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Detecting heritable phenotypes without a model
using fast permutation testing for heritability and
set-tests
Regev Schweiger1, Eyal Fisher2, Omer Weissbrod3, Elior Rahmani1, Martina Müller-Nurasyid 4,5,6,

Sonja Kunze7,8, Christian Gieger7,8, Melanie Waldenberger6,7,8, Saharon Rosset2 & Eran Halperin 9,10

Testing for association between a set of genetic markers and a phenotype is a fundamental

task in genetic studies. Standard approaches for heritability and set testing strongly rely on

parametric models that make specific assumptions regarding phenotypic variability. Here, we

show that resulting p-values may be inflated by up to 15 orders of magnitude, in a heritability

study of methylation measurements, and in a heritability and expression quantitative trait loci

analysis of gene expression profiles. We propose FEATHER, a method for fast permutation-

based testing of marker sets and of heritability, which properly controls for false-positive

results. FEATHER eliminated 47% of methylation sites found to be heritable by the para-

metric test, suggesting a substantial inflation of false-positive findings by alternative meth-

ods. Our approach can rapidly identify heritable phenotypes out of millions of phenotypes

acquired via high-throughput technologies, does not suffer from model misspecification and

is highly efficient.
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One of the most fundamental problems in genetics is
testing whether a particular phenotype is associated with
a set of markers. For instance, it is often desired to

understand whether a specific phenotype is heritable. The herit-
ability of a phenotype is defined as the proportion of the variance
explained by a genetic component. In this example, the set of
single-nucleotide polymorphisms (SNPs) that are tested for
association with the phenotype includes the entire set of SNPs of
the genome; when local heritability is tested, then the set of SNPs
includes the SNPs in particular regions such as chromosomes or
with a particular functional annotation. Furthermore, these var-
iants are often tested against a large number of phenotypes, such
as expression profiles of genes1–4, methlyation levels5–8, or neu-
roimaging measurements9,10. A similar notion to heritability has
been tested in other fields as well, beyond genetics. For example,
in metagenomics, it is a common practice to test for an asso-
ciation between a phenotype and the relative abundance vector
obtained from either shotgun sequencing or targeted 16S
sequencing11. Heritability is commonly studied using the linear
mixed model (LMM); this model is a linear model that implicitly
assume a very small effect for each of the SNPs12.

Naive association testing of single markers may be extremely
underpowered, even in large datasets. The common technique to
address this issue is set testing, which groups together markers
and applies a joint test to them13–16. Set testing is especially
important when analyzing data with rare variants. Rare variants
are becoming widely available, with sequencing costs rapidly
decreasing, resulting in many whole-genome sequencing studies.
Rare variants are particularly important since a large part of
human genetic variation can be explained by these variants.

The success of the LMM depends on the degree to which it fits
the data. For example, the LMM assumes the phenotype follows a
normal distribution. However, phenotypes which are discrete,
multimodal, bounded, truncated, or in general whose residuals,
after adjusting for covariates, do not exhibit normality, might not
be suitable for use with the LMM. The same argument holds for
generalized LMMs (GLMMs), which replace the normality
assumption with other parametric distributions. To mitigate such
issues, one can attempt to pre-process the phenotypic values to
make them as Gaussian as possible (see, e.g.17). However, there is
no guarantee that a sufficiently good transformation exists, and
the dependency on the parametric model may not be robust to
other types of model deviations.

Our goal is to develop a practical and globally applicable test
for existence of heritability, which will apply to the test statistic
calculated via the LMM mechanism, whether or not the LMM
assumptions actually fit the data well. Permutation testing is a
non-parametric, assumption-free method for testing the null
hypothesis of sample exchangeability18. Such exchangeability
holds, for example, for any model under which non-heritable
phenotypes are independent and identically distributed across all
individuals, such as the LMM with a constant covariate and zero
heritability. It also holds approximately with general covariates,
under many realistic settings. In such permutation testing, we
repeatedly permute the labels corresponding to each individual in
the phenotype (along with additional covariates), re-estimate the
heritability of each shuffled dataset, and compute the proportion
of permutations for which we got a higher heritability value than
the original estimate. This offers an intuitive notion of sig-
nificance, which has little dependency on the underlying dis-
tribution of the phenotype.

Unfortunately, permutation tests are computationally
demanding, requiring the calculation of the test statistic for each
permuted dataset. As a rule of thumb, accurate estimation of p-
values of 1/M requires 100M permutations19. Contemporary QTL
studies3 often carry out hundreds of thousands (or more) of tests,

calling for p-values smaller than, e.g., 0.05/100000 to establish
significance after multiple testing correction. Thus, permutation-
based testing of such studies will require on the order of 109

permutations, a formidable task.
Previous works suggest permutation procedures as a way to

calibrate the distribution of a statistic of choice, in the context of
LMMs. For example, permutations are used to calibrate the
likelihood ratio (LR) test statistic, assuming its distribution comes
from a limited family of distributions16 or without such
assumptions20,21. This approach was extended to be used in
association with multiple traits22. A less restrictive permutation
scheme was used in23 to test whether the distribution of survival
endpoints varies among centers in an acute myeloid leukemia
multicentre study, using the LMM for analysis. More generally,
permutation and other nonparameteric bootstrapping schemes
have been used to calibrate various statistics suggested for testing
for a nonzero variance components in GLMMs. In ref.24, an
alternative statistic based on the score test is suggested, with a
corresponding non-permutation-based parametric bootstrap test.
Other works follow a similar permutation procedure to the one
presented in this work, but apply it to a newly suggested T-based
statistic20 or to particular quadratic forms of the phenotype25.
In9, one of the considered permutation tests is similar to ours, but
they do not address computational issues, which limits their
ability to detect small p-values.

In this paper, we study the behavior of the permutation test
compared to the p-values calculated by assuming the parametric
LMM. We analyze methylation measurement profiles from the
longitudinal KORA study (Cooperative health research in the
Region of Augsburg), and gene expression profiles from the GTEx
project. We show that large discrepancies exist between the two
tests. In particular, p-values from the parametric test are often
much smaller than those obtained from the permutation test. We
show that this likely stems from model mis-specification of the
LMM, which suggests a large majority of methylation sites or
expression profiles with seemingly significant heritability are in
fact false positives, motivating the use of permutation tests.

We then propose a fast method for permutation testing for
heritability and for set testing. To do so, we address two issues.
First, for each permutation, we speed up evaluation by using the
derivative of the likelihood of the permuted phenotype instead of
a full estimation step. Second, we use an efficient p-value eva-
luation procedure26 based on the Stochastic Approximation
Markov Chain Monte Carlo (SAMC) algorithm27,28, which allows
us to estimate the significance of a heritability estimate with a
fraction of the number of permutations required by the naive
method. We apply our approach to the KORA dataset, to achieve
a speed up of up to eight orders of magnitude in p-value
calculation.

