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Uncontrolled severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 infection is
closely related to disorders of the innate immune and delayed adaptive immune systems.
Dendritic cells (DCs) “bridge” innate immunity and adaptive immunity. DCs have important
roles in defending against SARS-CoV-2 infection. In this review, we summarize the latest
research concerning the role of DCs in SARS-CoV-2 infection. We focus on the complex
interplay between DCs and SARS-CoV-2: pyroptosis-induced activation; activation of the
renin–angiotensin–aldosterone system; and activation of dendritic cell-specific intercellular
adhesion molecule 3-grabbing non-integrin. We also discuss the decline in DC number,
the impaired antigen-presentation capability, and the reduced production of type-I
interferon of DCs in severe SARS-CoV-2 infection. In addition, we discuss the potential
mechanisms for pathological activation of DCs to understand the pattern of SARS-CoV-2
infection. Lastly, we provide a brief overview of novel vaccination and immunotherapy
strategies based on DC targeting to overcome SARS-CoV-2 infection.

Keywords: COVID-19, SARS-CoV-2, dendritic cells, immunopathogenesis, severe acute respiratory syndrome
coronavirus 2
1 INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic poses a serious threat to public health and
economic systems worldwide (1). As of January 27, 2022, more than 356.95 million people had been
infected with the virus that causes COVID-19 [severe acute respiratory syndrome-coronavirus
(SARS-CoV)-2] and 5.61 million individuals had died (data from WHO Coronavirus Dashboard).

Coronaviruses can cause intestinal and respiratory infections in animals and humans (2–6).
SARS-CoV-2 is a genetically diverse virus found in a range of host species, including birds and
mammals. It is transmitted mainly through the respiratory tract (7). The “spike” glycoprotein of
SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) and mediates membrane fusion
and virus entry (8). SARS-CoV-2 infection induces pyroptosis (a highly inflammatory form of
programmed cell death seen in cytopathic viruses), which leads to release of SARS-CoV-2,
pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns
(DAMPs) (7, 9, 10). Innate immune cells are recruited by these products to respond to SARS-
CoV-2 invasion and then release proinflammatory cytokines and “prime” the adaptive immune
response via T cells and B cells. Due to unrestrained infiltration of inflammatory cells, the products
org February 2022 | Volume 13 | Article 8433421
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induced by immune cells mediate lung injury by activating excess
innate immune cells and oversecreting protease and reactive
oxygen species (11). Therefore, understanding how innate
immune cells respond to SARS-CoV-2 infection is critical for
the prevention and treatment of COVID-19.

Dendritic cells (DCs) act as a “bridge” between innate
immunity and adaptive immunity. They have important roles in
viral infection. Pattern recognition receptors (PRRs) expressed on
the membrane of DCs, such as Toll-like receptor (TLR)7, retinoic
acid-inducible gene-I, melanoma differentiation-associated
protein-5, and the cyclic guanosine monophosphate–adenosine
monophosphate synthase–stimulator of interferon genes pathway,
can recognize SARS-CoV-2-induced PAMPs and DAMPs (12–14).
If these receptors are activated, a range of signaling pathways
[e.g., interferon regulatory factor 3 (IRF3), IRF7, nuclear factor-
kappa B (NF-kB)] are activated to regulate proinflammatory
cytokines (e.g., tumor necrosis factor a (TNFa), interleukin (IL)-
6, monocyte chemoattractant-1, macrophage inflammatory
protein (MIP)1a, MIP1b) in the nucleus and induce interferon
type I (IFN-I; the main cytokine responsible for producing a
strong antiviral response) production (15, 16). DCs are also
responsible for ingesting, transporting, processing, and
presenting antigens to T cells, inducing the adaptive immune
response, and have important roles in virus infection (17–19).
However, the number of DCs, the ability to secrete antiviral
cytokines (especially IFN-I), and the capability of antigen
presentation decline unexpectedly in patients with severe
COVID-19. This review focuses on explaining the (i)
interrelationship between DCs and SARS-CoV-2 and (ii)
reduced number and dysfunction of DCs. In this way, we hope
to create a breakthrough in immunomodulation therapy and an
IFN strategy against COVID-19.
2 DIRECT AND INDIRECT INTERACTION
OF SARS-COV-2 WITH DCS

