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Abstract: Curcumin, the main polyphenol contained in turmeric root (Curcuma longa), has played a
significant role in medicine for centuries. The growing interest in plant-derived substances has led to
increased consumption of them also in pregnancy. The pleiotropic and multi-targeting actions of
curcumin have made it very attractive as a health-promoting compound. In spite of the beneficial
effects observed in various chronic diseases in humans, limited and fragmentary information is
currently available about curcumin’s effects on pregnancy and pregnancy-related complications.
It is known that immune-metabolic alterations occurring during pregnancy have consequences
on both maternal and fetal tissues, leading to short- and long-term complications. The reported
anti-inflammatory, antioxidant, antitoxicant, neuroprotective, immunomodulatory, antiapoptotic,
antiangiogenic, anti-hypertensive, and antidiabetic properties of curcumin appear to be encouraging,
not only for the management of pregnancy-related disorders, including gestational diabetes mellitus
(GDM), preeclampsia (PE), depression, preterm birth, and fetal growth disorders but also to contrast
damage induced by natural and chemical toxic agents. The current review summarizes the latest
data, mostly obtained from animal models and in vitro studies, on the impact of curcumin on the
molecular mechanisms involved in pregnancy pathophysiology, with the aim to shed light on the
possible beneficial and/or adverse effects of curcumin on pregnancy outcomes.

Keywords: curcumin; pregnancy; pregnancy complications; postpartum depression; fetal development;
preterm birth; adverse effects

1. Introduction

Maternal nutrition is an essential and modifiable environmental factor that deeply influences maternal
and offspring health in the short and long-term [1–6]. Genetics, nutrition, and other environmental factors
significantly contribute to the physiological immune and metabolic modifications occurring in pregnancy,
to favor maternal adaptation to the growing and developing fetus. Maternal malnutrition adversely affects
these dynamic processes by acting on the mechanisms related to the nutritional programming, including
nutrition sensing signals, epigenetic regulation, gut microbiome, as well as on the nutrient-nutrient and
nutrient-drug interactions, modulating maternal and fetal genes in a sex-specific manner [3,6–9].
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Over the last decades, the advantages of a healthy diet, rich in fruit and vegetables, have been
widely explored, highlighting that culinary herbs and spices might also effectively reduce the risk of
developing chronic diseases [10]. Among them, curcumin, a compound extracted from the rhizome
of Curcuma longa, has been extensively studied in light of a wide range of properties, including
anti-inflammatory, antioxidant, anti-toxicant, antiapoptotic, immunomodulatory, neuroprotective,
hepatoprotective, antiangiogenic, anti-hypertensive, and antidiabetic activities, emerging as a candidate
therapeutic agent for several diseases [10–13]. Data from animal and in vitro studies provided evidence
that curcumin might be effective in counteracting the adverse programming processes in pregnancy.

The known pathophysiological mechanisms underlying pregnancy and the most common
pregnancy-related complications, such as gestational diabetes mellitus (GDM) [14], hypertension and
preeclampsia [15], fetal growth disorders [16], as well as the damage induced by natural and chemical
toxic agents [12] seem to be positively modulated by curcumin, although observed in in vitro and
animal studies.

Additionally, promising results from preclinical studies on the use of curcumin in different
neurological disorders [17] suggest a potential role in the treatment of post-partum depression (PPD)
as well, a largely underestimated pregnancy-related disorder [18].

Harmful effects of curcumin on embryo development in the early stages of pregnancy have also
been observed in animal studies [19]. Hence, the increasing consumption of natural products during
pregnancy requires particular attention, considering the complexity of the largely unknown processes
underlying maternal adaptation and fetal development.

We conducted a comprehensive literature search until 22 July 2020 using PubMed; and found
a good number of articles in English, using the keywords “pregnancy”, “pregnancy complications”,
“gestational diabetes”, “preeclampsia”, “reproductive toxicity”, “post-partum depression”, “placenta”,
“oocyte”, “blastocyst”, “embryo”, “preterm labor”, “fetal growth and development”, in combination
with the keywords “curcumin” and “dietary curcumin”. The aim of this review is to provide an
overview of both the potential health benefits and the possible adverse effects of curcumin in pregnancy
and pregnancy-related complications.

2. Curcumin: Functions, Bioavailability, and Delivery

Curcumin, also called diferuloylmethane, is a lipophilic polyphenol extracted from the rhizome of
Curcuma Longa (commonly known as turmeric). It has been widely used in traditional Indian
and Chinese medicine for thousands of years [20]. The pharmacological effects of turmeric
have been attributed mainly to curcuminoids, comprising curcumin and two related compounds,
demethoxycurcumin and bisdemethoxycurcumin, which are contained in commercial curcumin [21].
Curcumin is a potent anti-inflammatory and antioxidant agent that exerts a myriad of biological activities
by influencing multiple signaling pathways [10,11,13,22]. Curcumin is able to interact with a large
number of molecular and cellular targets (as summarized in this recent review [13]) and regulates gene
expression also by modulating epigenetic modifications (i.e., DNA methylation, histone modification,
and microRNA expression) [23,24]. This compound, by mutually interacting with intestinal microflora,
ameliorates gut microbiome dysbiosis, and influences the “gut–brain–microflora axis” to preserve
and favor brain health [25,26]. The overall result of these different activities is the improvement in
several disease states, including inflammatory, metabolic, endocrine, cardiovascular, gastrointestinal,
neurological, respiratory, viral, skin diseases, and cancer, as highlighted by the impressive number
of in vitro and in vivo studies summarized in recent papers [13,24,27,28]. Numerous clinical trials
have shown good tolerability, safety, and efficacy of curcumin in the treatment of multiple chronic
diseases—including cardiovascular diseases, diabetes, neurodegeneration, arthritis, and cancer—at
doses up to 6–12 g/day [10,11,13]. In light of this, the United States Food and Drug Administration
(FDA) has “Generally Recognized As Safe” (GRAS) curcumin as an ingredient in various food categories
(0.5–100 mg/100 g) [29]; and the European Food Safety Authority (EFSA) Panel on Food Additives and
Nutrient Sources added to Food (ANS), defined the Allowable Daily Intake (ADI) value of 0–3 mg/kg



Nutrients 2020, 12, 3179 3 of 18

bw/day of curcumin as a food additive [30]. However, despite its potential therapeutic benefits,
curcumin is poorly bioavailable due to its rapid metabolism, and the small portion of substance
that is absorbed is extensively bio-transformed into its water-soluble metabolites, glucuronides,
and sulfates [10]. Therefore, several strategies have been developed to enhance its bioavailability
and efficacy, to increase oral and gastro-intestinal absorption, and to reduce the clearance from the
body [31–33]. For this purpose, taking into consideration that curcumin is fat-soluble, several delivery
systems have been developed to obtain a number of formulations by mixing curcumin with different
materials, including adjuvants, such as piperine [32,33]. Micelles, liposomes, phospholipid complexes,
phytosomes, emulsions, microemulsions, nano-emulsions, solid lipid nanoparticles, nanostructured
lipid carriers, biopolymer nanoparticles, and microgels represent different and recent technical
approaches to encapsulate curcumin [32–34], although further studies are needed to evaluate their
effectiveness and safety as potential health-promoting compounds in humans.

