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1  | INTRODUC TION

Securing a live birth is the ultimate goal of assisted reproductive 
technology. Failed embryo development, or miscarriage, results in 
the loss of time and cost in addition to likely negative psychological 
outcomes for the patients and other involved individuals. Both em‐
bryonic chromosomal abnormalities and the age of the patient are 
major fertility‐related factors that affect live birth.

Morphological structures, such as meiotic spindles, zona pelluci‐
dae, vacuoles or refractile bodies, polar body shapes, oocyte shapes, 
dark cytoplasm or diffuse granulation, the perivitelline space, central 
cytoplasmic granulation, cumulus‐oocyte complexes, cytoplasmic vis‐
cosity, and membrane resistance characteristics, have been investi‐
gated, but none of these features have been conclusively found to 
have prognostic value for the further developmental competence of 
oocytes.1 Additionally, conventional morphological evaluation has 
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Abstract
Purpose: To identify artificial intelligence (AI) classifiers in images of blastocysts to 
predict the probability of achieving a live birth in patients classified by age. Results 
are compared to those obtained by conventional embryo (CE) evaluation.
Methods: A total of 5691 blastocysts were retrospectively enrolled. Images captured 
115 hours after insemination (or 139 hours if not yet large enough) were classified 
according to maternal age as follows: <35, 35‐37, 38‐39, 40‐41, and ≥42 years. The 
classifiers for each category and a classifier for all ages were related to convolutional 
neural networks associated with deep learning. Then, the live birth functions pre‐
dicted by the AI and the multivariate logistic model functions predicted by CE were 
tested. The feasibility of the AI was investigated.
Results: The accuracies of AI/CE for predicting live birth were 0.64/0.61, 0.71/0.70, 
0.78/0.77, 0.81/0.83, 0.88/0.94, and 0.72/0.74 for the age categories <35, 35‐37, 
38‐39, 40‐41, and ≥42 years and all ages, respectively. The sum value of the sensitiv‐
ity and specificity revealed that AI performed better than CE (P = 0.01).
Conclusions: AI classifiers categorized by age can predict the probability of live birth 
from an image of the blastocyst and produced better results than were achieved 
using CE.
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had limited success in identifying aneuploid embryos.2-6 Some investi‐
gations have been able to predict aneuploidy. Time‐lapse parameters 
have been reported to be predictive of aneuploidy, although these 
have produced diverging conclusions. The available evidence may still 
be too weak to justify introducing time‐lapse microscopy in routine 
clinical settings.2 There are reports showing that embryos of good 
morphological quality can be aneuploid, while suboptimal embryos 
may be euploid.2,7,8 A morphological classification for aneuploidy and 
euploidy has not been established. Preimplantation genetic testing for 
aneuploidy (PGT‐A)9,10 is another method for examining chromosomal 
profiles. PGT‐A is an invasive technique for the embryo associated 
with considerable ethical debate. The transfer of the embryo after 
biopsy is prohibited in some countries. The chromosomal profile of 
the biopsy specimen does not always represent the profile of the rest 
of the embryo because of genetic heterogeneity within the embryo. 
Mosaicism in the trophectoderm (TE) has been observed, and a single 
TE biopsy may not be representative of the complete TE.11 A global 
Internet‐based survey indicated that more randomized controlled 
trials are needed to support PGT‐A.12 Thus, no procedure to detect 
abnormalities that predict live birth has been established.

Age is one of the most important factors when considering fer‐
tility. Many published Original Articles have explored age as follows. 
Oocyte number and quality decrease with advancing age, and patients 
older than 35 years should receive prompt evaluation for causes of 
infertility.13 Aged oocytes display increased chromosomal abnormal‐
ities and dysfunction of cellular organelles, both of which factor into 
oocyte quality.14 Advanced age is a risk factor for female infertility, 
pregnancy loss, fetal anomalies, and stillbirth.15 Advanced age has a 
negative effect on fertility.16,17 The fecundity of women decreases 
gradually but significantly beginning approximately at 32 years and 
subsequently decreases more rapidly after 37 years. Women older 
than 35 years should receive an expedited evaluation, and women 
older than 40 years should warrant more immediate evaluation and 
treatment.18 In a total of 7341 single vitrified‐armed blastocyst trans‐
fer cycles, the delivery rate stratified by women's age (<35, 35‐37, 
38‐39, 40‐41, 42‐45 years) was significantly related to the develop‐
mental speed of the embryo (P < 0.0001).19 The Japan Society of 
Obstetrics and Gynecology reported that the live birth rates asso‐
ciated with assisted reproductive technology in patients categorized 
by age into <35, 35‐37, 38‐39, 40‐41, and ≥42 years were 0.20, 0.17, 
0.12, 0.08, and 0.01, respectively, in 2015.20 Thus, age is well known 
to be one of the major fertility factors that affects live birth, and there 
is no established procedure to treat patients or blastocysts by age.

