, I and III major trimeric LHCII polypeptides, respectively. These genes in-
clude duplicated gene family members, and each of 3 minor monomeric LHCIIs is encoded by
a single gene in addition to 4 genes encoding LHCI polypeptides [23,24]. In the green alga
Chlamydomonas reinhardtii, four major trimeric LHCII (type I-IV) polypeptides are encoded
by 5,1, 2 and 1 genes, respectively, and a single gene for each of the two minor LHCII polypep-
tides and 9 genes for LHCI are present [24,25]. In Euglena gracilis, the plastid of which is de-
rived from a green algal endosymbiont acquired via secondary endosymbiosis, 11 LHCI and 10
LHCII protein-coding genes were identified through the expressed sequence tag survey [26].
Although the gene family repertoire in the red lineages is distinct from that of the green lineage
[27], the number of genes are comparable: approximately 30 LHC homologs were found in the
nuclear genome of the diatom Thalassiosira pseudonana [28] and, in an extreme case, only 3
LHC genes are present in the unicellular red alga Cyanidioschyzon merolae [29]. These findings
highlight the exceptional abundance of the number of genes in S. minutum and lead to several
questions: How have such a large number of genes evolved? How many subfamilies can these
genes be classified into and have contributed to diversification in the evolutionary history of
the LHC gene family? What can we infer about the historical pattern of the genome evolution
in Symbiodinium? To answer these questions, comprehensive cataloging and classification at
the genomic level is essential but has not been presented to date.

In this study, we conducted LHC-related gene mining analyses using the transcriptome and
genome sequence data of the dinoflagellate Symbiodinium, which is not only of particular eco-
logical and environmental importance but an emerging model dinoflagellate for studying the
evolutionary trajectory of the unique photosynthetic eukaryotes and the relationships between
animal and plant symbiosis [30]. Here, we present a genome-wide gene mining and cataloging
to illustrate the diversity of the LHC gene family in Symbiodinium and discuss possible mecha-
nisms that may have given rise to the highly duplicated gene family in complex
eukaryotic genomes.

Materials and Methods
Sequence analysis and phylogenetic tree construction

Polypeptide sequences of the LHC proteins were collected from the genome sequence data of
the coral symbiont dinoflagellate Symbiodinium minutum strain Mf1.05b.01 (Clade B1)
(http://marinegenomics.oist.jp/genomes/gallery) [20] using the jackhammer program in the
HMMER package (ver. 3.1b, http://hmmer.org/) and sym17_1, the amino-terminal half of an
LHC protein in Symbiodinium sp. (Clade C3) (accession number CBI83422), as a query [5,31].
These sequences were then combined with the previously reported LHC proteins in Symbiodi-
nium sp. C3 [5], the model diatoms Phaeodactylum tricornutum strain CCAP 1055/1 and Tha-
lassiosira pseudonana strain CCMP1335 LHCs [32], and Chlamydomonas reinhardtii [24] as
references. Multiple sequence alignment constructions and phylogenetic analyses were run as
previously described [33]. Briefly, single-unit LHC genes were extracted and aligned using
MAFFT [34] and TrimAl [35], and then maximum-likelihood (ML) trees were constructed
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using RAXML with 400 bootstrap resamplings [36]. The approximately ML tree was con-
structed, and its local support values with the Shimodaira-Hasegawa test were calculated using
FastTree [37]. The unit structures of LHC genes were analyzed based on the RAXxML and Fas-
tTree tree topologies.

RNAseq read mapping onto gene models

The LHC domains predicted by HMMER and other conserved proteins were used to extract
the corresponding coding DNA sequences (CDS) [5,20]. RNAseq read data for heat stress-
treated and control cells [20] (DDBJ Sequence Read Archive [http://trace.ddbj.nig.ac.jp/dra/]
accessions DRR003865-DRR003871) were mapped onto the CDS fragments using Bowtie 2
[38]. Heat maps of the reads per kilobase of transcript per million mapped reads (RPKM) onto
each LHC protein unit were generated using the R package (http://www.r-project.org).