3. Role of Curcumin in Pregnancy

3.1. Altered Glucose Metabolism

It is well known that dynamic changes in insulin sensitivity take place during healthy pregnancy
to allow adequate supply to the growing fetus [35]. In pregnancy, several players, including hormones,
cytokines, and metabolic factors, contribute to the development of insulin resistance through complex
mechanisms, not yet completely understood [36,37]. Maternal obesity, related to unhealthy diet and
lifestyle, can negatively affect insulin sensitivity leading to the development of GDM and type 2
diabetes (T2D), with serious short and long-term health consequences for both the mother and the
offspring [38,39]. Recent evidence emphasized the anti-hyperglycemic activity of curcumin, both in
animals and humans [40]. Specifically, this compound had the capability to improve glucose uptake,
insulin sensitivity, and pancreatic β-cell function, as well as liver and kidney function, and to reduce
glucose and lipid levels, oxidative stress, and inflammation [41], by interacting with almost all the
players involved in these processes, as demonstrated in in vitro studies [13,41].

As regards human studies, the effects of curcumin supplementation have been evaluated in
several randomized controlled trials. A recent intervention study showed that 1500 mg/day curcumin
supplementation (500 mg capsules: 347 mg of curcumin, 84 mg of demethoxycurcumin, and 9 mg
of bisdemethoxycurcumin) for 10 weeks reduced triglycerides (TG) and C-reactive protein (CRP),
and increased adiponectin levels [42], whereas 500 mg/day curcumin co-administered with piperine
5 mg/day for three months was able to reduce blood glucose, C-peptide, glycated hemoglobin (HbA1c),
alanine aminotransferase (ALT) and aspartate aminotransferase (AST), in patients with T2D [43].
Another study showed that the daily ingestion of 2100 mg turmeric powder for eight weeks resulted
in a reduction in body weight, low density lipoprotein-cholesterol (LDL-c), and TG levels, with no
significant effects on glycemia, CRP, and HbA1c, in hyperlipidemic T2D patients [44]. In obese women
with polycystic ovary syndrome (PCOS), 1000 mg/day curcumin supplementation (500 mg twice
daily: 70–80% curcumin, 15–20% demethoxycurcumin and 2.5–6.5% bisdemethoxycurcumin) for six
weeks improved serum insulin and the Quantitative Insulin Sensitivity Check Index [45]. A recent
meta-analysis reported that curcumin intake was associated with reduced body mass index (BMI),
body weight, body fat, leptin value, and increased adiponectin levels in patients with metabolic
syndrome and related disorders [46]. Overall, the dosage and duration of curcumin supplementation
appear to differently modulate glucose metabolism in humans.

A recent promising approach to treat hyperglycemia consists of combining the effects of curcumin
and the ongoing antidiabetic agents, as observed in diabetic rats treated with a combination of curcumin
and metformin. Specifically, this association improved hyperglycemia, dyslipidemia, and oxidative
stress, increasing the activity of the antioxidant enzyme paraoxonase 1 (PON1), in diabetic rats [47].

Dietary bioactive compounds might have beneficial effects on GDM [5,48]. In particular, curcumin
appeared to improve GDM and GDM-related complications in a recent study in a mouse model.
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Specifically, C57 BL/KsJdb/+ diabetic pregnant mice were supplemented with different curcumin
dosages: 50 mg/kg and 100 mg/kg/day, from gestational day zero (GD 0) to GD20. Results showed
that 100 mg/kg curcumin significantly reduced blood glucose and insulin levels, increased hepatic
glycogen content, and improved oxidative stress by reducing thiobarbituric acid reactive substance
(TBARS) and increasing glutathione (GSH) levels, superoxide dismutase (SOD), and catalase (CAT)
activities in the liver of diabetic pregnant mice at gestational day 20. The reduced 5’ adenosine
monophosphate-activated protein kinase (AMPK) and increased Histone Deacetylase 4 HDAC4
activities observed in GDM liver were reverted by curcumin treatment. Furthermore, curcumin
positively influenced the offspring of mothers with GDM, restoring litter size and birth weight, and
inducing the reduction of glucose-6-phosphatase (G6Pase) expression and activity in the liver [14]
(Table 1). Congenital birth defects, including neural tube defects (NTD), occur more often in the offspring
of diabetic mothers. In a recent study, mouse embryos (at E8.5 of development) were cultured for 24 h
with 100 mg/dL glucose, in the absence or presence of curcumin (10 and 20 µM). Remarkably, 20 µM
curcumin was able to reduce the rate of embryos with NTD induced by high glucose. Curcumin reduced
high glucose-induced oxidative and nitrosative stress [i.e., decreased 4-hydroxynonenal (4-HNE),
nitrotyrosine levels, and lipid hydroperoxide (LPO)], as well as endoplasmic reticulum (ER) stress
(i.e., decreased expression of ER-markers stress such as phosphorylated protein kinase-like endoplasmic
reticulum kinase (p-PERK), phosphorylated inositol-requiring protein-1α (p-IRE1α), phosphorylated
eukaryotic initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), binding immunoglobulin
protein (BiP), and x-box binding protein 1 (XBP1). Moreover, 20 µM curcumin inhibited the cleavage
of pro-apoptotic caspases (i.e., casp-3 and -8) [49]. Although the results from preclinical studies
are overall promising, further research is needed to better understand the molecular mechanisms
underlying diabetic complications, as well as the pharmacodynamics and pharmacokinetics of
curcumin in pregnancy, to conceivably employ this compound as a therapeutic agent for human
pregnancy complications.