2.1 Pyroptosis: A Major Inducer for
SARS-CoV-2 to Attract DCs
There is growing evidence of cytolysis (mostly pyroptosis but not
necroptosis) in patients infected with SARS-CoV-2 (7, 20).
“Pyroptosis” refers to the biological process that relies on caspase-
1-dependent activation of gasdermin D to form membrane pores.
“Necroptosis” is dependent upon the intracellular signal
transduction of receptor-interacting protein kinases, and
membrane pores are formed through phosphorylation of mixed
lineage kinase domain-like pseudokinase, which results in cytolysis
(21). In vitro studies have shown that caspase-1 is activated in
patients with severe COVID-19, downstream secretion of IL-1b
increased, and decomposition of gasdermin D accelerated (22).
Those data show that cytolysis during SARS-CoV-2 infection is
mainly pyroptosis rather than necroptosis. Nucleotide-binding
oligomerization domain-like receptors (NLRs) recognize the
danger signals (which are derived from homologous hosts or
microorganisms) and form large supramolecular chemical
inflammasomes (9). Caspase-1 activation may be related to
Frontiers in Immunology | www.frontiersin.org 2
SARS-CoV-2 recognition by NLRs in cells. After caspase-1 has
been activated, it initiates the pyroptosis pathway, activates
gasdermin D to form plasma-membrane pores, and allows water
influx, cell swelling, and osmotic lysis. Activated caspase-1 can also
activate IL-1b and IL-18, which are released mainly through
plasma-membrane pores (9). Many PAMPs, DAMPs, and virus
products, which are released by SARS-CoV-2-induced pyroptosis,
recruit various types of immune cells (including DCs) to infiltrate
lung tissue and promote secretion of cytokines, particularly IL-6, IL-
1b, IL-10, TNF, granulocyte macrophage-colony stimulating factor,
IFN-induced protein-10, IL-17, monocyte chemoattractant-3, and
IL-1ra (23).

ACE2 is the main target of SARS-CoV-2 (11). We postulate
that ACE2 is also the inducer of pyroptosis caused by SARS-
CoV-2. ACE2 is a transmembrane protease and is the main
receptor for virus invasion (24). The N-terminal extracellular
domain of ACE2 comprises a “claw-like” protease domain (PD).
The receptor-binding domain (RBD) of SARS-CoV-2 combines
with the PD of ACE2 to form an RBD–PD complex (24). The C-
terminus is a transmembrane domain, also known as the
collectrin-like domain (24). Studies have suggested that ACE2
is the major receptor of SARS-CoV and SARS-CoV-2 and binds
to transmembrane serine protease (TMPRSS)2-activated spike
proteins to induce virus entry into endosomes (25). ACE2 and
TMPRSS2 are expressed primarily in cells of the upper
respiratory tract and lungs (11, 25–27). These respiratory-tract
cells with special cell-membrane receptors are ideal targets for
SARS-CoV-2 invasion. This phenomenon may explain why
SARS-CoV-2 is transmitted through aerosols and is very
infectious (7).

The increased levels of lactate dehydrogenase (LDH) (28) and
D-dimer in the plasma of patients infected with SARS-CoV-2
suggest that there is a high level of tissue injury in patients with
severe COVID-19 (22, 23, 29, 30). Patients with severe COVID-
19 with high LDH levels and leukopenia have impaired integrity
of cell membranes (23, 31–33). In addition, the full blood count
and biochemical findings of patients with severe COVID-19
reveal that the leukopenia observed in such patients appears to
precede the “cytokine storm” (31, 34). SARS-CoV-2 infects
human primary monocytes in vitro, resulting in their lysis and
death. Flow cytometry and fluorescence microscopy have
demonstrated the membrane disruption triggered by SARS-
CoV-2 (22). In conclusion, we believe that SARS-CoV-2
invades cells through the ACE2, induces pyroptosis, and
finally, causes the subsequent cytokine storm, leading to
disease progression.

Products which are induced by SARS-CoV-2 attract DCs
selectively into inflammatory sites (35–38). DC aggregation has
been observed in the bronchoalveolar lavage fluid of COVID-19
patients, which suggests that DCs infiltrate into lung tissues by
the products of SARS-CoV-2-induced pyroptosis (35–38)
(Figure 1). Flow cytometry of the bronchoalveolar lavage fluid
of COVID-19 patients has revealed that only type-2 conventional
dendritic cells (cDC2) accumulate in the lungs (35, 36). cDC1
and plasmacytoid dendritic cells (pDCs), which are involved in
IFN-I secretion, are absent in infected lungs (35, 36). cDC2
February 2022 | Volume 13 | Article 843342
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support the cluster of differentiation (CD)4+ T-cell response,
stimulate follicular T-helper (Th) cells (which activate a humoral
antiviral adaptive immune response), and produce inefficient
antiviral proinflammatory cytokines (39–41).