Results
For a phenotype y, the LMM assumes y=Xβ + g + e, where Xβ
is the contribution of covariates, g � Nð0; σ2gKÞ is the genetic
component of the trait, and e � Nð0; σ2eIÞ is the environmental
component. K is a kinship matrix capturing the genetic related-
ness between individuals in the sample, which can be constructed
in various ways, using genotypes or known familial relations.
Heritability is then defined as h2 ¼ σ2g=ðσ2g þ σ2eÞ. Similarly, the
heritability estimate is ĥ2 ¼ σ̂2g =ðσ̂2g þ σ̂2e Þ, where σ̂2g and σ̂2e are
estimates for σ2g and σ2e , respectively. These estimates are calcu-
lated using restricted maximum likelihood (REML) estimation
(see Methods).

Under the LMM, the common technique for parametric p-
value calculation (e.g., in the popular GCTA software package29)
is to calculate the generalized likelihood ratio test statistic, and to
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assume it is distributed as a 50:50 mixture of zero and the chi-
square distribution (see Methods). Other distributions are
sometimes used16, as we discuss below. An alternative test,
usually used in the context of set testing, is the score test for
σ2g ¼ 0, used most predominantly as implemented by the
Sequential Kernel Association Test (SKAT)30. The distribution of
the SKAT test statistic is assumed to be a certain weighted mix-
ture of chi-square distributions.

To avoid model mis-specification or relying on an asymptotic
distribution of the test statistic, we consider the permutation test.
In the context of heritability, it consists of permuting the phe-
notype, estimating the heritability for each permuted phenotype,
and counting the proportion of permutations for which the
estimate obtained was higher than that of the original phenotype
(see Methods). In practice, we do not enumerate over the entire
set of permutations, but rather sample random permutations
(e.g., N= 1,000,000). This gives us an estimate of the p-value of
the test under the model, for which we can construct accurate
confidence intervals (CIs). One appealing property of the per-
mutation test is that it is an exact test under the assumption that
the true model for the data is invariant to relabeling of indivi-
duals, which holds specifically if the trait is non-heritable, and
holds approximately when non-constant covariates are used, in a
wide range of settings. For example, if we decide that a p-value of
< 0.001 is our threshold for proclaiming a phenotype as heritable,
then we will falsely label non-heritable phenotypes as heritable
about 0.1% of the time.

Large discrepancies in p-values in a methylation study. We
compared the p-values of the permutation test to the p-values
calculated by assuming the parametric LMM. We analyzed
methylation measurement profiles from the longitudinal KORA
study (Cooperative health research in the Region of Augsburg),

which consists of subjects from the general population living in
the region of Augsburg, southern Germany. In this dataset, both
whole-blood methylation levels and genotypes are available for
1799 individuals (see Methods). The phenotype in this study is
the proportion of methylated samples at a specific site, averaged
across cells. These proportions are often empirically bimodal for a
given site, and their values are bounded between 0 and 1, and
thus it is not clear that an assumption of normality or near-
normality is suitable here.

Several works have studied heritable DNA methylation effects
and the role of such epigenetic variants in disease and genetic
regulation (see, e.g., a recent review5 and references therein). For
example, heritable methylation sites were previously shown6 to be
enriched for open chromatin regions and binding sites of
regulators of transcription and chromatin architecture, and to
be proximal to genes enriched in several known pathways,
suggesting a potential regulatory mechanism through which
genetic variation can affect phenotype.

We calculated the LMM heritability estimates for 431,366
methylation sites, and calculated their p-values using two
methods: The parametric test (using the generalized likelihood
ratio test, e.g., using GCTA) and using a permutation test with
10,000 permutations, using only an intercept covariate (see
Methods). We observed that parametric p-values are often
considerably smaller than the exact p-values obtained by the
permutation test, frequently by several orders of magnitude, and
thus they may incur false-positive findings (Supplementary
Figure 1)). We re-ran this analysis using age, sex, and smoking
status as covariates, which are commonly used in methylation
studies as known confounders. The results (Fig. 1) show large
discrepancies, showing that it is not a result of lack or addition of
covariates in the analysis.

Applying a Bonferroni threshold of 0.05 ⋅ 1/431, 366 ≈ 10−7, we
further took the 3489 most significant sites which passed this
threshold accordingly to GCTA. We then estimated their p-value
using 10,000,000 permutations (Supplementary Figure 2). This
increased accuracy reveals that for many sites, GCTA would
proclaim a site as very significant, while permutation testing does
not indicate significance. For example, 395 sites have a
permutation p-value of p > 10−4, but a parametric p-value of p
< 10−10. A further inspection of phenotypes displaying such large
discrepancies discovered that it is often the result of the
phenotype taking disparate values for individuals who are
relatively genetically distant from the rest of the sample.

Finally, to check for opposite discrepancies, we took the
6686 sites with permutation p-value of 0/10,000, and calculated
their permutation p-value using the method we present below.
For 81 sites, the permutation p-value as estimated was significant
while the parametric was not, indicating that parametric methods
can suffer not only from false-positive results, but also from lack
of power. For most of these sites (62/81 sites, 76%), the
discrepancy was less than 1 order of magnitude smaller, which
can be accounted for by noise in p-value estimation. The
remaining 19 sites showed discrepancies below 2 orders of
magnitude, and 14 of them exhibit a tri-modal behavior. The
results are summarized in Table 1.

Large discrepancies in p-values in a gene expression study. In
order to show the generality of the discrepancy phenomenon, we
analyzed gene expression data in the GTEx dataset (see Methods).
We first performed a cis-eQTL study, where for each of 22,171
genes, we created a kinship matrix from the SNPs located within
500 kbps from the gene transcription start site (total window size
of 1 Mbps). For each gene, we used both the parametric and the
permutation tests to test for association between the SNPs in the
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Fig. 1 Discrepancy in p-values in a methylation study. p-values from 10,000
permutations, compared to GCTA p-values assuming asymptotics (in log
scale). Evaluated on 431,366 methylation sites on all autosomal
chromosomes, from the KORA dataset, with 1799 individuals, and with sex,
age, and smoking status as covariates. Sites with ĥ2 ¼ 0 or with a
parametric p < 10−20 omitted for clarity of presentation, with 99.995%
confidence intervals (CIs) shown. Parametric p-values are often smaller
than the exact p-values obtained by the permutation test, frequently by
several orders of magnitude, resulting in many false positives
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window and the gene expression profile, as measured in whole-
blood samples. We used the same covariates used in the original
GTEx study—namely, the first three genotyping principal com-
ponents (PCs), the first 15 expression PEER factors (Probabilistic
Estimation of Expression Residuals)31, and sex. Gene expression
profiles were quantile-normalized before analysis (see32). As
evident in Fig. 2, despite inclusion of relevant covariates and
careful preprocessing, there still remain significant discrepancies
that could be a source of false positives. Indeed, in the original
GTEx study, one required criterion for detection of eQTL-
containing genes is a permutation p-value obtained from 10,000
permutations32. This exemplifies the need for a fast and accurate
permutation testing procedure.