Table 1. Effects of curcumin on pregnancy and pregnancy-related disorders.

Curcumin Experimental Model Outcomes References

Altered glucose metabolism

100 mg/kg/day (from 0 to 20 GD) Mouse model of GDM

↓Maternal glucose and insulin levels;
improved oxidative stress (↑ GSH,
SOD, CAT), and ↑AMPK and
↓HDAC4, in the liver; restored
offspring litter size and body weight

Lu, X., 2019 [14]

20 µM for 24 h
Mouse embryos (E8.5 of
development) cultured for
24 h with 100 mg/dL glucose

↓Neural tube defects by reducing
oxidative stress (↓4-HNE, ↓LPO, ER
stress (↓p-PERK, p-IRE1α, p-eIF2α,
CHOP, BiP and XBP1 expression), and
apoptosis (↓caspase-3 and -8 cleavage)

Wu, Y., 2015 [49]

Cardiovascular disorders

0.36 mg/kg/day (from 0 to GD18) Rat model of PE
(LPS-induced)

Improved hypertension, proteinuria,
and renal damage; ↓serum levels of
IL-6 and MCP-1; ↓ placental TLR4,
IL-6, and NFkB expression; improved
trophoblast invasion and spiral artery
remodeling

Gong, P., 2016 [50]

0.36 mg/kg/day (from 0.5 to GD18) Mouse model of PE
(LPS-induced)

↑Number of live pups, and fetal and
placental weight; ↓inflammation
(↓TNF-α, IL-1β, IL-6, MCP-1, and
MIP-1 placental expression), ↑ Akt
activation

Zhou, J., 2017 [51]

5–10 µM for 24 h
HTR8/SVneotrophoblast
cells (model for human
first-trimester placenta)

↑Proliferation associated with Akt
activation, ↑tube formation;
↑proangiogenic factors VEGF,
VEGFR2, and FABP4 expression; ↑
expression of NOTCH-signaling
pathway mediators; ↑promoter
hypomethylation of oxidative and
metabolic stress genes

Basak, H., 2020 [15]
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Table 1. Cont.

Curcumin Experimental Model Outcomes References

5 µM for 24 h HTR8/SVneo trophoblast
cells (H2O2-treated)

↑Cells viability; ↓oxidative stress
(↑CAT, GSH-Px activities); ↑Nrf2
activation and ↓ caspase-3 activation

Qi, L., 2020 [52]

60 µM for 24 h Human placental and fetal
membranes, LPS-treated

↓IL-6, IL-8, and COX-2 mRNA
expression; ↓PGE2 and PGF2a release;
↓MMP-9 expression and NFkB
activation

Lim, R., 2013 [53]

100 mg (single dose) 47 pregnant women with PE No differences in serum level of
COX-2 and IL-10 Fadinie, W., 2019 [54]

Fetal growth and development

100 mg/kg/day (from 1.5 to 19.5 GD) Mouse model of FGR
(low-protein diet)

↓Placental apoptosis and ↑ placental
blood sinusoids area; ↑GSH-Px
activity, Nfr2 mRNA expression;
↑antioxidant genes expression (SOD1,
SOD2, CAT, Nrf2, and HO-1), in fetal
liver

Qi, L., 2020 [16]

400 mg/kg/day at 6 weeks of age for
6 weeks FGR newborn rats

↓TNF-α, IL-1β and IL-6 levels,
↓activity of AST, ALT, and MDA,
↑Gpx and GSH activity, in
serum;↓NF-kB and JAK2 expression,
↑antioxidant genes (Nqo1, Hmox1,
Gst, Gpx1 and Sod1), an Nfr2
activation, in the liver

He, J., 2018 [55]

400 mg/kg/day at 6 weeks of age for
6 weeks FGR newborn rats

↓Glucose levels and IR; ↓TAG, NEFA,
total cholesterol, ↑glycogen (↓IRS-1
and Akt phosphorylation, CD36,
SREBP-1, and FASN expression,
↑PPARα), in the liver

Niu, Y., 2019 [56]

100 mg/kg (single dose) Mouse model of PTB,
LPS-induced

↓TNF-α, IL-8, MDA, and ↑SOD serum
levels; ↓NFkB activation in placenta Guo, Y.Z., 2017 [57]

Toxicant agents

200 mg/kg/day (from 7 to PND28) Pregnant rats, BPA-treated

Neuroprotective; ↑proliferation and
differentiation of neuronal stem cells
(↑neurogenin and neuroD1
expression); ↓apoptosis (↓Bax, ↑Bcl-2
expression); improvement in learning
and memory

Tiwari, S.K., 2019 [58]

150/300 ppm/day (from GD1 to
15PND)

Pregnant mice,
HgCl2-treated

↑Neurodevelopment and ↓anxiety
(↑levels of DA, 5-HT, AChE, and GSH)

Abu-Taweel, G.M.,
2019 [59]

150/300 ppm/day (from GD1 to
15PND)

Pregnant mice,
HgCl2-treated

↑Pups body weight; ↑male genitalia
weight, testosterone, and FSH levels;
↑ovary weight and progesterone, FSH
and LH levels; improved sexual
behavior in both sexes

Abu-Taweel, G.M.,
2020 [60]

16 g/kg/day during pregnancy and
lactation Pregnant rats, Pb-treated

Prevented central nervous system
dysfunction allowing normal
locomotor behavior

Benammi, H., 2017 [61]

Pretreatment with curcumin 500
nmol/kg/day (from ED 13.5 to E16.5)

Pregnant mice,
celecoxib-treated

↑Neurogenesis in fetal frontal cortex
(↑Cyclin D1 expression, and
activation of Wnt/βcatenin signaling
in neural progenitor cells)

Wang, R., 2017 [62]

Single-dose curcumin (1 g/kg) in
neonatal rats Pregnant rats, VPA-treated

↑Body and brain weight in pups;
↓IL-6, IFN-γ, and ↑GSH, CYP450
expression, in brain pups

Al-Askar, M., 2017 [63]

Offsprings 100 mg/kg/day
(from 28 to 35 PND

PLAE-pregnant mice
(offspring peri-adolescence
period)

Improved offspring anxiety and
memory deficits;
↓Neuroinflammation (↓IL-6, TNF-α,
and NF-kB expression)

Cantacorps, L.,
2020 [64]

Embryos 25 µM for 24 h PAE-pregnant mice
(embryos E17.5)

Improved offspring anxiety and
memory deficits; ↓neuroinflammation
(↓IL-6, TNF-α, and NF-kB expression)

Yan, X., 2017 [65]

Adverse effects on embryos

24 µM for 24 h Mouse blastocysts
↑Apoptosis (↑Bax and ↓Bcl-2
expression); ↓ implantation rate and
development

Chen, C.C., 2010 [66]

24 µM for 24 h Mouse oocytes ↑Apoptosis; ↓ oocytes fertilization;
↓implantation rate and development Chen, C.C., 2012 [67]
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Table 1. Cont.