SARS-CoV-2 attacks nasal cells and lung cells through ACE2,
activates pyroptosis, and leads to the production of many
DAMPs, PAMPs, and progeny viruses. These products activate
innate immunity (Figure 1).
2.2 Imbalanced Renin–Angiotensin–
Aldosterone System: Potential
Regulation of DCs
SARS-CoV-2 enters cells through the ACE2. ACE2 is a key factor
in the renin–angiotensin–aldosterone system (RAAS) (42, 43).
SARS-CoV-2 may affect the RAAS and lead to disease
development by affecting the shedding of ACE2. The RAAS
Frontiers in Immunology | www.frontiersin.org 3
mediates blood-pressure control, inflammation, sodium
reabsorption, and fibrosis (44). RAAS disorders can lead to
heart failure, low blood pressure, atherosclerosis, and diabetes
mellitus (45). The factor related most closely with ACE2 in the
RAAS is angiotensin (Ang)II. The latter stimulates vascular
contraction, secondary inflammation, and atherosclerosis
through the type-1 angiotensin II receptor (AT1R) (46).
Another receptor, type-2 angiotensin II (AT2R), in contrast to
AT1R, is activated by AngII to promote vascular dilation, platelet
aggregation, and promotion of insulin action. However, AT2R is
rarely expressed in healthy adults (47). Therefore, the regulation
and balance of AngII are dependent mainly on ACE2. The latter
can convert AngII to Ang-(1–7), which is similar to AT2R
stimulation (44, 47). An excess of AngII promotes pulmonary
vascular contraction, inflammation, and cytokine-induced organ
damage, increases the permeability of cell membranes and
apoptosis, and induces acute kidney injury and acute
FIGURE 1 | Interaction between SARS-CoV-2 and DCs (schematic). The three pathways affected by SARS-CoV-2 are pyroptosis (black lines), imbalanced RAAS (blue
lines), and DC-SIGN (red lines). The adaptive immune system is induced by pyroptosis, which is activated by SARS-CoV-2. In addition, SARS-CoV-2 combines with
the ACE2 receptor through its spike protein (S), which is activated by TMPRSS2. This process causes an imbalance in the RAAS through the shedding of ACE2 and
releases excessive amounts of aldosterone, which promotes the release of proinflammatory cytokines in DCs through MRs. SARS-CoV-2 impacts DCs directly by DC-
SIGN, a receptor which has critical roles in the recognition of viruses (e.g., HIV, Ebola, dengue, cytomegalovirus) and other pathogens (e.g., Leishmania species, Candida
albicans, Mycobacterium tuberculosis, Streptococcus pneumoniae, Aspergillus fumigatus). Although SARS-CoV-2 replication in lung cells is well-documented, a similar
process has not been confirmed in alveolar DCs. Some researchers have suggested such a replication based on triggering aberrant production of proinflammatory
cytokines/chemokines and inducing the spread of SARS-CoV-2 infection, as is the case with SARS-CoV and MERS-CoV, but other scholars have ruled out SARS-CoV
replication in human DCs. RAAS, renin–angiotensin–aldosterone system; DCs, dendritic cells; TMPRSS2, transmembrane serine protease 2; MRs, mineralocorticoid
receptors; DC-SIGN, dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin.
February 2022 | Volume 13 | Article 843342
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respiratory distress syndrome (ARDS). AngII overactivation is
associated with an increase in ACE2 shedding in patients with
COVID-19. In a cohort of 12 COVID-19 patients, the circulating
level of AngII was significantly higher than that in healthy
controls (linearly correlated with viral load), which suggested a
direct link between RAAS imbalance and multiorgan damage
caused by SARS-CoV-2 infection (1, 48, 49).

Among hospitalized COVID-19 patients, the increase in
AngII level is accompanied by an increased level of IL-6, with
the highest mortality rate (29). This phenomenon has also been
found in the patients with avian influenza A (H7N9) infection.
Within 4 weeks of H7N9 infection, AngII levels increase
gradually, which is associated with a worse clinical prognosis
(50). In COVID-19 patients, AngII levels have been found to be
closely related to viral titer and partial pressure of oxygen in
arterial blood/fraction of inspired oxygen (49). COVID-19-
induced AngII aggregation has been shown to promote acute
lung injury (ALI) by activating cytokine-induced inflammation,
activating the nicotinamide adenine dinucleotide hydrogen
(NADH)/nicotinamide adenine dinucleotide phosphate
hydrogen (NADPH) oxidation system and vasoconstriction
(49, 51, 52). Researchers found that COVID-19 was more
severe and carried a worse prognosis in older people and
males, if ACE2 expression declined (49, 53, 54). Coincidentally,
patients with COVID-19 with diseases associated with RAAS
overactivation (e.g., hypertension, diabetes mellitus) have been
shown to carry a higher risk of transfer to the intensive care unit
and mortality (55). RAAS overactivation appears to be closely
related to a poor prognosis in COVID-19 patients, and the loss of
ACE2 (which can regulate the effects of an overactive RAAS
during the disease) will lead to worse consequences.