In addition, we performed a heritability study over the same
data, where now the set of tested markers includes the entire
genome. We still observed p-value discrepancies, when permuta-
tion p-values did not detect significantly heritable expression
profiles, while parametric p-values did. Further analysis showed
that all profiles with significant parametric p-values obtained a
heritability estimate of ĥ2 ¼ 1 (Supplementary Figure 3). In such
a case, the assumed LRT statistic distribution (see Methods) does
not handle the maximal boundary estimate correctly. In studies of
small sample sizes, such boundary estimates are likely to occur33,

so such discrepancies are expected. This presents another
scenario where parametric p-values are not calibrated.

Reasons for p-value discrepancy. We proceeded to analyze
possible underlying reasons for p-value discrepancies. The ana-
lysis is given in Supplementary Note 1, and is summarized here.
First, we showed that the permutation test is equally powerful to
the parametric test under the LMM (Supplementary Figure 4), so
that power differences do not explain the discrepancy. Second, we
applied quantile normalization (QN) as a preprocessing step
before calculating p-values, finding that it did not eliminate the
discrepancies, and introduced a potential power loss (Fig. 3).
Third, we considered an extended family of distribution as an
alternative to the assumed distribution of the LRT statistic16, but
it failed to substantially alter the results. Fourth, we verified that
sites with p-value discrepancies are not limited to those with a
multimodal behavior. To this end, we excluded from the analysis
both sites whose probes are known to contain SNPs (and are thus
expected to be multimodal), as well as sites empirically showing a
multimodal behavior. However, p-value discrepancies remained.
Fifth, we examined whether this discrepancy exists when using
the score test instead of the LR test. We note that using the SKAT
method30 to calculate p-values, we found that it generated sig-
nificantly deflated p-values throughout the dataset, indicating that
the statistic distribution is not calibrated34,35. Using RL-SKAT35

Table 1 Summary of p-value discrepancies

Non-significant (GCTA) Significant (GCTA)

Non-significant (Perm.) 427,796 1667
Significant (Perm.) 81 1822

The p-values for heritability of 431,366 methylation sites, as calculated by either GCTA (using the parametric approach) or the permutation test, are shown. Sites are considered significant if their
p–values are below a Bonferroni threshold of 10−7
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Fig. 2 Discrepancy in p-values in a cis-eQTL study. p-values from 10,000
permutations, compared to GCTA p-values assuming asymptotics (in log
scale). Evaluated on 22,171 gene expression profiles in whole-blood
samples, from the GTEx dataset, with 338 individuals. Sites with ĥ2 ¼ 0
(8604 profiles) omitted for clarity of presentation, with 99.995% CIs.
Parametric p-values are often smaller than the exact p-values obtained by
the permutation test, frequently by several orders of magnitude, resulting in
many false positives
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Fig. 3 Discrepancy in p-values, with quantile normalization. p-values after
quantile normalization, from 10,000 permutations, compared to GCTA p-
values assuming asymptotics (in log scale). Parametric p-values show large
discrepancies compared to the exact p-values obtained by the permutation
test, frequently by several orders of magnitude, resulting in many false
positives and negatives
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to calculate calibrated p-values, we observed the same dis-
crepancies (Supplementary Figure 5). Finally, we performed a
simulation study, where non-heritable phenotypes were generated
from a non-normal, heavy-tailed marginal distribution per entry.
These phenotypes showed parametric p-value miscalibration,
while permutation p-values remained calibrated.

We conclude that model mis-specification is the probable
reason for such large discrepancies, which further motivates the
use of the permutation test. We find that if the LMM is a suitable
model for the data at hand, then both the parametric and the
permutation tests have similar power. In the case where the LMM
is not suitable, the parametric test breaks while the permutation
test remains calibrated under much weaker assumptions. There-
fore, from a statistical perspective, the permutation test is
superior in the context of testing for heritability as defined by
the LMM.

Speeding up the evaluation step per permutation. Running time
is a major obstacle to performing permutation tests. First, for each
permutation, finding the heritability estimate of the permuted
phenotype is a computationally intensive task. Second, in order to
accurately estimate small p-values, we would need to draw many
permutations. In our proposed method, FEATHER (Fast pEr-
mutAtion Testing HERitability), we address these two con-
siderations in turn, beginning with the task of speeding up the
evaluation performed for each random permutation.

For each permuted phenotype, the naive permutation test
estimates its heritability and compares it to the heritability of the
unpermuted phenotype, denoted H2. However, we are not in fact
interested in the estimated heritability value of the permuted
phenotype, but rather only if it is smaller or larger than that of the
unpermuted phenotype. Recall that REML obtains the heritability
estimate which maximizes the (restricted) likelihood of the
permuted phenotype as a function of the suggested heritability
value. Consider the derivative of the likelihood function at the
point H2. Assuming the likelihood function is well behaved, this
derivative points us to the direction of the maximum: If the
derivative is positive, then the maximum is obtained at a value
larger than H2, and conversely if it is negative (see Supplementary
Figure 6 for an illustration). Therefore, a faster approach is to
simply examine the derivative of the likelihood function, rather
than trying to find its maximum. We validated the assumption
that the likelihood function is well behaved in practice with
extensive simulations of real and permuted phenotypes (Supple-
mentary Note 2).

Additionally, in our previous work33 it was shown that given
the eigendecomposition of the kinship matrix, the derivative of
the likelihood function can be calculated in O(n2) time. More-
over, the core of the computation is a single matrix-by-vector
product, an operation enjoying an efficient implementation in

existing software and hardware36, and thus a small constant
factor (see Methods). The savings in computation complexity
depend on the heritability estimation algorithm used in the naive
approach. For example, when using the AI or the EM algorithms,
as in GCTA29, the computational complexity is O(n3), which
gives our approach a speed up factor of O(n). With approaches
that utilize the eigendecomposition, such as pylmm37 or FaST-
LMM38, the asymptotic complexity is the same; However, we still
get a significant empirical speed up as a result of avoiding many
evaluations of the likelihood functions. In practice, on the KORA
dataset, we observed a speed up of four orders of magnitudes per
permutation of the derivative-based approach compared to full
estimation using the widely used GCTA tool, and an order of
magnitude improvement compared to FaST-LMM (Table 2).

Reducing the number of sampled permutations with SAMC. A
major computational hurdle of permutation testing is the
potentially large number of random permutations that need to be
used in order to estimate small p-values accurately. To cope with
this computational burden, we use an efficient p-value evaluation
procedure based on the Stochastic Approximation Markov Chain
Monte Carlo (SAMC) algorithm26,27. We give an overview of the
method and its properties here. For the full description, see
Supplementary Note 4.