Curcumin Experimental Model Outcomes References

6–24 µM for 24 h

Mouse blastocysts (at
implantation stage and
during the early
post-implantation stage)

Dose-dependent damage, 24 µM
lethal for all blastocysts Huang, F.J., 2013 [68]

Curcuma longa extract
(7.80–125 µg/mL) for 5 days

Zebrafish embryos and
larvae at different hours of
post-fertilization (24–120 h)

Dose-dependent toxic effects:
malformations above 62.50 µg /mL,
and mortality at 125.0 µg/mL

Alafiatayo, A.A.,
2019 [19]

Abbreviations: ↑ Increases; ↓ Decreases; GDM, gestational diabetes mellitus; GD, gestational day; GSH, glutathione;
SOD, superoxide dismutase; CAT, catalase; AMPK, 5′ AMP-activated protein chinasi; HDAC4, histone deacetylase 4;
4-HNE, 4-hydroxynonenal; LPO, lipid peroxidation; ER, endoplasmic reticulum; p-PERK, phospho-protein kinase-like
endoplasmic reticulum kinase; p-IRE1α, phospho-inositol-requiring kinase 1α; p-eIF2α, phospho-eukaryotic Initiation
Factor 2α; CHOP, C/EBP homologous protein; BiP, binding immunoglobulin protein; XBP1, X-box-binding protein-1;
PE, preeclampsia; LPS, lipopolysaccharides; IL6, interleukin-6; MCP-1, monocyte chemoattractant protein-1; TLR4,
toll-like Receptor 4; NFkB, nuclear transcriptor factor kappa B; TNFα, tumor necrosis factor α; IL1β, interleukin-1β;
MIP-1, macrophage inflammatory protein-1; Akt, protein kinase B; VEGF, vascular endothelial growth; VEGFR2,
vascular endothelial growth factor receptor 2; FABP4, fatty acid binding protein 4; GSH-Px, glutathione peroxidase;
Nrf2, nuclear factor erythroid-2-related factor-2; IL-8, interleukin-8; COX-2, cyclooxigenase-2; PGE2, prostaglandin
E2; PGF2a, prostaglandin F2α; MMP-9, metalloproteinase-9; IL-10, interleukin-10; FGR, fetal growth restriction; HO-1,
heme oxygenase-1(enzyme); AST, aspartate aminotransferase; ALT, aminotransferase; MDA, malondialdehyde; JAK2,
Janus kinase 2; Nqo1, quinone dehydrogenase; Hmox1, heme oxygenase 1 (gene); Gst, glutathione S-transferase; Gpx1,
glutathione peroxidase; IR, insulin resistance; TAG, triglycerides; NEFA, Non-Esterified Fatty Acids; IRS-1, insulin
receptor substrate-1; PTB, preterm birth; CD36, cluster of differentiation 36; SREBP-1, stearoyl CoA desaturase-1;
FASN, Fatty acid synthase; PPARα, Peroxisome Proliferator Activated Receptors-α; PND, postnatal day; BPA,
bisphenol-A; DA, dopamine; 5-HT, serotonin; AChE, acetylcholinesterase; FSH, follicle stimulating hormone; LH,
luteinizing hormone; ED, embrionic day; Pb, plumbum (lead); VPA, valproic acid; IFN-γ, interferon γ; CYP450,
cytochromes P450; PLAE, prenatal and lactational alcohol exposure; PAE, prenatal alcohol exposure; PND, postnatal
day; B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax); B-cell lymphoma protein 2 (Bcl-2).

3.2. Cardiovascular Disorders

Critical changes in the cardiovascular system occur in physiological pregnancy, to ensure maternal
and fetal adaptation to the increased metabolic demand and to guarantee adequate uteroplacental
circulation for fetal growth. A healthy pregnancy is hallmarked by systemic vasodilatation, significantly
related to the high levels of estrogen and progesterone. Cardiac output and heart rate rise during
gestation and the activation of the renin-angiotensin-aldosterone system leads to a significant increase
in total blood volume. Alterations in these processes are associated with maternal and fetal morbidity
and mortality [69]. Obesity, older maternal age, and diabetes mellitus increase the risk of cardiovascular
diseases in pregnancy (1–4%), with a higher prevalence when including hypertensive disorders—chronic
hypertension, pregnancy-induced hypertension, pre-eclampsia, and HELLP syndrome (hemolysis,
elevated liver enzymes, and low platelet count) [70]. Considering the anti-inflammatory, antioxidant,
and antiangiogenic activities observed in several studies, curcumin is a potential therapeutic compound
in cardiovascular disorders [71].