The ACE expressed on the DCs is still able to participate in
the RAAS disorders (56–58). It has been proved that the ACE
expression increased was correlated with the differentiation and
stimulation of DCs (59). Elevated ACE is involved in the
production of AngII and the peptide repertoire trimming as
part of the MHC-II complex (59, 60). Accumulation of AngII
due to the shedding of ACE2 leads to the phosphorylation of the
ERK and promotes the secretion of IL-6 and TNFa (61). In the
meantime, AngII has the ability to improve the migration,
maturation, and antigen presentation of DCs to improve Th1
cells (62).

The increase in the AngII level is accompanied by an increase
in the aldosterone level because AngII can stimulate the adrenal
cortex to secrete aldosterone. DCs are key immune cells involved
in severe COVID-19-induced lung damage mediated by
aldosterone, which can stimulate DCs to produce IL-6 and
transforming growth factor-b1 via the mineralocorticoid
receptor (Figure 1) (63, 64). AngII and aldosterone can alter
the proliferation and maturation of DCs, leading to DC
dysfunction (36). Supplementation of ACE2 may remedy this
problem. Recombinant human (rh)ACE2 has a protective effect
in SARS-CoV-induced ALI, and injection of rnACE2 can reduce
inflammation and improve lung function (65–67). Therefore,
rhACE2 may be a potential treatment for SARS-CoV-2-
induced ALI.
Frontiers in Immunology | www.frontiersin.org 4
2.3 Dendritic Cell-Specific Intercellular
Adhesion Molecule 3-Grabbing
Non-Integrin: Direct Interaction
Between SARS-CoV-2 and DCs

Yang and colleagues (68) showed that SARS-CoV-2 enters DCs
and macrophages through dendritic cell-specific intercellular
adhesion molecule 3-grabbing non-integrin (DC-SIGN) and
furin rather than through ACE2 and TMPRSS2. DC-SIGN
(CD209) is a C-type calcium-dependent lectin and a type-II
membrane protein. DC-SIGN consists of three domains:
extracellular, transmembrane, and intracellular (69–72). The
intracellular domain is an N-terminal domain responsible for
the binding, phagocytosis, and intracellular transport of molecules
associated with signal transduction. The transmembrane domain
anchors DC-SIGN to the cell membrane. The extracellular
domain consists of two portions: a neck domain (which forms a
tetramer that stabilizes the extracellular part of the molecule) and
a c-type carbohydrate-recognition domain (a calcium-dependent
receptor with a highly conserved sequence) (43, 69, 73). The
extracellular domain is essential for binding and recognizing high-
mannose oligosaccharides (43, 74, 75). DC-SIGN is expressed
exclusively by mature and immature DCs in the skin, mucosa, and
lymphoid organs (76). It is a PRR/adhesion receptor in DCs that
promotes migration and adhesion and mediates the inflammatory
response by activating innate immune and adaptive immune
systems. Remarkably, DC-SIGN has a pivotal role in the
“immune escape” of pathogens and tumor cells (70, 71). As an
antigen-capture receptor, DC-SIGN recognizes, internalizes, and
decomposes antigens and, eventually, presents them to CD4+ T
cells to trigger an immune response (77). However, virus-infected
DCs, through DC-SIGN, also spread SARS-CoV-2 to other tissues
and organs (Figure 1). This phenomenon is typical in human
immunodeficiency virus (HIV) infection, where the DC-SIGN
signal is activated by the HIV and induces its migration to lymph
nodes. In lymph nodes, DC-SIGN promotes the migration of
HIV-1 from DCs to CD4+ T cells, thereby promoting cell
infection and virus transmission (78–80). Hence, whether this
“Trojan horse” phenomenon exists in SARS-CoV-2 infection is
worthy of further study.