There is now a clear need for a means of noninvasively predicting 
live birth, and the means may have to be selected according to the age 
of a patient. We therefore created a system for applying deep learn‐
ing in a convolutional neural network21-24 with artificial intelligence 
(AI) and applied it to blastocyst images classified by maternal age to 
seek a solution to this challenge. A system consisting of a classifier 
for all ages was also created using the same method for comparison. 
Deep learning is becoming very popular among all machine learn‐
ing methods, such as logistic regression,25 naive Bayes,26 nearest 
neighbors,27 random forest,28 neural network,29 and deep learning. 

We selected deep learning and made a classifier program that retro‐
spectively predicts the probability of live birth. The confidence score 
is the estimated probability of belonging to the live birth category 
and can be viewed in terms of a ranking of blastocysts; thus, it will 
make it easier for doctors and embryologists to select superior blas‐
tocysts for transfer. Here, we show the results of our retrospective 
predictions of live birth achieved using the multivariate regression 
function by a conventional embryo evaluation method that involves 
observation, assessment, and manual grading of the morphological 
features of blastocysts evaluated in a laboratory. Then, we present 
the feasibility of using the classifier of the image of the blastocyst 
for predicting the probability of achieving live birth classified by age.

2  | MATERIAL S AND METHODS

2.1 | Patients

In this study, we used fully deidentified data, and the study was ap‐
proved by the Institutional Review Board (IRB) at Okayama Couples’ 
Clinic (IRB No. 18000128‐05). This study was carried out with expla‐
nations provided to the patients and a Web site with additional in‐
formation, including an opt‐out option for the study. A total of 5691 
blastocysts obtained from consecutive patients from January 2009 to 
April 2017 were enrolled in this study. Every blastocyst was tracked, 
as was whether a live birth or a nonlive birth was confirmed as the 
outcome. The total live birth ratio was 0.279. The live birth ratios for 
the age groups <35, 35‐37, 38‐39, 40‐41, and ≥42 years were 0.387 
(876/2265), 0.306 (381/1244), 0.231 (164/709), 0.162 (130/804), 
and 0.054 (36/669) (live birth cases/all cases), respectively.

2.2 | Conventional embryo evaluation

Every blastocyst with the following morphological features and clini‐
cal information, such as patient age, time of embryo transfer, time of 
in vitro fertilization, anti‐Müllerian hormone value, FSH value, blas‐
tomere number on day 3 after insemination, blastocyst grade on day 
3, embryo cryopreservation day, grade of inner cell mass, grade of 
TE, averaged diameter of the blastocyst, antral follicle count, body 
mass index, existence of endometriosis, existence of immune infer‐
tility, existence of oviduct infertility, ovarian stimulation procedures, 
insemination procedures, smooth endoplasmic reticulum (sERC) 
grade, refractile body, existence of a vacuole, degree of blastocyst 
expansion, male age, and male body mass index, was pursued to 
evaluate the final outcome of live or nonlive birth. The information 
above is defined as the conventional embryo evaluation in this study.

The relationships between live birth outcomes and each factor 
included in the conventional embryo evaluation were investigated, 
and univariate regression functions were obtained. The significant 
factors that showed no multicollinearity, indicating a state of very 
high correlations among the independent variables, were selected 
for use in the multivariate analysis. Then, a multivariate regression 
function performed for the conventional embryo evaluation was 
used to predict whether a live birth was obtained.
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2.3 | Blastocyst images

An image of the incubated blastocyst was captured on approximately 
day 5 at 115 hours after insemination (or day 6 at 139 hours if the 
blastocyst was not yet large enough) and saved in JPEG format con‐
taining no data that could be used to identify the individual. The dei‐
dentified image data were transferred to the AI system offline. The 
images were classified by maternal age into five categories of patients 
who were less than 35, 35‐37, 38‐39, and 40‐41, or equal to or greater 
than 42 years old. The numbers of live births and nonlive births were 
876 and 1389, respectively, in the <35‐year‐old group; 381 and 863, 
respectively, in the 35‐year‐old≤and <38‐year‐old group; 164 and 545, 
respectively, in the 38‐year‐old ≤ and <40‐year‐old group; 130 and 
674, respectively, in the 40‐year‐old ≤ and <42‐year‐old group; and 36 
and 633, respectively, in the ≥42‐year‐old group. The live birth prob‐
ability was 0.387 for the <35‐year‐old group; 0.306 in the 35 ≤ and 
<38‐year‐old group; 0.231 in the 38 ≤ and <40‐year‐old group; 0.162 
in the 40 ≤ and <42‐year‐old group; and 0.054 in the ≥42‐year‐old 
group. The images of blastocysts that led to live births and those of 
blastocysts that led to undeveloped embryos or miscarriages, etc, and 
resulted in nonlive births were used to create the AI classifiers.