Preeclampsia (PE) is a systemic syndrome characterized by hypertension and proteinuria,
which begins after 20 weeks of gestation; it occurs in 2–8% of pregnancies, and it is a leading
cause of maternal and fetal morbidity and mortality [72]. Although the pathophysiology of PE
remains to be elucidated, alterations in maternal vascular physiology have been described, leading to
a generalized vasoconstrictive state, systemic oxidative stress, inflammation, and endothelial cell
dysfunction, with severe adverse effects on the placenta, one of the major organs that develops
after conception [73,74]. Strategies to reverse or arrest the pathological processes of PE are aimed
at reducing excessive inflammatory response, micro-emboli formation, and vasoconstriction by
using specific drugs or natural products [75]. For this purpose, studies in animal models have
been performed. It has been observed that in lipopolysaccharides (LPS)-treated pregnant rats to
create a PE model (LPS 0.5 µg/kg on gestational day 5), the administration of curcumin (0.36 mg/kg,
from GD 0 to GD18) improved hypertension, proteinuria, and renal damage, and reduced serum
levels of IL-6 and monocyte chemoattractant protein-1 (MCP-1). Curcumin treatment ameliorated
inadequate trophoblast invasion and spiral artery remodeling, significant histopathological alterations
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observed in PE. Analysis of placental tissue showed that curcumin administration decreased the
LPS-induced expression of the inflammatory molecules toll-like receptor (TLR)-4, IL-6, and the
proinflammatory transcription factor NF-kB. According to the obtained data, the authors hypothesized
that curcumin may positively modulate the cascade of different signaling pathways involved in
PE development [50]. Similar results were obtained in a mouse model of LPS-induced PE. In this
study, in addition to blood pressure and proteinuria reduction, curcumin increased the number of
live pups, fetal and placental weight, and decreased fetal desorption. These effects were associated
with the inhibition of placental expression of TNF-α, IL-1β, IL-6 cytokines, and MCP-1 and MIP-1
chemokines, and with a reduction in macrophage infiltration. The reduced inflammatory status was
accompanied by increased activation of the serine/threonine-specific protein kinase Akt, involved
in cellular proliferation [51]. Neo-vascularization is a critical event mediated by several angiogenic
factors—including the vascular endothelial growth factor (VEGF), fibroblast growth factors (FGFs),
matrix metalloproteinases (MMPs)—and inflammatory factors such as Cyclooxygenase (COX)-2 and
NF-kB, occurring not only in tumor progression but also in early placentation [76,77]. Curcumin
appears to modulate the above-mentioned factors, influencing vessel formation by acting either as a
proangiogenic or as an antiangiogenic molecule, depending on the concentration and the cell type [77].
A recent study investigated the effect of curcumin in HTR8/SVneo trophoblasts cells, a model of
the human first-trimester placenta. Incubation with curcumin at low concentration (5–10 µM for
24 h) stimulated (i) proliferation with concomitant activation of Akt, (ii) tube formation of placental
trophoblast HTR8/SVneo cells, (iii) and increased the expression of the proangiogenic factors VEGF,
VEGFR2, and FABP4. In addition, curcumin treatment strongly increased the mRNA and protein
expression of HLA-G, involved in the immune regulation during trophoblast invasion; and mRNA
expression of a relevant number of genes related to the NOTCH-signaling pathway, which regulates
angiogenesis. The authors examined the promoter methylation of genes involved in metabolic and
oxidative stress and observed that curcumin induced hypomethylation in genes involved in the
protection against oxidative stress and DNA damage. Altogether these data indicate that curcumin is
able to promote angiogenesis and to activate protective pathways in the first trimester of pregnancy,
and supports the development of the placental trophoblast [15]. Moreover, HTR8/SVneo trophoblast
cells were used to evaluate the protective effects of curcumin against oxidative stress induced by
H2O2 (400 µM for 24 h). Results showed that pretreatment with curcumin (5 µM for 24 h) increased
cell viability, upregulated the activities of the antioxidant enzymes CAT and glutathione peroxidase
(GSH-Px), reduced the H2O2-induced ROS accumulation and the apoptotic rate. At molecular levels,
these data were associated with an increased nuclear translocation of the antioxidant transcription
factor Nrf2, and reduced expression of cleaved-caspase 3 [52].

The anti-inflammatory activity of curcumin has been also observed in vitro in human gestational
tissues treated with LPS. Specifically, incubation with curcumin (60 µM for 24 h) reduced IL-6 release,
and IL-6 and IL-8 mRNA expression induced by LPS, in both placenta and fetal membranes. Moreover,
curcumin decreased placental COX-2 mRNA expression, prostaglandin PGE2 and PGF2a release,
and the expression and activity of the matrix-degrading enzyme MMP-9, in association with reduced
activation of NF-kB [53].

Although several clinical trials emphasized the benefits of curcumin in different pathological
contexts [10,11,32,78], there are few data on curcumin supplementation in human pregnancy. Recently,
a double-blind randomized clinical trial involving 47 pregnant women with preeclampsia was
conducted to evaluate the possible effect of curcumin on the expression of COX-2 and IL-10, thought to
have a role in the pathogenesis of PE. The enrolled patients were randomized to receive either curcumin
100 mg/d (n = 23) or placebo (n = 24) [54]. The authors analyzed the circulating levels of IL-10 and
COX-2, at T0, 90 min after curcumin ingestion, and 12 h after delivery. Results showed that curcumin
did not modify the expression of the analyzed molecules at any tested time. The authors hypothesized
that the absence of effect might be due to the low dose of curcumin, taking into account that in
non-pregnant subjects doses can reach more than 1 g/day [54].
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3.3. Postpartum Depression

During the antenatal and postpartum periods, women are particularly prone to develop mental
disorders, including depression. Postpartum depression (PPD) occurs in 10–20% of women, leading to
significant health consequences for both mother and offspring [79]. This condition has been largely
underestimated and understudied so far. Hence, its prevalence is supposed to be higher, conceivably
reaching 50% of women. Symptoms of depression begin during pregnancy in about 30% of women and
numerous environmental, genetic, biochemical, and epigenetic factors likely contribute to the onset of
PPD [79–81], although the exact mechanisms responsible for this condition are not yet completely known.
Several pharmacological and psychological approaches are currently adopted to treat PPD, even though
complementary and alternative medicine have also been taken into consideration. Increasing data
have suggested the neuroprotective roles of a healthy diet, rich in fruit and vegetables, highlighting its
positive influence on mental health [82]. On the contrary, an unhealthy dietary pattern increases the risk
of systemic low-grade inflammation and neuroinflammation, known to be associated with PPD [18].
The neuroprotective and antidepressant benefits of curcumin have been known for a long time [83–85].
Several preclinical studies have suggested potential positive effects of curcumin in treating neurological
disorders, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, migraine, epilepsy,
brain and spinal cord injury, and depression [17,86,87]. Lopresti and colleagues have investigated the
effects of curcumin on depression outcomes in humans. They observed that eight-week curcumin
supplementation (500 mg twice a day) in subjects with major depressive disorder (MDD) was effective
in reducing depressive and anxiety symptoms, as demonstrated by the reduction in total depressive
symptoms (total IDS score), mood/cognitive depressive symptoms (IDSm), arousal-related symptoms
(IDSa), and trait anxiety (STAIt) [88]. This supplementation resulted in an increase in urinary levels
of both the arachidonic acid metabolite thromboxane B2 (Tbx-B2) and the neuropeptide substance P
(SUB-P), potentially involved in depression mechanisms. Moreover, although curcumin did not modify
plasma levels of endothelin-1 and leptin, a greater antidepressant benefit was observed in subjects
with the highest baseline levels of these molecules. The authors hypothesized that curcumin might act
by increasing endothelin and leptin receptor activities [89]. Similarly, in another trial, 1000 mg/day
curcumin ingestion for six weeks or the administration of the antidepressant drug fluoxetine showed
comparable efficacy in subjects with MDD [90]. A recent meta-analysis provided relevant information
about curcumin use in depression. Specifically, this analysis revealed that curcumin administration
(i) appears to be more effective in reducing depression symptoms at a higher dosage (1 g/day) and for
six weeks or more; (ii) can enhance the action of antidepressants; and (iii) has more effects on subjects
with major depression and without other comorbidities [86]. These results indicate the need for further
study to better comprehend the mechanisms of action of curcumin in depression treatment.