The role of DC-SIGN in SARS-CoV-2 infection is not known.
Recent studies have shown that SARS-CoV binds DC-SIGN
through its activated spike protein and takes part in the
inflammatory response of DCs (Figure 1) (43, 81, 82). DC-
SIGN also plays an important part in Middle East respiratory
syndrome-related coronavirus (MERS-CoV) infection and is too
crucial to neglect in SARS-CoV-2 infection (83). DC-SIGN could
become an alternative receptor for SARS-CoV-2 to invade DCs.
It has been suggested that the interaction of SARS-CoV-2 or its
envelope proteins (including the products of pyroptosis) with
DC-SIGN result in the loss of a specific DC subpopulation (36).
Moreover, activated DC-SIGN receptors downregulate the
expression of major histocompatibility class (MHC)-II
molecules (84), which is a key factor of impaired presentation
of antigens. In addition, the combination between DC-SIGN and
HIV can promote a Th2 cell-based immune response, thereby
February 2022 | Volume 13 | Article 843342
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reducing levels of IL-12 and IFNs (42), which helps to explain the
innate immunosuppression in patients with severe COVID-19.

The DC-SIGNR (L-SIGN, CD209L), which is the homology
receptor of the DC-SIGN, is broadly expressed in both
endothelial cells and epithelial cells (85, 86). The DC-SIGN/L-
SIGN may be an alternative receptor, due to the fact that ACE2-
deficient endothelial cells but not DC-SIGNR-deficient
endothelial cells allow SARS-CoV-2 entry (85, 86). Michel
et al. confirm the important role of DC-SIGN in the Trojan
Horse model of DCs during SARS-CoV-2 infection (87). They
think that SARS-CoV-2 adheres to the surface of DCs through
DC-SIGN and secondly present SARS-CoV-2 to susceptible cells
in the process recognized as trans-infection which relies on the
characteristics of DCs’ migration (87). Intriguingly, the DC-
SIGN gene expression is interestingly decreased in lung DCs but
increased in circulation DCs which would undoubtedly increase
the amount of SARS-CoV-2 carried by DCs and enhance its
global transmission ability (88).

As in HIV infection, DC-SIGN-mediated virus internalization
is a critical mechanism for immune escape in SARS-CoV-2
infection (75). DC-SIGN has become another potential invasion
portal for SARS-CoV-2, and its function deserves further
exploration in COVID-19 patients. However, after SARS-CoV-2
infection, the depletion and dysfunction of DCs result in persistent
virus infection. The exact mechanism by which SARS-CoV-2
infection reduces the number and function of DCs is
discussed below.
3 DEPLETION AND DYSFUNCTION
OF DCS IN COVID-19

3.1 Decline in the Number of DCs in
COVID-19 Patients
cDC1, cDC2, and pDCs are recruited into lung tissue during
infection (39). cDC1s (also known as CD141+ DC) are found in
peripheral blood and among resident DCs of the lymph nodes,
bone marrow, and spleen (39, 89–93). They participate in cross-
presentation of antigens via MHC-I molecules to activate CD8+
T cells and promote Th1 cells and natural-killer-cell responses
though IL-12 (39). cDC1s also secrete IFN-III (including IFN-l)
(39, 94). cDC2s (also known as CD1c+ DC) are present mainly in
peripheral blood, lymphoid organs, and tissues. They are
activated to become robust producers of IL-12 and are
excellent cross-presentation cells. cDC2s are also major
producers of IL-23, IL-1, TNF-a, IL-8, and IL-10 (39, 95–97).
pDCs (which were identified first in peripheral blood and tonsils)
“sense” and respond to viral infection through rapid production
of IFN-I (39, 98, 99). These three types of DCs are activated by
PAMPs and DAMPs to promote the innate immune response
and to activate the adaptive immune response.