In the context of heritability testing, we utilize SAMC as
follows. Given an estimate H2, we want to calculate its p-value,
i.e., the probability a randomly permuted phenotype obtains a
higher heritability estimate. We divide the interval [0,1] to D + 1
intervals, where the interval [0,H2] is divided into D equally sized
intervals, and [H2,1] is an additional interval. This induces a
partitioning of the permutation space to D + 1 subsets. Each
subset is the set of permutations of the phenotype for which the
estimated heritability value falls in the corresponding interval.
Then, the p-value is exactly the size of the subset corresponding to
[H2,1], divided by n!, the number of permutations of size n.

The SAMC algorithm estimates the size (i.e., probability) of
each subset in the partition. Starting with an arbitrary initial
permutation, each SAMC iteration consists of two steps: (1)
Given the current random permutation, sample a new random
permutation according to a certain target distribution, using the
Metropolis-Hastings (MH) sampling algorithm; (2) Given the
subset in which the new permutation falls, update the partition
probability estimates, and the target distribution of step 1. The
update rule for subset probability estimates follows the stochastic
approximation algorithm39, which ensures that the estimates can
be improved continuously as the simulation goes on. Importantly,
the number of random permutations required for convergence is
much smaller than the estimated p-value.

Additionally, in order to determine in which subset a
permutation falls, we need not calculate the heritability estimate

Table 2 Benchmarks

Algorithm GCTA pylmm FaST-LMM FEATHER (Deriv. Based) FEATHER (SAMC)

No. of perm. used p= 10−4 106 106 106 106 106

Total time used p= 10−4 >8 months ∼1.8 days ∼13 h ∼23min ∼16 min
No. of perm. used p= 10−7 109 109 109 109 106

Total time used p= 10−7 >4 years ∼1.4 years ∼16 days ∼16 min
No. of perm. used p= 10−9 1011 1011 1011 1011 106

Total time used p= 10−9 >4 years ∼16 min

The running time of permutation tests, as calculated by GCTA29, pylmm37 and FaST-LMM38 (performing full estimation for each permutation), vs. the derivative-based approach, with and without
SAMC, on a single site from the KORA dataset, with 1799 individuals. Benchmarks are shown for the cases where the true p-value is 10−4, 10−7, or 10−9. The number of permutations required for the
non-SAMC methods is assumed to be p/100 (see Methods). For these p-values, SAMC converged after 106 permutations (see Results). Per permutation, the derivative-based approaches have a speed
up of two orders of magnitude compared to the best full estimation permutation test program. The usage of SAMC for small p-values introduces an additional speed up of up to 6 orders of magnitude.
Expected computation times for several sites are multiplied by the number of examined sites
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of the respective permuted phenotype. Instead, we can check the
derivatives at the endpoints of the interval. If the derivative is
positive at the left endpoint and negative at the right endpoint,
then we know a maximum exists within that interval. Using the
derivative allows us to avoid the heritability estimation step, as
before. When the algorithm converges, its estimate for the last
subset will be our estimate of the p-value.

Analysis of the performance of SAMC. We implemented both
the simple and SAMC derivative-based permutation testing, as an
efficient, multi-threaded C++ program. The fact that only few of
the values of the random permutation change between successive
iterations allows SAMC to be faster than the standard permuta-
tion testing, per permutation (see Table 2).

SAMC has several parameters that need to be tuned for a
successful application. The most important of which are the
number of intervals, D; the number of iterations, N; and an
additional parameter, t0, that corresponds to the number of
iterations after which the estimation will begin converging more
rapidly. As described in Supplementary Note 4, we chose t0=
1,000 and N= 1,000,000 as suitable parameters. Here and
throughout the rest of the paper, we used D= 50 intervals.

In Fig. 4 we show the SAMC p-value estimates, compared to
those from a standard permutation testing with 10,000 permuta-
tions, across all methylation sites in chromosome 22. To further
validate the accuracy of SAMC on smaller p-values, we ran SAMC
on the sites which GCTA deemed significant, as described above.
Again, SAMC appears to give accurate estimates, also for small p-
values, where such accuracy is more important in practical
applications, as shown in Supplementary Figure 7. Finally, we
chose sites with particularly small p-values, and compared their
parametric p-values to those by the permutation test with 109

permutations, and with the p-values estimated by SAMC. In
Table 3, we show 10 sites with permutation p-values larger than 0,
which enable us to informatively examine the calibration of
SAMC. The results suggest that SAMC continues to give accurate
permutation p-value estimates, as far as it was possible for us to
assess.

While SAMC is guaranteed to converge27, there are no
theoretical guarantees of the speed of convergence. In practice,

we have observed that the number of required permutations is
significantly reduced, with 2-to-5 orders of magnitude. This is in
line with previous applications of SAMC26. In summary, the
derivative-based approach gives a speed up improvement of at
least two orders of magnitude over full estimation approaches;
additionally, for small p-values, the SAMC approach may
improve by up to another six orders of magnitude. These
improvements allow testing for heritability without the assump-
tion of a parametric model, in a feasible time.

Discussion
In this work, we have discussed the merits of permutation testing
for heritability, compared with parametric methods. We have
presented two ways to accelerate permutation testing: First, using
the derivative of the likelihood function in order to avoid finding
the maximum likelihood estimator; and second, using SAMC to
substantially reduce the required number of permutations. We
have shown that with these modifications, the running time
decreases by several orders of magnitude.

SAMC requires using a minimal number of permutations
before convergence. Therefore, given a large set of phenotypes for
which we wish to test for heritability, we suggest the following
scheme. First, perform simple (non-SAMC) permutation testing
with a small (e.g., 100) number of permutations. Filter out all sites
whose permutation p-value was too large, e.g., for which the lower
end of a one-sided binomial or Poisson confidence interval is
larger that the threshold p-value indicating significance. Continue
with this gradual filtering, increasing the number of permutations
in each round. Once reaching N large enough for SAMC con-
vergence (calibrated as described above), switch to SAMC for
estimating the p-value for the remaining sites.

One advantage of the permutation approach is that it allows
using certain statistics while overlooking otherwise important
methodological caveats. For example, it is known that using the
REML estimator for ascertained case-control studies leads to
incorrect estimates40. However, under the mild conditions con-
sidered here, the probability of false positives will remain cali-
brated, although the test may be underpowered. Indeed, any
statistic that captures a correspondence between a phenotype and
genetics will be suitable here.

We note that our use of SAMC is also independent of our
choice of the REML estimator as the statistic. Indeed, any other
statistic, for which it is possible to determine in which region of a
partition the statistic of a permuted phenotype falls, can be used.
Natural candidates are the score test statistic30, or the PCGC
regression40 statistic.

One critical issue that is not covered by our current approach is
the limitation to one variance component. Many applications
currently use LMMs using multiple variance components, speci-
fically by dividing the genome into regions and constructing a
variance component from each region. In those cases, the con-
tribution of each variance component is then estimated or tested
for being significant. Estimating multiple variance components
with REML is computationally intensive, and the derivative does
not appear to lend itself to a simple analytical expression as in the
single variance component case. However, as PCGC regression
provides an alternative, faster estimation method, using its sta-
tistic is a particularly attractive avenue of research in the context
of multiple variance components.