Data obtained from animal and in vitro studies have indicated that curcumin might exert
antidepressant activity by acting on different signaling pathways involved in mental disorders.
Specifically, this compound is able to ameliorate the hypothalamic-pituitary-adrenal (HPA) axis
disturbances [91]. Curcumin can influence the unbalanced release of monoamine neurotransmitters—
such as serotonin (5-HT), dopamine (DA), noradrenaline, and glutamate—the expression of monoamine
oxidase (MAO), the expression of neurotrophic factors such as brain-derived neurotrophic factor
(BDNF) and neurogenesis, as well as the dysregulated immune system function and oxidative
and nitrosative stress. Thus, curcumin appears to promote neurogenesis and inhibit neuronal cell
apoptosis [83,84,92,93]. Despite the consistent evidence of efficacy and safety of curcumin treatment in
other pathological conditions, to date, data on its effects on depression in pregnancy are completely
lacking. However, in the last years, there has been a growing awareness of the possible role of
anti-inflammatory micronutrients in improving PPD symptoms [18].

3.4. Fetal Growth and Development

According to the theory of the fetal origin of adult diseases (FOAD) hypothesized by David Barker,
the intrauterine environment has a relevant role in fetal growth and development and influences disease
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susceptibility in the offspring in the short and long term [94]. The physiological processes of pregnancy
require immune and metabolic modifications to accommodate the growing fetus; maternal malnutrition
negatively influences this dynamic equilibrium, leading to tissue-specific impairment, with serious
adverse outcomes for both mother and child [3,6]. Taking into consideration the importance of nutrition
in human development, there is a need for better understanding the nutritional programming and the
related mechanisms and players acting during pregnancy.

The placenta has the fundamental role of transferring nutrients to the fetus, and alterations in
placental function have severe effects on fetal growth. Placental insufficiency is the most common cause
of fetal growth restriction (FGR), a serious condition that affects 3–7% of all newborns [95]. Although the
pathophysiology of FGR is not completely known, excessive oxidative stress and inflammation, as well
as the activation of a complex network of several signaling pathways, appear to be involved [95,96].
The antioxidant and anti-inflammatory effects exerted by curcumin on the placenta [53] were confirmed
in a mouse model of FGR fed with a low-protein (LP) diet [16]. The authors showed that maternal
supplementation with curcumin (100 mg/kg day, from 1.5 to 19.5 GD) induced a potent antioxidant
response in LP-fed pregnant mice; specifically, curcumin (i) increased GSH-Px activity, Nfr2 mRNA
expression, and the blood sinusoids area; (ii) reduced malondialdehyde (MDA) content and apoptosis
in the placenta, leading to increased placental efficiency; and (iii) elevated the expression of the
antioxidant genes SOD1, SOD2, and CAT, and protein expression of Nrf2 and eme oxygenase-1(HO-1)
in the liver. Overall, curcumin supplementation during pregnancy was able to revert tissue damage
and contrast the decrease in fetal weight induced by a LP diet [16]. Curcumin appeared to improve
birth weight, inflammation, and oxidative damage also in FGR newborn rats. Indeed, FGR rats
supplemented with 400 mg/kg curcumin (at six weeks of age for six weeks) displayed reduced levels of
the inflammatory cytokines TNF-α, IL-1β, and IL-6, reduced activity of AST, ALT, and MDA enzymes,
and increased Gpx and GSH activity in serum. Antioxidant defense in the liver was significantly
improved as well. The attenuation of the inflammatory status induced by curcumin was associated
with (i) reduced activation of NF-kB and JAK2; (ii) increased expression of the antioxidant genes
(Nqo1, Hmox1, Gst, Gpx1, and Sod1), and activation of their regulatory transcription factor Nfr2,
in the liver [55]. Successively, the same authors investigated the effects of curcumin on insulin
resistance (IR) and hepatic lipid accumulation in FGR newborn rats. Specifically, supplementation
with 400 mg/kg curcumin (at six weeks of age for six weeks) attenuated IR by reducing serum insulin,
glycemia, and homeostasis model assessment of insulin resistance (HOMA-IR). Furthermore, in the
liver, curcumin diminished total cholesterol, TG, and non-esterified fatty acids (NEFA); increased
glycogen concentration and induced the activation of lipolytic enzymes, together with a reduction in
IRS-1 and Akt phosphorylation, a decrease in CD36, SREBP-1, and FASN expression, and an increase
in PPARα levels. Overall, these data showed that curcumin could improve IR and lipid accumulation
in the liver by regulating insulin signaling pathways, and promoting lipolysis and fatty acid oxidation
in FGR rats [56].

Of note, curcumin alleviated also jejunum damage in FGR growing pigs. Indeed, the addition of
200 mg/kg curcumin to diet improved antioxidant defense (i.e., increased SOD and decreased MDA
activity), immune-related gene expression (reduced mRNA of TNFα, IL-6, and IFNγ, and increased
IL-2), and decreased apoptotic genes, such as caspase3 and Bax in the jejunum. Moreover, curcumin
supplementation increased mRNA expression of the tight junction-related gene ocln [97].