The number of DCs in the blood of COVID-19 patients is
reduced. Among the three types of DCs, only cDC2s accumulate
in the lungs of COVID-19 patients (35, 100–103). The
mechanisms that result in a decline in the number of DCs may
Frontiers in Immunology | www.frontiersin.org 5
be caused by an alteration in distribution of DCs, increased
apoptosis of DCs, and the inhibitory effects of myeloid-derived
suppressor cells (MDSCs) (Figure 2).
3.1.1 Alteration in the Distribution of DCs
SARS-CoV-2 causes pyroptosis through infection of respiratory
epithelial cells via ACE2 and TMPRSS2 (11, 27) and leads to
production of plentiful cytokines and chemokines that attract
DCs to migrate from peripheral blood into the lungs (7, 20, 21).
Sanchez-Cerrillo and coworkers (35) analyzed DC profiles in the
blood and lungs of COVID-19 patients. They found that pDCs
and cDC1s showed a significant depletion and that cDC2s
migrated from the blood to the lungs. Xiong and colleagues
(38) observed abundant mature DCs in bronchoalveolar lavage
fluid, which indicated DC accumulation in SARS-CoV-2-
infected lungs. Insufficient recruitment of pDCs and cDC1s to
the lungs may be due to downregulation of chemokine receptors
such as C–C chemokine receptor type-2 and C–X–C motif
chemokine receptor-3 (100). A reduction in the circulation of
pDCs and cDC1 may be a result of migration to or sequestration
in lymphoid tissues (105, 106). Changes in the distribution of
cDC2 may contribute to the reduction in circulation of DCs.
3.1.2 Incremental Apoptosis of DCs
The circulation of DCs (especially pDCs) is diminished
significantly in COVID-19 (35). pDCs are key factors involved
in the antiviral efficacy of IFN-I (39). Hence, SARS-CoV-2 may
target pDCs and reduce their number. Saichi and colleagues
found p53 signaling to be upregulated in pDCs in COVID-19
cases (105). However, Onodi and colleagues found that pDCs,
which were isolated from healthy donors, are improved during
SARS-CoV-2 infection (107), thereby suggesting that SARS-
CoV-2 could not kill pDCs directly. In sum, other mechanisms
must be involved in pDC apoptosis.

Recently, “immunometabolism reprogramming” has been
postulated to explain why DC apoptosis is increased during
SARS-CoV-2 infection (108). Immunometabolism reprogramming
is characterized by changes in the metabolic stages of immune cells
from homeostasis to an inflammatory environment or infectious
environment (108). Recent studies have revealed that DC apoptosis
in COVID-19 patients was because of the TNF-related apoptosis-
inducing ligand or apolipoprotein-2 ligand but was not dependent
on the Fas ligand (108–111). The displacement of hexokinase-II
from mitochondrial-associated membranes increases glycolysis to
produce glucose-6-phosphate. This action can lead to excess release
of Ca2+ from the endoplasmic reticulum to the cytosol to activate
calpains, mitochondrial depolarization, and apoptosis (112).
3.1.3 Inhibitory Effect of MDSCs
MDSCs are induced in pathological conditions such as
inflammation, cancer, or some autoimmune disorders. They
inhibit immature myeloid cells from differentiating into mature
DCs, upregulate expression of immunosuppressive factors (e.g.,
inducible nitric oxide synthase, arginase), and promote the
February 2022 | Volume 13 | Article 843342
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production of nitric oxide and reactive oxygen species. Those
productions result in expansion of an immunosuppressive
population of immature myeloid cells and lead to DC
depletion (113, 114). Recent studies have found that the
increased number of MDSCs in COVID-19 patients might be
key to the decline in DC number (101, 115).
3.2 Impaired Antigen Presentation
of SARS-CoV-2-Infected DCs
Not only does the number of DCs decline, but also the ability of
DCs to present antigens is impaired during SARS-CoV-2
infection (101, 105, 115, 116). Zhou et al. studied the antigen-
presentation capacity of circulating DCs in the acute phase of
COVID-19. They found that expression of the co-stimulatory
molecule (CD80, CD86) and antigen-presentation molecule
(human leukocyte antigen-DR) decreased after stimulation with
a “cytokine cocktail” (IL-1b, IL-6, TNF-a, prostaglandin E2)
(101). DCs in the acute phase of COVID-19 failed to stimulate
the proliferation of CD4+ and CD8+ T cells according to a mixed
lymphocyte reaction assay with allogeneic CD4+ and CD8+ T
cells (101). The antigen-presentation capability of DCs could act
as a bridge between innate immunity and adaptive immunity.
Determining the reason for the decline in the antigen-
Frontiers in Immunology | www.frontiersin.org 6
presentation capacity of DCs is crucial, and some reasons are
discussed in the following (Figure 2).

3.2.1 Impaired Mammalian Target of
Rapamycin Signaling
Impaired mammalian target of rapamycin (mTOR) is a crucial
regulator of the development, maturation, and function of DCs.
mTOR can dictate and “shape” the inflammatory immune
response of DCs (117). Inhibition of mTOR expression hinders
DC maturation and reduces the antigen uptake in the early stage
of infection (117, 118). Prabhu et al. found a decrease in the pS6
(mTOR marker) level in blood, thereby indicating inhibition of
the mTOR signal in COVID-19 patients (115). Suppression of
the mTOR signaling pathway may contribute to the impaired
antigen presentation of DCs in COVID-19 patients.