2.4 | Preparation for AI

All deidentified images stored offline were transferred to our AI‐
based system. Each image was cropped to a square and then saved. 
Twenty percent of the images in the live birth and nonlive birth cate‐
gories were randomly selected as the test dataset, and the rest were 
used as the training dataset. Then, twenty percent of the training 
dataset was used as the validation dataset, and the rest was used to 
train the AI classifier. Thus, the training, validation, and test datasets 
did not overlap. In this way, the AI classifier was trained by a train‐
ing dataset and simultaneously validated and then tested for the test 
dataset. The number of training datasets was augmented, as is often 
done in computer science, in a process known as data augmentation. 
The training dataset was augmented in this study because the blasto‐
cyst image processing of the arbitrary degrees of rotation can lead to 
images being included in the same category of different vector data.

2.5 | AI classifier

We developed classifier programs in each age category using super‐
vised deep learning with a convolutional neural network30,31 that tried 
to mimic the visual cortex of the mammal brain21,23,32-35 and used L2 
regularization36,37 to categorize blastocyst images as either in the live 
birth or the nonlive birth category and to obtain the mathematical 
probability for predicting each category. We performed deep learn‐
ing with a convolutional neural network with eleven layers consisting 
of a combination of convolution layers with varying output channels 
and kernel sizes,38,39 pooling layers,41,42 flattened layers,45 linear lay‐
ers,46,47 rectified linear unit layers,48,49 and a softmax layer50,51 that 
demonstrated the probability of a live birth from an image of the blas‐
tocyst. We applied cross‐validation,52,53 a powerful method for model 

selection, to identify the optimal method of machine learning. The suit‐
able number of images for the training data was investigated by evalu‐
ating accuracy and variances using the 5‐fold cross‐validation method 
as follows (Figure 1). First, the test data were the initial one‐fifth of the 
images collected in each category, and a classifier was trained by the 
training data. Then, the test data were changed to the next one‐fifth 
of the images. This procedure was repeated five times to encompass 
all images as potential test data. The number of augmented training im‐
ages was analyzed until the accuracy and variance were likely to show 
the maximum and minimum value, respectively. This calculation pro‐
cedure reveals the optimal number of training data and can be used 
to avoid overfitting,55,56 which is a modeling error that occurs when 
a classifier is too closely fit to a limited set of data points. After the 
optimal number of training data was obtained, the best classifier that 
showed the best accuracy and the smallest variance was selected by 
varying the architecture of the convolutional neural network and by 
varying parameters such as L2 regularization values within a range of 
0.0‐0.40 and an image size (40 × 40, 50 × 50, 75 × 75, and 100 × 100 
pixels). If the accuracies did not clearly differ, the best classifier was 
determined based on the values of the sum of the sensitivity and the 
specificity. The AI classifiers (with the softmax function showing the 
confidence score) were obtained for each age category. An AI classifier 
for all ages was also obtained in the same procedures.

2.6 | Live birth prediction function by the 
AI classifier

A histogram of the values of the confidence scores obtained from 
images of the blastocysts in both the live and nonlive births was ob‐
tained. This histogram was converted to show the ratio of live births 
to all births. A logistic regression model that fit the ratios was con‐
structed as the function to predict the probability of live birth.

2.7 | Development environment

The following development environment was used in the present 
study: a Mac running OS X 10.11.6 (Apple, Inc, Cupertino, CA, USA) 
and Mathematica 11.3.0.0 (Wolfram Research, Champaign, IL).

2.8 | Statistics

The results of the laboratory data and the AI classifier were com‐
pared. Mathematica 11.3.0.0 (Wolfram Research) was used for all 
statistical analyses.

3  | RESULTS

3.1 | Live birth prediction by the conventional 
embryo evaluation

Univariate regression functions and the multivariate regression func‐
tion of the conventional embryo evaluation used to predict the prob‐
ability of live birth are shown in Table 1 and Table 2, respectively. After 
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F I G U R E  1   A flowchart to make classifiers
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no multicollinearity was found among the variables, ten independent 
variables remained for the multivariate regression function, which 
showed the minimum value of the deviances. The variables shown 
in Table 2 were obtained using the formulae shown in Table 1. The 
results showed that the age at which the P‐value was the minimum 
among ten variables seemed to be the most important independent 

variable, as shown in Table 2. When these ten values, which were 
derived from the conventional embryo evaluation, were substituted 
to the multivariate logistic regression function, 1/(1 + Exp(β0+β1x1+ 
… +β10x10), the calculated value showed the predicted probability of 
live birth by the conventional embryo evaluation.