Preterm birth (PTB) is a pregnancy complication that affects about 11% of births worldwide and is
associated with increased maternal and neonate morbidity and mortality [98]. An altered inflammatory
status appears to be associated with PTB. Thus the anti-inflammatory activity of curcumin has been
evaluated in a mouse model of PTB, obtained through LPS injection in the abdominal cavity [57].
The injection of 100 mg/kg curcumin into the abdominal cavity, one day before (preventative group)
or one day after (treatment group) LPS treatment, significantly reduced serum levels of TNF-α,
IL-8, and MDA, and increased SOD levels, in both the experimental conditions, in pregnant mice.
The staining intensity of NF-κB p65 showed that curcumin was able to reduce the LPS-induced
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expression of this inflammatory transcription factor in placental tissue both in the preventative and in
the treatment group [57].

3.5. Toxicant Agents

Besides maternal nutrition, many other factors, including exposure to chemical and natural toxic
agents, drugs, alcohol, smoking, and maternal stress influence fetal growth and development [99].
Among the myriad of properties, curcumin appears to be able to reduce toxicity induced by several
environmental agents in different organs and tissues, including the brain and liver [12].

Bisphenol-A (BPA) is a chemical substance adapted to produce plastic. It has been considered
an endocrine disruptor by the European Chemicals Agency (ECHA 2017) [100] due to its estrogenic
activity. BPA exposure in pregnancy is associated with negative outcomes, including impaired fetal
growth and childhood adiposity [101].

Remarkably, this synthetic compound affected the processes of neurogenesis in the hippocampus
of the developing rat brain, and curcumin treatment showed neuroprotective activity by reverting
BPA-induced effects. Specifically, pups from a pregnant rat receiving BPA (40 µg/kg body weight/day
from GD6 to PND28) were treated with curcumin (200 mg/kg body weight/day from PND7 to PND28).
The authors performed accurate experiments on embryo and pup brains and examined the expression
of genes and pathways involved in neurogenesis. They observed that curcumin attenuated the
BPA-induced reduction in neuronal stem cells (NSC) proliferation and differentiation. At molecular
levels, the improvement in neurogenesis was associated with the enhanced expression of the proneural
transcription factors neurogenin and neuroD1, the reduced expression of the proapoptotic molecule
Bax, the increased expression of the antiapoptotic molecule Bcl-2, and the activation of Wnt/βcatenin
signaling that regulates NSC proliferation and differentiation. Of note, the benefits of curcumin resulted
in improved learning and memory in BPA-treated pups [58].

Mercury (Hg) is a widely diffused toxic heavy metal that occurs naturally in three forms, namely
metallic Hg, organic Hg, and inorganic Hg. Human exposure to Hg occurs mainly through the
environment (e.g., mercury-contaminated sea fish, dental amalgam). Of note, occupation (e.g., mining)
is another important source of exposure for humans and is associated with possible multi-organ
toxicity [102]. As for the influence of Hg on neurodevelopment, a cross-sectional study, involving healthy
Saudi mothers and their infants (age 3–12 months), showed an association between Hg exposure
and neurodevelopmental delay, with possible negative effects persisting also in adulthood [103].
Interestingly, curcumin appeared to mitigate Hg toxicity in animal models [102]. Specifically, pregnant
mice were exposed (from 1GD to 15PND) to 10 ppm mercuric chloride (HgCl2) in the presence or absence
of 150 and 300 ppm curcumin. Hg exposure induced serious damage to the development of neuromotors,
and increased anxiety behavior in pups. Curcumin administration improved neurodevelopment
and reduced anxiety, by restoring the levels of neurotransmitters DA, 5-HT, and acetylcholinesterase
(AChE), and of the antioxidant GSH, decreased by Hg exposure, in forebrain pups [59]. Moreover,
by using the same experimental conditions, the authors analyzed changes in body weight, sexual
behavior, and fertility in male and female pups. The obtained data showed that curcumin counteracted
the perinatal effects of Hg exposure by increasing (i) body weight, liver and brain weight in male and
female pups; (ii) epididymis, seminal vesicle, testis weight in males; and (iii) ovary weight in females;
also sexual behavior was improved in both sexes. Moreover, curcumin increased testosterone and FSH
levels, and sperm motility in males, as well as FSH, LH, and progesterone in females, reduced by Hg
exposure [60].

Lead (Pb) is a heavy metal widely spread in the environment. It is extremely dangerous for
both animals and humans. Lead exposure occurs mainly through food and water contamination,
and air pollution. Lead can cross the placental and blood-brain barrier, inducing neurotoxicity.
Curcumin exerted neuroprotective effects contrasting lead-induced damage in rats. The concomitant
exposure of rat mothers to Pb (3 g/L) and curcumin (16 g/kg) during pregnancy and lactation resulted
in the recovery of the Pb-induced altered sensorimotor functions in neonatal rats. Pb neurotoxicity
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produced alterations in locomotor neuronal network development and curcumin treatment reversed
these anomalies, allowing normal locomotor behavior. These findings indicate that curcumin has the
capability to prevent central nervous system dysfunction induced by lead during the earlier stages of
development [61].

Celecoxib is a selective inhibitor of COX-2 that is able to reduce pain and inflammation caused by
several inflammatory conditions [62]. Since recent data have shown that the inhibition of COX-2 reduced
adult neural cell proliferation and differentiation [104], Wang et al., investigated the neuroprotective
action of curcumin on fetal brain development in pregnant mice treated with celecoxib [62]. Specifically,
pregnant mice were pretreated with curcumin (500 nmol/kg body weight) from embryonic day (E)
13.5 to E16.5, and then with celecoxib (300 mg/kg body weight) from E16.5 to E17.5. Results showed
that curcumin counteracted the celecoxib-induced inhibition of neurogenesis in the fetal frontal cortex,
by increasing proliferation and Cyclin D1 expression in neural progenitor cells, and by activating
Wnt/βcatenin signaling (i.e., decreased expression of glycogen synthase kinase 3 beta (GSK-3β),
and increased expression of βcatenin) [62].

Valproic acid (VPA), a branched short-chain fatty acid, is an antiepileptic agent that has been
associated with congenital malformations, including alterations in fetal brain development, and consequent
intellectual disabilities and autistic spectrum disorders in the offspring [105]. Curcumin appears to
attenuate the VPA-induced brain damage, as observed in a rodent model of autism. Neonatal rats, born
to mothers treated with VPA from 12.5 gestational day, received a single dose of curcumin (1 g/kg day),
and their brains were analyzed 28 days after birth. Curcumin was able to ameliorate body and brain
weight, and the altered expression of IL-6, IFN-γ, GSH, CYP450, in the brain of VPA-exposed pups [63].