3.2.2 Upregulation of Wnt Oncogene
Analog Expression
Wnt oncogene analog (Wnt)5 can impair the function and
maturation of DCs (104, 119). Wnt5a is activated in ARDS
and sepsis as an inhibitor of the repair process (119). Wnt5a
could be a candidate biomarker of SARS-CoV-2 progression
(116, 120). The Wnt5 signaling pathway may also impair the
function of DCs to present antigens to T cells.
FIGURE 2 | Multiple suppressive mechanisms in SARS-CoV-2-infected DCs from patients with severe COVID-19. The number of DCs in patients decreases after SARS-
CoV-2 infection. Increased apoptosis, alterations in distribution of DCs, and inhibition of MDSCs may be associated with a decrease in DC number. IFN-I secretion is
inhibited by various viral proteins that have been shown to be effective against IFN-I signaling in SARS-CoV infection (104). In addition to the effects of viral proteins, anti-IFN
antibody and reduced expression of TLR7 have been observed in some patients with severe COVID-19. The capability of antigen presentation is impaired in cDC1 and
cDC2. Inhibition of the mTOR signaling pathway, activated DC-SIGN pathway, and activated Wnt5 pathway could contribute to downregulation of MHC-II and co-
stimulatory molecules. IFN, interferon; IFNAR, interferon alpha and beta receptor; mTOR, mammalian target of rapamycin; IkB, inhibitor of nuclear factor kB; IRF, IFN
regulatory factor; ISG, IFN-stimulated gene; JAK, Janus kinase; IKKϵ, IkB kinase-ϵ; M, membrane; MAVs, mitochondrial antiviral signaling proteins; N, nucleocapsid; Nsp,
non-structural protein; ORF, open reading frame; P, phosphate; DC-SIGN, dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin; PLP, papain-like
protease; RIG-I, retinoic acid-inducible gene-I; MDA5, melanoma differentiation-associated gene 5; SARS-CoV-2, severe acute respiratory syndrome-coronavirus 2; TANK,
TRAF family member-associated NF-kB activator; TBK1, TANK-binding kinase 1; TRAF3, tumor necrosis factor receptor-associated factor 3; STAT, signal transducer and
activator of transcription; TYK2, tyrosine kinase 2; Wnt5, Wnt oncogene analog 5.
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3.2.3 Summary
The mechanism by which the antigen-presentation capability of
DCs is impaired is not clear. A greater focus on the SARS-CoV-
2-induced microenvironment (including alteration of signaling
pathways such as DC-SIGN, mTOR, and Wnt5) may be needed
to ascertain the underlying mechanism.

3.3 IFN-I Deficiency in
SARS-CoV-2-Infected DCs
IFN-I is a powerful weapon for DCs in their fight against viral
infection. However, SARS-CoV-2 often leads to the effects of
IFN-I being hampered. Zhou et al. found that the ability of
infected cDC1 and cDC2 to produce proinflammatory cytokines
(IL-1b, IL-6, TNF-a) was not influenced, but the ability of
infected pDCs to secrete IFN-I was suppressed significantly, in
COVID-19 patients (101). Achille et al. found that the ability of
cDC1 to produce IFN-l was not impaired, which may contribute
to disruption of the epithelial barrier in the lungs upon SARS-
CoV-2 recognition (121). Various studies have shown that
SARS-CoV-2 inhibits only pDCs from secreting IFN-I but does
not affect cDC production of other proinflammatory cytokines
(68, 101, 115, 116). An IFN-I deficiency promotes SARS-CoV-2
to escape recognition by the immune system. Such an escape by
SARS-CoV-2 leads to the body producing many inefficient
antiviral proinflammatory cytokines that will initiate the
cytokine storm that damages lung tissues and results in ARDS
or death. Three main reasons have been postulated as to how
SARS-CoV-2 may specifically impair the production and
transformation of IFN-I (Figure 2).

First, the IFN-I level is reduced significantly in coronavirus
infections (e.g., SARS-CoV, MERS-CoV) and such inhibition is a
hallmark of coronavirus infections (122–124). Little is known
about how SARS-CoV-2 suppresses IFN signaling, but clues can
be obtained from SARS-CoV. IFN-I production in SARS-CoV-2
infection is even less than that observed in SARS-CoV infection
(124). SARS-CoV-2 encodes various proteins that have been
shown to inhibit IFN-I signaling in SARS-CoV infection (122,
124) (Figure 2).