3.2 | Live birth prediction by AI

The profiles of the accuracies, with standard deviation (SD), are 
shown according to the number of the training dataset, as shown 
in Figure 2. The best numbers obtained in the training dataset were 
17112, 7848, 8085, and 12 144 in the age groups 35‐37, 38‐39, 
40‐41, and ≥42 years, respectively. Because the accuracies did 
not vary as a function of the number in the training dataset in the 
<35‐year‐old age group and the all age group, the sum of the sen‐
sitivity and the specificity was investigated. For the age category 
<35 years, the sum value for the numbers of the training dataset, 
3333, 9999, 13 332, 16 665, 19 998, and 26 664, was 1.002 ± 0.007, 
1.016 ± 0.034, 1.032 ± 0.339, 1.058 ± 0.153, 1.024 ± 0.080, and 
1.017 ± 0.028 (mean ± SD), respectively. Hence, the best number for 
the training dataset in the age category <35 years was determined 
to be 16 665. The same procedure revealed that the best number 
of training data for all ages was 49 245. The best numbers in the 
L2‐regularization were 0.15, 0.37, 0.10, 0.30, 0.20, and 0.12 for the 
age groups <35, 35‐37, 38‐39, 40‐41, and ≥42 years and all ages, re‐
spectively. The best image size in our study was 50 × 50 pixels (data 
not shown). Using the best number of training data, we obtained the 
best classifiers for each age category with the convolutional neural 
network, for which the architectures are shown in Table 3. The rec‐
tified linear unit function was the best among the logistic sigmoid 
function, the hyperbolic tangent function, and the Heaviside theta 
function (data not shown). It took only 0.2 seconds per image to clas‐
sify and show the confidence score.

As for a sample, the histogram for live birth and nonlive birth 
in patients aged 35‐37 years is demonstrated in the upper graph 
shown in Figure 3. These data were transformed to obtain the inci‐
dence of live birth and then fitted to a logistic regression model, as 
shown in the lower graph in Figure 3. The logistic regression mod‐
els were used as the function to predict the probability of live birth 
in all age categories as shown in Table 4 and plotted in Figure 4. 
The functions for age <35 and 35‐37 years were similar. As age 
advances, the predicted probability of live birth becomes lower, 
and the coefficient of the independent variable increases. Some 
example images of the blastocyst in patients aged 38‐39 years are 
shown in Figure 5.

3.3 | Comparison of the AI and conventional 
embryo evaluation

The accuracies for predicting live birth achieved by the AI/con‐
ventional embryo evaluation methods for test datasets were 
0.639/0.610, 0.708/0.700, 0.782/0.768, 0.807/0.834, 0.881/0.941, 
and 0.721/0.740 for ages <35, 35‐37, 38‐39, 40‐41, and ≥42 years 

TA B L E  1   Univariate regression functions of conventional 
embryo evaluation parameters used to predict the probability of 
live birth

Independent 
variable Formula Coefficient

Age k/(1 + Exp(β0+β1x)) β0 = −10.80 ± 4.038 
(P = 0.0075)

β1 = 0.287 ± 0.107 
(P = 0.0074)

k = 0.447

Time of embryo 
transfer

1/(1 + Exp(β0+β1x)) β0 = 0.535 ± 1.187 
(P = 0.652)

β1 = 0.287 ± 0.107 
(P = 0.181)

Anti‐Müllerian 
hormone (ng/
mL)

1/(1 + Exp(β0+β1x)) β0 = 1.263 ± 2.637 
(P = 0.632)

β1 = 0.059 ± 0.139 
(P = 0.671)

Blastomere 
number on day 3

k/(2πσ2)1/2 
Exp(‐(x‐m)2/(2σ2))

σ = 4.758 ± 0.761 
(P = 0.00003)

m = 11.518 ± 0.646 
(P < 1.612 × 10−10)

k = 4.632 ± 0.587 
(P < 2.59 × 10−6)

Grade on day 3 
(Class A = 1, 
B = 2, C = 3, 
D = 4)

k/(1 + Exp(β0+β1x)) β0 = −9.914 ± 10.619 
(P = 0.351)

β1 = 3.137 ± 3.686 
(P = 0.352)

k = 0.306

Embryo 
cryopreserva‐
tion day (Day 
5 = 1, Day 6 = 2)