Typically, a preliminary step in heritability estimation is the
eigendecomposition of the kinship matrix. This procedure is not
very efficient, as it is cubic in the number of individuals, and may
therefore be too computationally inefficient for large datasets that
include many individuals. Recently, it has been suggested to use
conjugate gradient methods in order to estimate heritability41,
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Fig. 4 Performance of SAMC. p-values from 10,000 permutations,
compared to SAMC p-values with t0= 1,000 and 1,000,000 permutations
(in log scale). Evaluated on 7989 methylation sites on chromosome 22,
from the KORA dataset. Sites with ĥ2 ¼ 0 (3,779 sites), omitted for clarity
of presentation, showing a total of 4210 sites, with 99.95% CIs shown.
SAMC is well calibrated
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thus avoiding the cubic complexity. A natural extension of our
proposed method is to derive a procedure that calculates the
derivative of the restricted likelihood function using conjugate
gradient methods. Such a procedure could result in a quadratic
complexity, as it avoids the eigendecomposition.

One disadvantage of SAMC is that, unlike the simple permu-
tation test, it has to be run sequentially. However, it is possible to
run multiple shorter chains simultaneously, each with a less strict
convergence criteria, and then to aggregate the results in order to
obtain a more accurate estimate26. Preliminary results appear
encouraging, but a more thorough study of this tradeoff remains a
direction for future research, as well as other variants of SAMC42.

Finally, the ideas presented here can be readily extended to the
testing of genetic correlations, which determine if there is evi-
dence that two phenotypes have common underlying genetic
drivers (e.g., two diseases or two gene expression profiles)43.

Methods
For clarity of presentation, we begin by defining the heritability under the LMM.
We then introduce our improved method for fast permutation testing for herit-
ability, while reviewing relevant results from the ALBI method33 and the SAMC
algorithm.

The linear mixed model. We first present the standard variance components
model44. Let n be the number of individuals (or observations, in general) and let y
be a n × 1 vector of phenotype measurements for each individual. Let X be a n × p
matrix of p covariates, associated with fixed effects (possibly including an intercept
vector 1n as a first column, as well as other covariates, such as, sex, age, etc.). Let β
be a p × 1 vector of fixed effects. Let Z be a n ×m standardized (i.e., columns have
zero mean and unit variance) genotype matrix containing the m SNPs we test.
Finally, let K be a kinship matrix, which can be taken to be any symmetric positive-
definite matrix that encodes similarity between individuals, using any biomarkers,
e.g., a set of SNPs. A standard choice for K is a weighted dot product12; formally,
define K= ZWZT, where W is a non-negative m ×m diagonal matrix assigning a
weight per SNP (e.g., Wi,i= 1/m, see30 for a discussion).

Then, y is assumed to follow:

y � N Xβ; σ2gKþ σ2e In
� �

; ð1Þ

The fixed effects β and the coefficients σ2g and σ2e are the parameters of the
model.

The narrow-sense heritability due to genotyped common SNPs is defined as the
proportion of total variance explained by a genetic component45:

h2 ¼ σ2g
σ2g þ σ2e

:

Defining σ2p ¼ σ2g þ σ2e , Equation (1) becomes:

y � N Xβ; σ2pVh2

� �
:where Vh2 ¼ h2Kþ ð1� h2ÞIn .

Estimation and testing of heritability with REML. The most common way of
estimating h2 is REML estimation. REML consists of maximizing the likelihood
function associated with the projection of the phenotype onto the subspace

orthogonal to that of the fixed effects of the model46. The logarithm of the REML
function is, up to additive and multiplicative constants:

‘REMLðy; h2; σ2p; βÞ /

� ðn� pÞlogσ2p � logjVh2 j � logjXTV�1
h2 Xj �

ðy � XβÞTV�1
h2 ðy � XβÞ

σ2p
;

In practice, often some of the eigenvalues of K are zero or near-zero. This
occurs, for example, when K is constructed from a mean-centered Z, in which case
the constant vector 1 would be an eigenvector with the eigenvalue 0. Another
example is when Z has fewer SNPs than samples, in which case K will be low rank.
When this is the case, the likelihood at h2= 1 may be undefined or prone to
numerical instability. To avoid this, we project both the phenotype and covariates
to the subspace spanned by eigenvectors corresponding to nonzero eigenvalues. Let
U be the matrix whose columns are the eigenvectors of K, and let di be the
eigenvalues of K, for i= 1,…,n. If there are z eigenvalues larger than a sufficiently
small threshold, denote by Uz the matrix with the first z eigenvectors. Effectively,
this amounts to replacing Vh2 in ‘REML with UT

z Vh2Uz .
The common way to test for the statistical significance of a nonzero heritability

value is using the generalized restricted likelihood ratio test statistic

Λ ¼

max

h2; σ2p; β

LREML y; h2; σ2p; β
� �

max

σ2p; β

LREML y; 0; σ2p; β
� � ;

where ‘REML ¼ logLREML. Asymptotically, we have the distribution

2logΛ �0:5 � χ20 þ 0:5 � χ21

where χ21 is the chi-square distribution with 1 degree of freedom, and χ20 is the
constant distribution of the constant zero47,48.

Permutation testing for heritability. Monte Carlo permutation testing: The p-
value of the full permutation test is calculated by enumerating over all permuta-
tions to calculate

pperm ¼ 1
n!

π 2 Sn; j ĥ2ðπðyÞÞ � ĥ2ðyÞ
n o��� ���

where π(y) is the application of the permutation π on the phenotype y, and Sn is
the set of all permutations of n elements. This is an exact test—that is, under a null
hypothesis invariant to permutations, pperm is distributed uniformly. However,
since the number of permutations, n!, is huge, the common approach is to employ
a Monte Carlo approximation. In detail, let π1,…,πN be N random permutations of
n elements; the p-value of the test is:

pMC ¼ 1
N

πt j ĥ2ðπtðyÞÞ � ĥ2ðyÞ
n o��� ���

The p-value pMC is an approximation of the required p-value pperm. Moreover,
since each permutation was chosen randomly and with replacement, pMC can be
seen as the result of a binomial experiment. Therefore, we can calculate accurate
confidence intervals for pperm given pMC, e.g., using the Cloppe–Pearson method49.