Second, some researchers have found congenital deletion of
TLR7 in critically ill patients and that the pDCs of patients with a
TLR7 deletion cannot produce IFN-I (125). In addition, anti-IFN
antibodies have been found in a small number of critically ill
patients; anti-IFN antibodies bind to IFN and prevent IFN
transformation (126). The failure of the immunometabolism
reprogramming such as the impairment of the glycogenolysis-
mediated glycolysis which is stored as a source of energy of DCs
will impair the IFN-I generation in DCs (108, 127, 128). SARS-
CoV-2 inhibits the early induction of glycolysis via suppression
of IFN-I generation, and in turn, the impaired induction of
glycolysis inhibits IFN-I generation in DCs (129). This positive
feedback loop further reduces IFN-I generation.

Third, the high viremia of COVID-19 is associated with
impaired generation of IFN-I in peripheral blood mononuclear
cells (130). Supplementation of IFN in the early stage of SARS-
CoV-2 infection is beneficial to patients. IFN-b combined with
lopinavir and ribavirin can improve physical status (131) and
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alter the production of proinflammatory cytokines in the latter
stages of COVID-19 (97, 132). There is growing recognition that
inappropriate, excessive, and mistimed IFN treatments are
deleterious in viral infections (131, 133). In the early stage of
COVID-19, IFN treatment could improve patient outcomes
(122, 131, 134–136), but immunomodulation therapy is
recommended at the latter stage of COVID-19 (122, 137, 138).
The delayed response to IFN-I leads to accumulation of
pathogenic mononuclear macrophages, which cause vascular
leakage, lung disorders, and inappropriate T-cell responses
(139, 140). Understanding the exact immunopathogenesis of
impaired IFN production and restoring the IFN system at the
early stage of COVID-19 is a top priority.
4 CONCLUSIONS

As a bridge between innate immunity and adaptive immunity,
DCs have important roles during virus invasion. The impaired
function and reduced numbers of DCs are a catastrophe for the
immune system during SARS-CoV-2 infection. The deficiency
and dysfunction of DCs persist for several months after SARS-
CoV-2 infection (113). Sevenmonths after SARS-CoV-2 infection,
the function of cDC2, as well as the number and IFNa production
in pDCs, remains abnormal (113). This prolonged deficiency and
dysfunction of DCs are associated with “post-acute COVID-19
syndrome” (“long-hauler syndrome”) in COVID-19 patients. It is
characterized by persistent symptoms and/or delayed or long-
term complications of SARS-CoV-2 infection beyond 4 weeks
from symptom onset (141, 142). Scholars have reported that
SARS-CoV-2 can persist in the intestines 7 months after
symptom resolution (143). We postulate that the persistent
tissue damage and presence of viral antigens which are hard to
eliminate due to the deficiency and dysfunction of DCs may
contribute to long-hauler syndrome in COVID-19 patients.

The morbidity and mortality of older patients are very high if
they have severe SARS-CoV-2 infection (144). Age-associated
DC dysfunction has a critical role in the mortality prevalence of
COVID-19 patients (103). Age may contribute to the reduction
and IFN dysfunction of pDCs and antigen-presentation
inhibition of cDC to CD8+ T cells, which hinders the
transition from naïve CD8+ T cells to cytotoxic CD8+ T cells
(145). In older patients, DC dysfunction leads to an increased
proinflammatory response and decreased anti-inflammatory and
immunomodulatory responses, which result in a chronic
inflammatory state (103). In SARS-CoV-2 infection, DC
dysfunction could lead to uncontrolled infection and
exacerbate the cytokine storm in older patients (103).

As important antigen-presenting cells, DCs have a critical role
in the immunotherapy of SARS-CoV-2. Development of
immunotherapies against SARS-CoV-2 includes classic
platforms and next-generation platforms. The ongoing vaccine
research on classic platforms includes whole-inactive viruses,
live-attenuated viruses, protein subunits, and virus-like particles.
Next-generation platforms include viral vectors, DNA, RNA, and
antigen-presenting cells. LV-SMENP-DC and pathogen-specific
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artificial antigen-presenting cells (aAPC) from Shenzhen
Genoimmune Medical Institute (Shenzhen, China) have
recently moved into phase-I clinical development. LV-SMENP-
DC is an antigen-presenting-cell vaccine based on DCs. In LV-
SMENP-DC, DCs are modified with a lentiviral vector
expressing a “synthetic minigene” based on the domains of
selected viral proteins, and LV-SMENP-DC is administered
with antigen-specific cytotoxic T-cells (NCT04276896)
(146, 147).

This review shows that DCs have vital roles in SARS-CoV-2
infection. Studying the relationship between DCs and SARS-
CoV-2 is very important. Novel DC-induced immunotherapy
strategies for COVID-19 may be discovered in the near future.
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