Results and Discussion

In the nuclear genome of S. minutum [20,21], many of the LHCs were encoded in highly dupli-
cated nuclear genes with multi-unit structures. Although assembling highly duplicated geno-
mic regions is a major challenge in genomics, paired-end sequencing of bacterial artificial
chromosomes and fosmid libraries enabled us to assess the quality of assemblies of the S. minu-
tum genome [20]. By using one of the LHC proteins in Symbiodinium sp. (Clade C3),
syml7_1, as a query [5], we detected 199 LHC protein units from 92 loci with the jackhammer
program. For phylogenetic analysis, we removed redundant polypeptide sequences derived
from alternatively spliced RNAseq contigs and generated a dataset composed of 164 LHC pro-
teins, with each encompassing three trans-membrane helices, out of 82 loci of genes encoding
polyproteins. After multiple alignment and gap trimming, the resulting matrix included 145
non-redundant polypeptide sequences from 80 loci. Phylogenetic analysis showed that S. min-
utum possessed genes encoding three groups of LHC family proteins: LHCR-type, LHCF-type
and a group composed of two miscellaneous LHC-like proteins encoded by a single gene locus
(ID 028830) (Fig. 1, S1 Fig). Basal topologies were not fully resolved in the ML tree constructed
by RAXML [36], likely due to the small sizes of LHC protein unit (118 amino acid length in the
alignment used in this study). However, FastTree, originally designed to infer phylogenies for
large alignments [37], assigned relatively high branch support values to major clades (Fig. 1),
which is consistent with previous studies [7]. Thus, we used the clusters supported by FastTree
for further discussion.

Our data showed the extensive diversifications of the two LHC gene subfamilies, Lhcr-type
and Lhcf-type, each of which could be classified into 5 phylogenetic groups (phylogroups F1-5
and R1-5), whereas no homologs of stress-responsive Lhcsr/Lhcx-type genes and PsbS-type
genes were identified in S. minutum (Fig. 1) [39,40]. In reference to the LHC clades in Symbio-
dinium sp. C3 proposed by Boldt et al. [5], the groups F1 and F2 presented here correspond to
a phylogenetic clade recognized as ‘Clade 3b’; the groups F3 and F4 are equivalent to ‘Clade 3a’
and 2, respectively; and the groups R1-5 are ‘Clade 1. Lhcr-type is a chlorophyll a-binding
LHC protein gene subfamily conserved among red algae and photosynthetic eukaryotes har-
boring secondary plastids of red algal origin. This subfamily includes fcp4 genes in diatoms and
corresponds to the clade III defined by Hoffman et al. [7]. Lhcr gene products have been shown
to be associated with PSI in red algae [29,41,42] and diatoms [32,43], suggesting that the LHCR
proteins conceivably play a major role in harvesting light for PSI in these organisms. Further-
more, Lhcf-type genes include members of FCPs, which were predominantly detected from
free trimeric FCP complexes or higher oligomers detached from photosystem reaction centers
in the pennate diatom Phaeodactylum [32,44], and were detected in both a trimeric FCP
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complex and PSII-FCP supercomplex in the centric diatom Cyclotella [43]. Considering the
presence of peridinin instead of fucoxanthin in most dinoflagellates, including Symbiodinium,
peridinin is most likely a major light-harvesting carotenoid pigment in LHCF-type LHC pro-
teins in Symbiodinium. A recent study showed that peridinin was associated with the LHC pro-
tein complex fraction and that the pigment composition of chlorophyll a:chlorophyll ¢:
peridinin:diadinoxanthin was determined to be in the molecular ratio 4:6:6:1 in Symbiodinium
sp. [6]. However, the types of LHC proteins that participate in each complex formation in the
Symbiodinium photosystem have yet to be elucidated. Our results provide a roadmap for inves-
tigating how many and which LHC family members are involved in harvesting light in the
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photosystem, and identifying key players in photosynthesis from the entire catalog of the high-
ly duplicated gene family.