β0+β1x β0 = 0.444

β1 = −0.137

Inner cell mass 
(A = 1, B = 2, 
C = 3)

β0+β1x β0 = 0.490 ± 0.018 
(P = 0.023)

β1 = −0.1356 ± 0.008 
(P = 0.039)

Averaged 
diameter (µm)

1/(1 + Exp(β0+β1x)) β0 = 2.788 ± 5.263 
(P = 0.596)

β1 = −0.012 ± 0.030 
(P = 0.692)

Body mass index 
(kg/m2)

1/(1 + Exp(β0+β1x)) β0 = −0.662 ± 0.810 
(P = 0.414)

β1 = 0.079 ± 0.037 
(P = 0.020)

Independent variables, which were related to live birth and also used in 
the multivariate regression, are presented. Each formula was determined 
to fit the data distribution. Coefficients are shown as the mean ±SE.
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and all ages, respectively (Table 5). The accuracies increased as 
age advanced in both the AI and the conventional embryo evalu‐
ation with P < 1.5 × 10−10 and P < 1.1 × 10−17, respectively, by the 
Cochran‐Armitage test. The overall average accuracies of the AI and 
laboratory data were 0.763 ± 0.093 and 0.771 ± 0.126 (mean ± SD), 
respectively, indicating no significant difference according to the 
Mann‐Whitney test (P = 0.83). The values for the area under the 
curve (AUC) of the AI and the laboratory data were 0.661 ± 0.049 
and 0.713 ± 0.064 (mean ± SE), respectively, for the data classified 
by age, but there was no significant difference (P = 0.29).

The sensitivity and the specificity of the AI were almost 
0.15‐0.40 and 0.88‐0.95, respectively, in any age category. In the 
conventional embryo evaluation, however, the sensitivity decreased 
and the specificity increased as a function of age (P < 1.3 × 10−13 
and P < 3.6 × 10−25, respectively). In particular, when the mother 
was older than 37 years, the sensitivity was 0.000, and the speci‐
ficity was 1.000. The sum values of the sensitivity and specificity 
of the AI and of conventional embryo evaluation were 1.196 ± 0.08 
and 1.046 ± 0.07 (mean ± SD), respectively, indicating that the 
AI achieved significantly better results (P = 0.01 and P = 0.034 by 
unpaired t test and Mann‐Whitney test, respectively), as shown in 
Figure 6. As maternal age advanced, the sum of the sensitivity and 
the specificity increased in the AI and decreased in the conventional 
embryo evaluation, respectively. The more the age advanced, the 
more accurate the outcome of the AI classifier was.

4  | DISCUSSION

We developed an AI classifier of deep learning with convolutional 
neural networks using images of blastocysts categorized by maternal 

age to predict the probability of achieving live birth. In our study, 
the overall average of the accuracies achieved by the AI classifiers 
was 0.763 ± 0.093 (mean ± SD). The accuracies achieved by the AI 
as well as the conventional embryo evaluation were both dependent 
on the age category. We suggest that the classifiers should be classi‐
fied by age. In several reports, deep learning with convolutional neu‐
ral networks as AI61 has been used in medicine.62 The accuracies of 
this method with deep learning have been published and were 0.997 
for histopathological diagnosis of breast cancer,63 0.90‐0.83 for the 
early diagnosis of Alzheimer's disease,64 0.83 for urological dysfunc‐
tions,65 0.7266 and 0.5067 for colposcopy, 0.83 for the diagnostic im‐
aging of orthopedic trauma,68 and 0.98 for the morphological quality 
of blastocysts and evaluation by embryologist.69 In one report, em‐
bryos with fair‐quality images that were classified as poor and good 
quality were scored as 0.509 and 0.614, respectively, for the likeli‐
hood of achieving a positive live birth.69 In our study, the accuracy 
for predicting a live birth using images of the blastocyst when using 
the AI was 0.639, 0.708, 0.782, 0.807, and 0.881 for the age catego‐
ries <35, 35‐37, 38‐39, 40‐41, and ≥42 years, respectively, as shown 
in Table 5. Our results show that in spite of clinical impediment fac‐
tors that are beyond images, factors such as uterine factors70 seem 
to be average methods used in deep learning approaches to classify 
objects in medicine. To the best of our knowledge, no reports have 
predicted the probability of live birth from images of the blastocyst. 
One study, however, reported that the live birth rate per transfer was 
0.668 based on clinical factors, such as age and body mass index.71 
Another study reported that the grading of the TE was the only sta‐
tistically significant independent predictor of live birth outcomes and 
that the live birth probabilities of grade A, B, or C in the TE were 
0.499, 0.339, and 0.080, respectively.72 In our study, the average 
of the accuracies achieved by the AI was 0.763, and there were no 