Prenatal alcohol exposure (PAE) has dramatic effects on fetal growth and development (fetal alcohol
spectrum disorders: FASD) and is responsible for neurodevelopmental disorders (i.e., neurocognitive
and behavioral deficits, and increased susceptibility to mental health disorders) and birth defects
(growth deficits and physical abnormalities). PAE induces chromosomal rearrangements and epigenetic
alterations, therefore leading to altered gene-environment interactions that are responsible for
alcohol-induced disorders [106]. Curcumin (100 mg/kg body weight), administered during the
peri-adolescence period (PND 28–35), appeared to counteract fetal brain damage induced by prenatal
and lactational alcohol exposure (PLAE; 20% (v/v) alcohol solution) in mice. The authors showed that
curcumin improved anxiety and memory deficits caused by PLAE, and these improvements were
associated with reduced microglia activation and astrogliosis. At molecular levels, curcumin reduced
protein expression of IL-6, TNF-α, and NF-kB. These data showed that curcumin may act against
cognitive deficits and neuroinflammation induced by alcohol exposure in pregnancy [64].

Curcumin can counteract the deleterious effects of PAE on cardiac development, as demonstrated
in a mouse model. Pregnant mice were daily exposed to ethanol (56% v/v in saline) between embryonic
days 7.5 to 15.5; at embryonic day 17.5, mice were euthanized and embryonic hearts were removed.
Results showed that PAE treatment increased apoptosis in pup hearts; this finding was associated with
higher levels of caspase-3 and -8 mRNA expression, and reduced Bcl-2 mRNA expression, due to a
different modulation of histone H3K9 acetylation near the promoter regions of caspase-3, caspase-8
(hyperacetylation), and Bcl-2 (hypoacetylation). In vitro, curcumin (25 µM for 24 h) treatment abolished
apoptosis and reverted the expression of caspases and Bcl-2, induced by alcohol (200 mM), in cardiac
progenitor cells. These results highlighted the capability of curcumin to prevent congenital heart
diseases induced by PAE in pregnancy, by acting as an epigenetic modulator [65].

3.6. Adverse Effects on Embryos

Embryonic development is a complex process that is finely regulated and highly susceptible
to environmental influences. Therefore, it is reasonable to hypothesize that the anti-inflammatory,
antioxidative, antiproliferative, and antiangiogenic properties of curcumin could interfere with the
blastocyst stage, implantation and post-implantation development of embryos [66].
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Chen and colleagues evaluated the possible embryotoxicity of curcumin in mouse blastocysts
both in vitro and in vivo. They observed that curcumin (24 µM for 24 h) induced apoptosis in mouse
blastocysts, and reduced implantation rate and development, in vitro. Then, embryos treated with
curcumin were transferred in vivo; results confirmed a significant reduction in implantation ratio, and,
among the implanted embryos, a higher rate of failure to develop normally. The authors evaluated the
possible mechanisms responsible for these effects and found that curcumin-induced apoptosis was
associated with the modulation of pro- and anti-apoptotic molecules (i.e., increased Bax and reduced
Bcl-2 expression), ROS generation, and caspase-3 activation [66]. Additionally, the same authors
showed that curcumin (24 µM) adversely affected oocytes maturation, in vitro. This effect resulted in
a reduced ability of oocytes to be fertilized, increased blastocyst apoptosis, and reduced blastocyst
implantation ratio and development. These results were confirmed in oocytes collected from female
mice after feeding them with curcumin supplementation (40 µM) for four days [67]. Another in vitro
study highlighted that the degree of damage induced by curcumin (6, 12, or 24 µM curcumin for
24 h) on mouse blastocyst at the implantation stage and during the early post-implantation stage is
dose-dependent. Specifically, 6 µM and 12 µM curcumin inhibited cell proliferation of the blastocyst
but increased the formation of trophoblastic giant cells, whereas 24 µM curcumin exposure was lethal
to all blastocysts, and induced severe damage to the implanted blastocysts [68].

Further evidence on these effects comes from a recent study in zebrafish. The exposure of zebrafish
embryos and larvae to different concentrations of Curcuma Longa extract (7.80, 15.63, 31.25, 62.50,
125.0, and 250.0 µg/mL) at different hours post fertilization (hpf: 24, 48, 72, 96, 120 h) showed that a
dosage above 62.50 µg/mL had toxic effects, and a dosage of 125.0 µg/mL increased embryo mortality
and induced morphological deformities in larvae [19]. Despite the potential benefits of curcumin
described in different pathological conditions, all these data indicate that dosage and time of exposure
throughout pregnancy should be carefully evaluated to avoid serious damage to embryo development.

4. Conclusions and Future Perspectives

The use of the natural product curcumin to treat medical conditions is spreading around the world.
There is an increasing public interest in the potential health benefits of this compound, as evidenced by
the large number of currently available curcumin formulations, aimed at increasing its bioavailability
and efficacy, and by the considerable number of scientific papers published over the last years.

This review has drawn attention towards the effects of curcumin on pregnancy and pregnancy
complications, considering that during gestation, mother and fetus undergo significant (patho-)
physiological changes.

Almost all data emphasizing the numerous biological activities of curcumin have been obtained
from pregnant rodents and in vitro studies. Curcumin appeared to ameliorate diabetes in a GDM mouse
model, as well as PE in a PE rat model, and was found to be neuroprotective against environmental
toxic agents. The antidepressant activity of curcumin has also been tested in humans. However, to
date, studies on the possible beneficial effects of curcumin on PPD, a largely underestimated and
understudied condition, are completely lacking. As regards fetal growth and development, curcumin
counteracted the modifications associated with FGR and PTB in rodent models but negatively affected
blastocyst stage, implantation and post-implantation embryo development in healthy animals.

Altogether, these results indicate that the use of curcumin in pregnancy must be carefully evaluated.
The growing use of curcumin as self-medication along with the misleading perception that “natural” is
the equivalent of “safe” are additional issues of concern.

Further studies are needed to clarify whether pregnancy might benefit from curcumin’s
properties; for this purpose, the collaboration between multidisciplinary scientific teams is essential to
provide a holistic view of the complex networks between natural products and human physiology.
Systems biology and the recently developed network pharmacology represent new strategies to better
comprehend the mechanisms underlying curcumin activities in the human body.
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