Although still controversial, paralogs are defined as homologous genes that have evolved via
gene duplication, whereas orthology describes the relationship between homologous genes that
emerged via speciation [45]. To varying degrees, paralogs retain sequence homology with other
members of the paralogous gene family, and the relationships can be interpreted from phyloge-
netic analysis. In this study, we recognized two modes of possible gene duplications for paralo-
gous LHC gene units: intragenic duplication, in which the closest homolog of a gene unit was
found nearby, namely, within the same locus, and intergenic duplication, in which the similari-
ty between gene units located in physically separate loci was highest. Interestingly, based on
our classification, only the group F1 is exceptionally highly duplicated; the duplication in the
rest of the phylogenetic groups is comparable to that in other algal species, e.g., diatoms
(Fig. 1). Thus, a large number of LHC gene loci in the S. minutum genome can be accounted
for by conspicuous expansion of the phylogenetic group F1, which can be interpreted as the
consequence of multiple rounds of intergenic and intragenic duplications within the group
(Figs. 1 and 2). Recently, LHC antenna proteins were isolated from Symbiodinium sp. strain
CS-156 (Clade C), and mass spectrometry analysis showed that the isolated protein sample had
the most hits for the cDNA sequence (GenBank: FN646416.2) encoding a Symbiodinium sp.
C3 LHC protein [46], which belongs to group F1 in our tree (Fig. 1). It is tempting to speculate
that the highly duplicated group F1 may include a major antenna protein component or be
present in a large quantity, to a certain degree proportional to the number of genes, compared
to other groups. If so, why is this phylogenetic group, and LHCs in S. minutum as a whole, so
highly duplicated? Although the lack of transgenic tools in dinoflagellates makes this question
difficult to address, previous studies have suggested an apparent correlation between copy
number and expression level [12-14]. This possibility allows us to consider that gene duplica-
tion may contribute to an elevated transcription level in a gene dosage-dependent manner and
give the genes a better chance to acquire DNA elements, which increase transcriptional activity
either by chance or via as-yet uncharacterized biological mechanisms.

To illustrate the evolutionary trajectories of the gene structures and the distribution of the
phylogenetic groups, we classified the members of the phylogenetic groups supported by SH-
like values of 0.9 or higher (e.g., F1, F2, etc. in Fig. 1) into subgroupings with 0.8 or higher SH-
like values (e.g., 0, 1, 2 in Fig. 2A and different colors in Fig. 2B), which formed smaller mono-
phyletic clades in the original monophyletic groups. We then sorted the members of the sub-
groupings according to the gene models in the genomic context (Fig. 2). As a result, we
determined that the degrees to which intergenic or intragenic duplication affected genomic
structures were dependent on each genomic locus. Although the LHCF group F1 was the larg-
est grouping recognized in this study and the internal relationships of subgroups were more
complicated, the compositions of most genomic loci were explicable by repeated rounds of
inter- and intragenic duplications, except for subgroup 0, for which we could not assign phylo-
genetic affiliations in the tree (Fig. 2B). In addition, the number of Lhcr-type gene loci was rela-
tively lower than the Lhcf-type, but characteristic fusions of phylogenetically distant paralogs
(e.g., fusion of R1, R3 and R4) were conspicuous (Fig. 2A). Some members (i.e., subgroup 1) of
LHCR group R3, for example, formed polypeptides with the groups R1 and R4, whereas in an-
other locus, the same type of R3 members (subgroup 3) was tandemly arranged (Fig. 2A). No-
tably, many of the polyproteins classified in the group F1, but no members of other groups,
possess an amino acid sequence motif for the cleavage site between paralogs, called the SPLR
motif, which was originally found in some LHC polypeptides in the dinoflagellate Amphidi-
nium carterae [8] and Symbiodinium sp. C3 [5]. The SPLR motif-containing proteins in these
species were phylogenetically associated with the S. minutum group F1 (data not shown),
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suggesting that the SPLR motif emerged concomitantly with the diversification of group F1
genes in ancestral dinoflagellates. This pattern also suggests that the cleavage sites of the LHC
polyproteins in other phylogenetic groups were divergent in S. minutum.

Fig. 3 shows typical examples of the two types of gene duplications and the comparison with
another species, Symbiodinium sp. (clade C3). One of the S. minutum LHC proteins encoded
by a gene (Gene ID 006212) in Fig. 3A was also paralogous to one of the protein units in the
S. minutum LHC polyproteins 024892 and 007477. The latter two polyproteins showed partial
similarity to another S. minutum protein, 004087, which was an ortholog of the acpPCSym_13
in Symbiodinium sp. C3 [5] (Fig. 3A). Another example in Fig. 3B represents intragenic dupli-
cation, in which the gene unit duplicated within the single locus and the multi-unit gene as a
whole duplicated next to each other. Those duplicated gene clusters were located at the very
end of the scaffold ID 2350 (data not shown) in the S. minutum genome database [20], and it is
possible that there are additional duplicated units in the chromosomal region that the genome
sequencing failed to cover. Overall, it seems that these two modes of (inter- and intragenic)
gene duplication have both contributed to the unusual expansion of the LHC gene family, espe-
cially in the F1 group of the Lhcf-type subfamily, which has been extensively duplicated in the
S. minutum nuclear genome (Figs. 1 and 2). These patterns of homology suggest that gene
shuffling, including (i) insertion and deletion, (ii) fusion and splitting, and (iii) simple ‘copying
and pasting’ of genes in separate loci, may have facilitated the amalgamation of different types
of LHC genes into a single polypeptide, resulting in a variety of fine-tuned physiological re-
sponses in the diversification of gene repertoire and genome structure.