Independent variable Coefficient P‐Value Odds ratio

Constant (β0) β0 = 6.756 ± 0.461 1.06 × 10−48 ‐

Age value (β1) β1 = −4.101 ± 0.330 1.05 × 10−35 60.42

Average diameter value 
(β2)

β2 = −5.098 ± 0.619 1.792 × 10−16 163.76

TE value (β3) β3 = −1.970 ± 0.398 7.226 × 10−7 7.17

Embryo cryopreservation 
day value (β4)

β4 = −3.299 ± 0.741 8.577 × 10−6 27.10

ET times value (β5) β5 = −2.592 ± 0.638 0.0000481 13.35

ICM value (β6) β6 = −1.243 ± 0.469 0.0081 3.47

AMH value (β7) β7 = −1.143 ± 0.726 0.1156 3.13

Blastomere number value 
(β8)

β8 = −0.612 ± 0.567 0.280 1.84

Body mass index value 
(β9)

β9 = −0.648 ± 0.738 0.379 1.91

Grade on day 3 value (β10) β10 = 0.079 ± 0.994 0.936 0.92

AMH, anti‐Müllerian hormone, ET, embryo transfer; ICM, inner cell mass; TE, trophectoderm.
The values of independent variables (except constant β0) are values calculated by the univariate re‐
gression functions shown in Table 1. Multicollinearity was not observed between any two indepen‐
dent variables. Coefficients are shown as the mean ±SE.

TA B L E  2   The multivariate logistic 
regression function, 1/(1 + Exp(β0+β1x1+ 
… +β10x10), of the conventional embryo 
evaluation for predicting live birth
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significant differences between the AI and the conventional embryo 
evaluation method regarding the accuracy and the AUC. However, 
the sum value of the sensitivity and the specificity of the AI was 
1.196 ± 0.08 (mean ± SD), which was significantly higher than that 
of the conventional embryo evaluation method. If the AI classifier is 

applied in practical medicine, the blastocyst can be selected accord‐
ing to the order of the value of probability of achieving a live birth so 
that outcomes might be improved.

We made the classifiers according to age categories. The AI 
classifier used in this study revealed that the more age advances, 

F I G U R E  2   The profiles for accuracy with standard deviation (SD) according to the number of training data and classified by age into <35, 
35‐37, and 38‐39 y are shown above in the left column, while those for 40‐41 and ≥42 y and all ages are shown above in the right column. 
The number of training data that achieved the best accuracy with the minimum SD was obtained for each age category. For patients aged 
<35 y and all ages, the accuracies do not differ; thus, the best number for the training data was determined according to the maximum 
number of the sum of the sensitivity and the specificity. The best numbers for the training data were 16 665, 17 112, 7848, 8085, 12 144, 
and 49 245 for patients aged <35, 35‐37, 38‐39, 40‐41, and ≥42‐y and all ages, respectively
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Age (y)

Layers <35 35‐37 38‐39 40‐41 ≥42 All ages

1. Convolution layer

Output channels 50 40 20 40 40 50

Kernel size 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5

2. ReLU†

3. Pooling layer

Kernel size 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

4. Convolution layer

Output channels 64 64 64 64 64 64

Kernel size 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5

5. ReLU

6. Pooling layer

Kernel size 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

7. Flatten layer

8. Linear layer 
size

210 210 210 210 210 210

9. ReLU

10. Linear layer 
size

2 2 2 2 2 2

11. Softmax layer

ReLU, rectified linear units.
The proper convolutional neural network structures, which consisted of eleven layers in convolu‐
tional deep learning, were obtained. The numbers of output channels in the first convolution layer 
were different.

TA B L E  3   Architectures of the best 
classifier that showed the best accuracy 
for each age category