Table 3 Performance of SAMC on extreme p-values

Site Parametric p-value Perm. p-value CI SAMC, N= 105 SAMC, N= 106

cg00123214 2.601 ⋅ 10−08 12 ⋅ 10−09 (6.201, 20.962) ⋅ 10−09 6.301 ⋅ 10−09 13.71 ⋅ 10−09

cg00044796 3.779 ⋅ 10−13 4 ⋅ 10−09 (1.090, 10.242) ⋅ 10−09 6.092 ⋅ 10−09 5.065 ⋅ 10−09

cg01821635 3.941 ⋅ 10−18 2 ⋅ 10−09 (0.242, 7.225) ⋅ 10−09 4.500 ⋅ 10−09 6.504 ⋅ 10−09

cg06784218 5.756 ⋅ 10−21 4 ⋅ 10−09 (1.090, 10.242) ⋅ 10−09 2.327 ⋅ 10−09 6.484 ⋅ 10−09

cg08963013 4.625 ⋅ 10−26 6 ⋅ 10−09 (2.202, 13.059) ⋅ 10−09 3.339 ⋅ 10−09 5.460 ⋅ 10−09

cg14252149 5.005 ⋅ 10−34 4 ⋅ 10−09 (1.090, 10.242) ⋅ 10−09 3.358 ⋅ 10−09 5.131 ⋅ 10−09

cg00071950 5.678 ⋅ 10−36 5 ⋅ 10−09 (1.623, 11.668) ⋅ 10−09 8.149 ⋅ 10−09 7.440 ⋅ 10−09

cg02002194 9.238 ⋅ 10−42 4 ⋅ 10−09 (1.090, 10.242) ⋅ 10−09 6.420 ⋅ 10−09 7.501 ⋅ 10−09

cg11266682 1.873 ⋅ 10−46 7 ⋅ 10−09 (2.814, 14.423) ⋅ 10−09 12.62 ⋅ 10−09 6.251 ⋅ 10−09

cg15296535 8.427 ⋅ 10−51 9 ⋅ 10−09 (4.115, 17.085) ⋅ 10−09 6.839 ⋅ 10−09 9.045 ⋅ 10−09

For 10 selected sites, we show the parametric p-value, as calculated by GCTA; the permutation p-value, as calculated by 109 permutations, and the CIs implied by it; and the p-values estimated by SAMC,
using N= 105 or N= 106 permutations (with t0= 1000). SAMC estimates, even for N= 105, appear accurate for all sites, as they lie within the CI calculated from the permutation test
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Covariates: If there are no covariates, or the only covariate is the constant vector
(i.e., X= 1n), then the permutation test does not require taking covariates into
consideration. In the general case, we apply the same permutation on each
covariate vector as we do on the phenotype. We note that the permutation
approach requires exchangeability of the residuals, which are not observed in
general in presence of non-constant covariates in the model. However, we verified
in simulations that the test remains exact or approximately exact under various
settings; this is theoretically supported in recent works on permutation tests in
linear regression50–52. See Supplementary Note 3 for an extended discussion.

Speeding up evaluation by using the likelihood derivative. The naive calcula-
tion above requires, for each permuted phenotype πt(y), the estimation of its
heritability using REML, ĥ2ðπtðyÞÞ. However, instead of explicitly calculating
ĥ2ðπðyÞÞ, we are only interested whether ĥ2ðπðyÞÞ � H2, where H2 ¼ ĥ2ðyÞ, the
heritability estimate of the unpermuted phenotype.

In33, it is shown that when X= 1n, checking if ĥ2ðπðyÞÞ � H2 can equivalently
be performed by computing u=UTπ(y), and checking ifXn

i¼1

ξH
2

i u2i >0; ð2Þ

where

ξH
2

i ¼ 1
H2ðdi � 1Þ þ 1

di � 1
H2ðdi � 1Þ þ 1

� 1
n� 1

Xn�1

j¼1

dj � 1

H2ðdj � 1Þ þ 1

 !
; for i ¼ 1; :::; n� 1;

and ξH
2

n ¼ 0. The sign of the expression in Eq. (2) is equal to the sign of ∂‘REML
∂h2 ðH2Þ,

the derivative of ‘REML at the point H2. Therefore, assuming the restricted
likelihood function is well behaved, a positive derivative indicates that the REML
heritability estimate is larger than H2. Similar expressions are defined for a general
X in33.

Therefore, once the eigendecomposition of K is obtained, calculating pMC may
be performed in a time complexity quadratic in n:

1. Given y and its heritability estimate H2, calculate ξH
2

i (complexity: O(n)).
2. Draw π1,…,πN 2 Sn (complexity: O(nN)).
3. For t= 1,…,N:

(a) Calculate ut=UTπt(y) (complexity: O(n2)).

(b) Let bt= 1 if
Pn

i¼1 ξ
H2

i ðutÞ2i � 0 and bt= 0 otherwise (complexity: O(n)).

4. Return p ¼ 1
N

PN
t¼1 bt (complexity: O(N)).

The total complexity is O(n2N). For a general covariate matrix X, the only
change will be in the condition checked in step (b), whose complexity is O(np2 +
p3) instead of O(n), resulting in a final complexity of O((n2 + np2 + p3)N), as
detailed in33.

Reducing the number of sampled permutations using SAMC. To cope with the
major computational hurdle of permutation testing, we use an efficient p-value
evaluation procedure based on the Stochastic Approximation Markov Chain
Monte Carlo (SAMC) algorithm26,27. A description of the SAMC algorithm and its
tuning is given in Supplementary Note 4.

In summary, let the proposal distribution q(πt, τ) define the probability of
choosing a new permutation τ, given that the current permutation is πt. Let

ei ¼ 0; ¼ ; 0; 1|{z}
i

; 0; ¼ ; 0

0
@

1
A. Let D + 1 be the number of intervals in the

partitioning of [0,1]. For a permutation π∈Sn, let J(π) be the index of the interval in
which ĥ2ðπðyÞÞ falls. Let θðtÞ1 ¼ ; θðtÞDþ1 be the logarithm of our current estimates of
partition sizes, up to a multiplicative (in log scale, additive) constant. The algorithm
is:

1. Initialize a uniform estimate, θðtÞ1 ¼ ¼ ;¼ θðtÞDþ1 ¼ 0.
2. Choose a random initial permutation π1.
3. For t= 1,…,T (or until convergence):

(a) Simulate a sample πt + 1 by a single Metropolis-Hastings update, as follows:
i. Generate τ according to the proposal distribution q(πt,τ).

ii. Calculate the ratio r ¼ exp θðtÞJðπt Þ � θðtÞJðτÞ
� �

� qðτ; πtÞ=qðπt ; τÞ
iii. Accept the proposed move with a probability of min (1, r). If accepted, set πt

+1= τ. Otherwise, set πt+1= πt.

(b) Update the estimates: For i= 1,…,D + 1, set

θðtþ1Þ
i ¼ θðtÞi þ γðtÞ eJðπtþ1Þ � 1

Dþ1 ; ¼ ; 1
Dþ1

� �� �
, where γ(t) is called the gain

factor and is defined as γ(t)= t0/max(t0, t).

4. Return expðθðtÞDþ1Þ=
PDþ1

i¼1 expðθðtÞi Þ.