We also identified fusion genes of Lhcr- and Lhcf-type LHCs in three gene loci in S. minu-
tum and two transcripts in Symbiodinium sp. C3 (Fig. 3C and 3D). In these cases, considering
that both subtypes of LHC genes were separated on the phylogenetic tree (Figs. 1 and 2), it is
likely that gene conversion of one subtype into another, or gene fusion between the two, gener-
ated the fusion gene of LHCF and LHCR in the common ancestor of the Symbiodinium species
before the divergence of the genus Symbiodinium. One plausible scenario explaining Fig. 3D is
that a gene with two Lhcf-type and one Lhcr-type units (similar to acpPCSym_5) may have
been an ancestral form of this group of genes, followed by gene unit loss of either type in the
ancestor of S. minutum and resulting in the current composition of two Lhcf-type genes (IDs
005437, 017480, and 026613) and one Lhcf- and one Lhcr-type gene (ID 019686). Such fusion
genes of different types were limited in number and distribution; they were associated with spe-
cific phylogenetic clades (F2, R2 and R5), implying that the simultaneous transcription and/or
translation of different types of LHC genes may only marginally contribute to the light-harvest-
ing function and perhaps the selective advantage. From an evolutionary perspective, it was pre-
viously proposed that gene conversion substantially contributed to the evolution of the LHC
genes in Euglena [26], and our results suggest that a similar evolutionary mechanism was re-
sponsible for the diversified LHC gene family in Symbiodinium. This finding represents anoth-
er example of convergent evolution between euglenophytes and dinoflagellates [9].

We did not detect homologs encoding stress-responsive LHCSR/LHCX families or green
plant-type LHCA/LHCB protein families [1,47]. This result is consistent with a hypothesis pro-
posed by Niyogi and Truong, who suggested that a stress-responsive Lhcst/Lhcx family was lost
in the common ancestor of extant dinoflagellates [40]. Although another stress-related LHC
protein, called PSBS, which contains four trans-membrane helices, has been shown to play a
major role in light energy dissipation in the streptophyte green plant lineage [48,49], no PSBS
homologs were found in S. minutum. Moreover, it remains controversial how dinoflagellates
cope with high light stress caused by excess light energy absorbed by chlorophylls and other
photosynthetic pigments. Reynolds et al. presented a model wherein the dissociation of PCPs
from the photosystems attached to LHCs could achieve high light energy dissipation [17], and
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Fig 3. Intra- and intergenic LHC gene duplication in Symbiodinium. Bold and non-bold numbers indicate
the S. minutum gene IDs (labeled as ‘Sm’) [20] and the gene names in Symbiodinium sp. C3 (‘C3’) [5],
respectively. Colored boxes on black bars represent mature protein units in LHC gene loci. Each shaded
region indicates the units that are monophyletic within subgroups in Fig. 1.

doi:10.1371/journal.pone.0119406.9003
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Kanazawa et al. provided evidence that PCP was not detached from photosystems and, instead,
LHC itself functioned as a light energy quencher [18]. It is also important for Symbiodinium to
acclimate its light-harvesting systems to the high light under elevated temperature, which is
proposed to be a physiological factor triggering coral bleaching. Recently, the functional roles
of the major carotenoid species in Symbiodinium for photoprotection of the reaction center,
namely, peridinin and diatoxanthin/diadinoxanthin, were questioned by spectroscopic analysis
[6]. In diatoms, which possess fucoxanthin as a major light-harvesting carotenoid instead of
the peridinin found in dinoflagellates, it has been shown that multiple Lhcsr/Lhcx genes are
present in the nuclear genomes and encode LHCX proteins playing a key role in photoprotec-
tion [50,51]. Given the presence of Lhcsr/Lhcx genes in other algal lineages, such as brown
algae and chromerids [40], dinoflagellates may have developed a unique strategy to maintain
the photoprotection machinery. Future studies exploring stress responses via LHC expression
might explain the absence of Lhcsr/Lhcx gene family in dinoflagellates; LHCSR/LHCXs in the
ancestral dinoflagellates might have been taken over by independently evolved stress-respon-
sive LHCs and lost during evolution [40].