F I G U R E  3   The process used to obtain 
the function of the logistic regression 
model from the confidence score, which 
was the estimated probability of belonging 
to the live birth category, was determined 
in order to predict the probability of live 
birth by applying the data distribution 
of the patients. A sample of patients 
aged 35‐37 y is shown. The histogram of 
the confidence scores for both live and 
nonlive births that were confirmed by 
tracking is shown in the upper panel. The 
incidence of live birth as a function of the 
probability is plotted as dots and shown 
in the lower panel. The logistic regression 
model with extrapolations that fit the 
dots was constructed as the function 
of the confidence scores to predict the 
probability of live birth
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the more useful the AI classifier will be (Figure 6). This is important 
because patients with advanced age have less time to be treated. 
The best number for the training datasets as shown in Figure 2, and 
the regression functions as shown in Figure 4 and Table 4 differed 
by age. When the patient is older than 37 years, the classifiers by 
age achieved better results than were achieved by the classifier 
that was not classified by age. Although the age categories <35 and 
35‐37 years could be joined, this should be avoided so that all data 
are without age classification. The significance of age for sterility has 
been emphasized for a long time, and this has been experienced in 
practical medicine. The conventional method of evaluating embryos, 
however, does not yet clearly detect the morphological features 
associated with the significance of age. The results of this study 
suggest that the AI that included deep learning with convolutional 
neural networks seemed to recognize some types of information re‐
lated to age from images of the blastocyst. This is one of the critical 

points supporting the use of the AI for predicting live birth based on 
the image of the blastocyst as well as the goal of causing no harm to 
the embryo. For the function to predict live birth by the regression, 
the conventional embryo evaluation is related to age, as shown in 
Table 5. When the patient is older than 37 years, the sensitivity is 
0, and the specificity is 1. This phenomenon occurs when the re‐
sults of all tests are always negative. Predicting a live birth based on 
conventional embryo evaluation is not actually feasible in patients 
with advanced age who are older than 37 years. Because of the low 
incidence of live birth in advanced age patients, the accuracies show 
apparent good results at a glance because of the high specificities. 
Therefore, age is a very important factor, and the AI classifier is ac‐
tually superior to conventional embryo evaluation.

In this study, the sensitivities were relatively low, and the speci‐
ficities were relatively high for the AI, as shown in Table 5. There are 
some clinical disincentives for an embryo to achieve live birth. These 
include uterine factors70 (eg, intrauterine adhesions,73,74 uterine my‐
omas,75 and endometrial polyps76), endometriosis,77 ovarian func‐
tion,78 oviduct obstruction,79,80 maternal diseases such as diabetes 
mellitus,81 immune disorders,82,83 and the uterine microbiota.84,85 
Because these factors cannot be detected by the AI classifier from 
an image of the blastocyst, the accuracy, sensitivity, and specific‐
ity for live birth cannot reach 1. These clinical characteristics of the 
blastocyst prevent the accuracy of predicting live birth by any means 
from reaching close to 1. However, we found that the AI seemed to 
perform better than conventional embryo evaluation because it had 
superior positive numbers for sensitivity.

The AUC is also a good parameter for estimating a test. The AUC 
value of the AI was 0.661 ± 0.049 (mean ± SE) and showed a range of 
0.592‐0.713. There are no comparable published data for predicting 
live birth. However, regarding the AUC of preimplantation genetic 
screening, a study reported in a prediction model that classified em‐
bryos into high‐, medium‐ or low‐risk categories achieved an AUC 
of 0.72.86 That model could be useful for ranking embryos and pri‐
oritizing them for PGT‐A. However, it does have limited predictive 
value for patients undergoing IVF in general,87 and it might have to 
be avoided because of possible harm to the embryo.

In spite of some of the clinical disincentives for an embryo to 
achieve live birth, it is possible that some improvements in the ar‐
chitecture of the neural network and the parameters used for train‐
ing could make the classifiers better. The architecture of this study 
consisted of eleven layers. The LeNet study published in 199888 
consisted of 5 layers. AlexNet, published in 2012,89 consisted of 
14, and Google Net, published in 2014,90 was constructed of a 
combination of micronetworks. ResNet, published in 2015,91 con‐
sisted of modules with a shortcut process. Squeeze‐and‐Excitation 
Networks, published in 2017,92 induced Squeeze‐and‐Excitation 
Blocks, which are building blocks for convolutional neural net‐
works that improve channel interdependencies. The AI used for 
image recognition is still being developed. Progress in AI will allow 
us to achieve better results. We used 50 × 50 pixels for the im‐
ages of blastocysts. Only 15 × 15 pixels are used to detect cervical 
cancer.93 In a colposcopy study,67 it was reported that the accuracy 

TA B L E  4   Coefficients of the logistic regression, y = 1/
(1 + Exp(β0+β1x)), showing the probability of live birth as a function 
of the confidence score, which is the AI‐generated predicted 
probability of live birth obtained from an image of the blastocyst

Patient age (y) β0 (±SE) β1 (±SE) Odds ratio

<35 3.81 (±2.79) −7.91 (±5.65) 2724.39

35‐37 3.23 (±3.18) −6.87 (±7.08) 962.95

38‐39 2.12 (±1.97) −3.36 (±4.33) 28.79

40‐41 3.04 (±2.99) −3.70 (±5.61) 40.45

≥42 2.93 (±5.12) −0.71 (±11.19) 2.03

all ages 1.70 (±1.23) −3.30 (±2.47) 27.11

β0, β1, coefficients; SE, standard error; x, confidence score of the blasto‐
cyst; y, probability of live birth.