The KORA dataset. The KORA project studies n= 1799 individuals from the
general population living in the region of Augsburg, southern Germany53. The
measured phenotype is the proportion of methylated samples at a specific site,
averaged across DNA samples of an individual. We used whole-blood samples of
the KORA F4 study, as described elsewhere54. Briefly, DNA methylation levels were
collected using the Infinium HumanMethylation450K BeadChip array (Illumina).
Beta Mixture Quantile (BMIQ)55 normalization was applied to the methylation
levels. Further processing was performed as in ref.56; briefly, genotyping was
performed with the Affymetrix 6.0 SNP Array (534,174 SNP markers after quality
control), with further imputation using HapMap2 as a reference panel. A total of
657,103 probes remained for the analysis. In summary, a total of 431,366 methy-
lation site phenotypes, and 657,103 SNPs, were available for analysis. Covariates
used in this study are age, sex, and smoking status.

The GTEx dataset. The Genotype-Tissue Expression (GTEx)52 Project is a US
National Institutes of Health (NIH) Common Fund project that aims to collect a
comprehensive set of tissues from 900 deceased donors (for a total of about
20,000 samples) and to provide the scientific community with a database of genetic
associations with molecular traits such as mRNA levels. We used 22,171 gene
expression profiles obtained from whole-blood samples of 338 individuals, as
preprocessed and using the same covariates as described in32.

Benchmarks. We used GCTA version 1.2629 and pylmm57. We used the C++
implementation of FaST-LMM, FastLmmC v2.07.2014072338 and calculated the
kinship matrix and its eigendecomposition in advance using the -eigen flag. We
only considered the GWAS analysis but not the data loading time, as reported by
FaST-LMM.

Code Availability. FEATHER is available at https://github.com/cozygene/feather.

Data availability
The informed consents given by the KORA study participants do not cover data
posting in public databases. However, data are available upon request from KORA-
gen (http://www.helmholtz-muenchen.de/kora-gen). Data requests can be sub-
mitted online and are subject to approval by the Steering Committee of the
Research Network for Community Medicine (for SHIP data) and the KORA Board.
All other relevant data are available upon request.

Received: 7 November 2017 Accepted: 26 October 2018

References
1. Price, A. L. et al. Single-tissue and cross-tissue heritability of gene expression

via identity-by-descent in related or unrelated individuals. PLoS Genet. 7,
e1001317 (2011).

2. Wright, F. A. et al. Heritability and genomics of gene expression in peripheral
blood. Nat. Genet. 46, 430–437 (2014).

3. Lloyd-Jones, L. R. The genetic architecture of gene expression in peripheral
blood.Am J Hum Genet 100, 228–237 (2017).

4. Sun, S. et al. Differential expression analysis for RNAseq using Poisson mixed
models. Nucleic Acids Res. 45, e106–e106 (2017).

5. Bell, J. T. & Spector, T. D. DNA methylation studies using twins: what are they
telling us? Genome Biol. 13, 172 (2012).

6. Quon G., & Lippert C. & Heckerman D. & Listgarten J. Patterns of
methylation heritability in a genome-wide analysis of four brain regions.
Nucleic Acids Res. 41, 2095–2104 (2013).

7. McRae, A. F. et al. Contribution of genetic variation to transgenerational
inheritance of DNA methylation. Genome Biol. 15, R73 (2014).

8. Van Dongen, J. et al. Genetic and environmental influences interact with
age and sex in shaping the human methylome. Nature Commun. 7, 11115
(2016).

9. Ganjgahi, H. et al. Fast and powerful heritability inference for family-based
neuroimaging studies. Neuroimage 115, 256–268 (2015).

10. Ge, T. et al. Massively expedited genome-wide heritability analysis (MEGHA).
Proc. Natl Acad. Sci. USA 112, 2479–2484 (2015).

11. Zhao, N. et al. Testing in microbiome-profiling studies with MiRKAT, the
microbiome regression-based kernel association test. Am. J. Human. Genet.
96, 797–807 (2015).

12. Yang, J. et al. Common SNPs explain a large proportion of the heritability for
human height. Nat. Genet. 42, 565–569 (2010).

13. Tzeng, J.-Y. & Zhang, D. Haplotype-based association analysis via variance-
components score test. Am. J. Human. Genet. 81, 927–938 (2007).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07276-w

8 NATURE COMMUNICATIONS |          (2018) 9:4919 | DOI: 10.1038/s41467-018-07276-w |www.nature.com/naturecommunications

https://github.com/cozygene/feather
http://www.helmholtz-muenchen.de/kora-gen
www.nature.com/naturecommunications


14. Kwee, L. C., Liu, D., Lin, X., Ghosh, D. & Epstein, M. P. A powerful and
flexible multilocus association test for quantitative traits. Am. J. Human.
Genet. 82, 386–397 (2008).

15. Wu, M. C. et al. Powerful SNP-set analysis for case-control genome-wide
association studies. Am. J. Human. Genet. 86, 929–942 (2010).

16. Listgarten, J. et al. A powerful and efficient set test for genetic markers that
handles confounders. Bioinformatics 29, 1526–1533 (2013).

17. Fusi, N., Lippert, C., Lawrence, N. D. & Stegle, O. Warped linear mixed
models for the genetic analysis of transformed phenotypes. Nature Commun.
5, 4890 (2014).

18. Hoeffding, W. The large-sample power of tests based on permutations of
observations. The Annals of Mathematical Statistics 23, 169–192 (1952).

19. Kimmel, G. & Shamir, R. A fast method for computing high-significance
disease association in large population-based studies. Am. J. Human. Genet.
79, 481–492 (2006).

20. Samuh, M. H., Grilli, L., Rampichini, C., Salmaso, L. & Lunardon, N. The use
of permutation tests for variance components in linear mixed models.
Commun. Stat. Theory Methods 41, 3020–3029 (2012).

21. Zeng, P., Zhao, Y., Li, H., Wang, T. & Chen, F. Permutation-based variance
component test in generalized linear mixed model with application to
multilocus genetic association study. Bmc. Med. Res. Methodol. 15, 37 (2015).

22. Casale, F. P., Rakitsch, B., Lippert, C. & Stegle, O. Efficient set tests for the
genetic analysis of correlated traits. Nat. Methods 12, 755–758 (2015).

23. Biard, L., Porcher, R. & Resche-Rigon, M. Permutation tests for centre effect
on survival endpoints with application in an acute myeloid leukaemia
multicentre study. Stat. Med. 33, 3047–3057 (2014).

24. Sinha, S. K. Bootstrap tests for variance components in generalized linear
mixed models. Can. J. Stat. 37, 219–234 (2009).

25. Drikvandi, R., Verbeke, G., Khodadadi, A. & Nia, V. P. Testing multiple
variance components in linear mixed-effects models. Biostatistics 14, 144–159
(2013).

26. Yu, K., Liang, F., Ciampa, J. & Chatterjee, N. Efficient p-value evaluation for
resamplingbased tests. Biostatistics 12, 582–593 (2011).