The photo-induced stress response in Symbiodinium, especially on LHC complex mainte-
nance, remains to be investigated to understand how photobleaching occurs and can be pre-
vented in the Symbiodinium-cnidarian symbiotic system. In our use of the RNAseq data by
Shoguchi et al. [20], which were not originally designed for quantitative analysis but, rather, as
a qualitative measure, we did not find drastic changes in the mRNA abundance of genes encod-
ing LHCs (S1 Fig) as well as zeaxanthin epoxidase (ZEP) and violaxanthin de-epoxidase
(VDE), which are responsible for the epoxidation and de-epoxidation reactions of diatox-
anthin/diadinoxanthin, respectively, in the xanthophyll cycle in many algal species (S2 Fig)
[52]. These findings are consistent with previous studies [53-55]. Notably, we found no appar-
ent indications of heat stress-specific responses of other genes encoding proteins that are pre-
sumably involved in the heat stress response, namely, heat shock proteins 90 and 70 (Hsp90
and Hsp70), DnaJ-like proteins, and reference genes highly conserved in eukaryotes (S2 Fig).
These observations led us to speculate that it may be necessary to examine the heat stress re-
sponse in different time courses under different physiological conditions and/or that stress re-
sponse and acclimation processes may be regulated at the posttranscriptional level, which has
not been fully investigated and requires attention in the future study of this species and dinofla-
gellates in general.

In conclusion, our results provide a well-annotated classification of the LHC genes in S.
minutum, suggesting that the ‘hyper-diversity’ of the LHC gene family has been formed
through multiple rounds of intra- and intergenic subunit-based duplication events, most
prominently in one of the LHCF subfamilies in this species (Fig. 4). In combination with previ-
ous studies [5,20,21], our results highlight the potential for data-mining analysis using whole-
genome sequence data to extend our understanding of the diversity of highly redundant multi-
gene families such as LHCs [30]. Our results also show that the order and arrangement of LHC
proteins are conserved between S. minutum and Symbiodinium sp. C3, suggesting that the
basic pattern of gene duplication emerged in the common ancestor of these two strain/species
and was established prior to the speciation of S. minutum or possibly before the divergence of
the genus Symbiodinium (Fig. 4). In light of the evolutionary trajectory and distribution pattern
of the LHCs uncovered by this study, the updated classification of the LHC in S. minutum will
help clarify the assemblies and compositions of the LHC complexes in PST and II at the protein
level in future studies.
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Supporting Information

S1 Fig. Maximum likelihood tree of the S. minutum LHC proteins. An approximate ML tree
was generated by FastTree. Thick lines indicate that the branch is supported by both SH-like
support values (0.8 or higher) and bootstrap support values (50% or higher) calculated by Fas-
tTree and RAXML, respectively, using a matrix containing the LHC proteins from Symbiodi-
nium minutum (purple), Symbiodinium sp. C3 (blue-green), diatoms (orange) and the green
alga Chlamydomonas reinhardtii (green). Medium and thin lines indicate that the branch is
supported by either or none of those methods, respectively. The RPKM values calculated using
the RN Aseq data are shown as colored boxes. Asterisks indicate the genomic loci, showing very

low RPKM values except for the ‘Control 72 hour’ samples.
(PDF)
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S2 Fig. Relative mRNA abundance of conserved nuclear-encoded genes is not drastically al-
tered under heat stress. Homologs of genes encoding conserved proteins, including zeaxan-
thin epoxidase (ZEP), violaxanthin de-epoxidase (VDE), heat shock proteins (HSP) 90 and 70,
Dna]J-like protein, actin, 3-tubulin (TubB) and elongation factor-like protein (EF-like), were
used to calculate the relative abundance of mRNA accumulation based on the RPKM values
from the RNAseq data.

(PDF)
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