F I G U R E  4   The functions used to predict the probability of live 
birth are plotted according to age categories into <35, 35‐37, 38‐39, 
40‐41, and ≥42 y and all ages, respectively. The functions for ages 
<35 and for 35‐37 y seemed similar. When the age advanced above 
35 y, and especially when it was equal to or greater than 42 y, the 
probability of live birth decreased. These functions, which were 
derived from artificial intelligence, seemed to be consistent with 
the significance of age
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for images of 150 × 150 pixels was better than that for 32 × 32 or 
300 × 300 pixels, although images of uterine cervical lesion, in‐
cluding white epithelium and punctuation, seemed to be more com‐
plicated than images of blastocysts. Hence, one issue that remains 
open to question is that of image size, and we propose that a size 
of 50 × 50 pixels is acceptable. A high‐performance computer is 
needed to resolve this issue. Regularization values are also import‐
ant parameters for constructing a good classifier that avoids over‐
fitting. In this study, for the L2 regularization, the best numbers 
were 0.15, 0.37, 0.10, 0.30, and 0.20 for ages <35, 35‐37, 38‐39, 
40‐41, and ≥42 years, respectively. If the regularization value is 
too low, overfitting occurs. If the value is too large, the classifier 
will not be trained well. Choosing the appropriate number for the 
training dataset is also very important. If the number of training 
datasets is too high, the accuracy will be lower, and more variances 
will occur. The validation dataset as well as L2 regularization also 
prevent overfitting. The appropriate balance between the regular‐
ization value and the number of training datasets must be achieved 
to obtain a good classifier. The other biological parameters, such as 
information related to time lapse, should be investigated in terms 
of their ability to predict live birth. Moreover, although we used 
images of blastocysts obtained at 115 or 139 hours after insemi‐
nation, further investigation might be needed to prepare datasets, 
potentially by adding time‐lapse data or images obtained at differ‐
ent times.

When the AI system we made is applied to clinical use, the con‐
fidence scores could be used to select better blastocysts among all 
blastocysts according to the value. However, it is recommended that 
the regression function, which was applied to the data distribution 
of the patients, as shown in Figure 4 and Table 4, should be used to 
estimate the probability. For example, when the confidence scores 
of images obtained from blastocysts in patients who were 35 years 
old and 42 years old are both predicted to be 0.6, the predicted 
probability applied to the data distribution of the patients’ ages was 
0.7 and 0.07, respectively (Figure 4). Because the function of the 

logistic regression model is a monotonically increasing function, the 
blastocyst can be selected based on the confidence score. However, 
the function of the logistic regression model may provide better re‐
sults in clinical practice because of the implications of the distribu‐
tion of patient data.

Ethically speaking, the AI classifier we constructed inflicts no 
harm on the blastocyst. It offers economic savings for patients and/
or clinical institutes, provides a quick and efficient diagnosis of the 
classification, and permits examination over distances. We believe 
that this AI, which is a product of the development of computer sci‐
ence, will be much more useful in biology, including reproductive 
medicine, in the near future. Further study that integrates the con‐
ventional evaluations in addition to blastocyst images in deep lean‐
ing might be conducted.

We applied deep learning with a convolutional neural network 
in the realm of AI to develop classifiers for predicting the probabil‐
ity of a live birth from a blastocyst image categorized by maternal 
age. The range of accuracy was 0.639‐0.881, and the average was 
0.763 ± 0.093 (mean ± SD). Less than a second is needed to com‐
plete the analysis of each image. This method does not harm the 
embryo, which can subsequently be transferred after the predic‐
tion is established. Although further study may be required to val‐
idate the classifiers, this system demonstrates the possibility that 
this AI could be feasible for clinical use and may provide benefits 
to both patients and medical personnel.

The contents in this manuscript were approved as a patent in 
Japan; patent 6468576.
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F I G U R E  5   Examples of original images of the blastocyst in patients aged 38‐39 y
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amendments. Informed consent was obtained from all patients for 
inclusion in the study. Additional informed consent was obtained 
from all patients for which identifying information is included in this 
article. A Web site with additional information, including an “opt‐
out” option, was set up for the study. Animal studies: No animals 
were used in this study. Approval by ethics committee: The protocol 
for the research project including human participants was approved 
by the Institutional Review Board at Okayama Couples’ Clinic (IRB 
no. 18000128‐05).
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