27. Liang, F., Liu, C. & Carroll, R. J. Stochastic approximation in Monte Carlo
computation. J. Am. Stat. Assoc. 102, 305–320 (2007).

28. Liang, F. An overview of stochastic approximation Monte Carlo. Wiley
Interdiscip. Rev.: Comput. Stat. 6, 240–254 (2014).

29. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: A tool for
genome-wide complex trait analysis. Am. J. Human. Genet. 88, 76–82 (2011).

30. Wu, M. C. et al. Rare-variant association testing for sequencing data with the
sequence kernel association test. Am. J. Human. Genet. 89, 82–93 (2011).

31. Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic
estimation of expression residuals (PEER) to obtain increased power and
interpretability of gene expression analyses. Nat. Protoc. 7, 500 (2012).

32. Consortium, G. et al. The Genotype-Tissue Expression (GTEx) pilot analysis:
multitissue gene regulation in humans. Science 348, 648–660 (2015).

33. Schweiger, R. et al. Fast and accurate construction of confidence intervals for
heritability. Am. J. Human. Genet. 98, 1181–1192 (2016).

34. Chen, J., Chen, W., Zhao, N., Wu, M. C. & Schaid, D. J. Small sample kernel
association tests for human genetic and microbiome association studies.
Genet. Epidemiol. 40, 5–19 (2016).

35. Schweiger, R. et al. RL-SKAT: an exact and efficient score test for heritability
and set tests.Genetics 207, 1275–1283 (2017).

36. Guennebaud, G., et al. Eigen v3 http://eigen.tuxfamily.org (2010).
37. Furlotte, N. A. & Eskin, E. Efficient multiple trait association and estimation of

genetic correlation using the matrix-variate linear mixed-model. Genetics 200,
59–68 (2015).

38. Listgarten, J. et al. Improved linear mixed models for genome-wide association
studies. Nat. Methods 9, 525–526 (2012).

39. Robbins, H. & Monro, S. A stochastic approximation method. The annals of
mathematical statistics 22, 400–407 (1951).

40. Golan, D., Lander, E. S. & Rosset, S. Measuring missing heritability: Inferring
the contribution of common variants. Proc. Natl Acad. Sci. USA 111,
E5272–E5281 (2014).

41. Loh, P.-R. et al. Contrasting genetic architectures of schizophrenia and other
complex diseases using fast variance-components analysis. Nat. Genet. 47,
1385–1392 (2015).

42. Liang, F., Liu, C. & Carroll, R. Advanced Markov chain Monte Carlo methods:
learning from past samples (John Wiley & Sons, 2011).

43. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases
and traits. Nat. Genet. 47, 1236–1241 (2015).

44. Searle, S. R., Casella, G. & McCulloch, C. E. Variance components (John Wiley
& Sons, New Jersey, 2009).

45. Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics
eraconcepts and misconceptions. Nat. Rev. Genet. 9, 255–266 (2008).

46. Patterson, H. D. & Thompson, R. Recovery of inter-block information when
block sizes are unequal. Biometrika 58, 545–554 (1971).

47. Chernoff, H. On the distribution of the likelihood ratio. The Annals of
Mathematical Statistics 25, 573–578 (1954).

48. Moran, P. A. Maximum-likelihood estimation in non-standard conditions in.
Math. Proc. Camb. Philos. Soc. 70, 441–450 (1971).

49. Clopper, C. J. & Pearson, E. S. The use of confidence or fiducial limits
illustrated in the case of the binomial. Biometrika 26, 404–413 (1934).

50. Schmoyer, R. L. Permutation tests for correlation in regression errors. J. Am.
Stat. Assoc. 89, 1507–1516 (1994).

51. Anderson, M. J. & Robinson, J. Permutation tests for linear models. Aust. N.Z.
J. Stat. 43, 75–88 (2001).

52. Nyblom, J. in Modern Nonparametric, Robust and Multivariate Methods
69–90 (Springer, Berlin, Germany, 2015).

53. Holle, R. et al. KORA-a research platform for population based health
research. Das. Gesundh. 67, 19–25 (2005).

54. Pfeiffer, L. et al. DNA methylation of lipid-related genes affects blood lipid
levels. Circ. Cardiovasc Genet. 8, 334–342 (2015).

55. Teschendorff, A. E. et al. A beta-mixture quantile normalization method for
correcting probe design bias in Illumina Infinium 450 k DNA methylation
data. Bioinformatics 29, 189–196 (2013).

56. Kolz, M. et al. Meta-analysis of 28,141 individuals identifies common variants
within five new loci that influence uric acid concentrations. PLoS Genet. 5,
e1000504 (2009).

57. Furlotte, N. A., Heckerman, D. & Lippert, C. Quantifying the uncertainty in
heritability. J. Hum. Genet. 59, 269–275 (2014).

Acknowledgements
The authors would like to thank Jennifer Listgarten for valuable suggestions. R.S. is
supported by the Colton Family Foundation. E.H. and E.R. were partially supported by
National Science Foundation (NSF) grant 1705197. E.R. and R.S. were supported in part
by the Israel Science Foundation (Grant 1425/13) and by the Edmond J. Safra Center for
Bioinformatics at Tel-Aviv University. The KORA study was initiated and financed by
the Helmholtz Zentrum München German Research Center for Environmental Health,
which is funded by the German Federal Ministry of Education and Research (BMBF) and
by the State of Bavaria. Furthermore, KORA research was supported within the Munich
Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of
LMUinnovativ.

Author contributions
R.S. led the development of the statistical method, ran the simulations, wrote the code,
analyzed the simulated and real data, and led the writing of the manuscript. M.M-.N.,
S.K., C.G. and M.W. collected the K.O.R.A. dataset. R.S., E.F., O.W., E.R., S.R. and E.H.
contributed to method development and validation, and wrote the manuscript with input
from all co-authors. E.H. supervised the project.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-07276-w.

Competing interests: R.S. is an employee of MyHeritage Ltd. The remaining authors
declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07276-w ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:4919 | DOI: 10.1038/s41467-018-07276-w |www.nature.com/naturecommunications 9

http://eigen.tuxfamily.org
https://doi.org/10.1038/s41467-018-07276-w
https://doi.org/10.1038/s41467-018-07276-w
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Detecting heritable phenotypes without a model using fast permutation testing for heritability and set-tests
	Results
	Large discrepancies in p-values in a methylation study
	Large discrepancies in p-values in a gene expression study
	Reasons for p-value discrepancy
	Speeding up the evaluation step per permutation
	Reducing the number of sampled permutations with SAMC
	Analysis of the performance of SAMC

	Discussion
	Methods
	The linear mixed model
	Estimation and testing of heritability with REML
	Permutation testing for heritability
	Speeding up evaluation by using the likelihood derivative
	Reducing the number of sampled permutations using SAMC
	The KORA dataset
	The GTEx dataset
	Benchmarks
	Code Availability

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Electronic supplementary material
	ACKNOWLEDGEMENTS




