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Abstract
Excessive fatty acids and glucose uptake support the infiltration of adipose tissue (AT) by a variety of immune cells including
neutrophils, pro-inflammatory M1 macrophages, and mast cells (MCs). These cells promote inflammation by releasing pro-
inflammatory mediators. The involvement of MCs in AT biology is supported by their accumulation in the AT of obese
individuals along with significantly higher serum levels of MC-derived tryptase. AT-resident MCs under the influence of locally
derived adipokines such as leptin become activated and release pro-inflammatory cytokines including TNFα that worsens the
inflammatory state.MCs support angiogenesis in AT by releasing chymase and inducing preadipocyte differentiation and also the
proliferation of adipocytes through 15-deoxy-delta PGJ2/PPARγ interaction. Additionally, they contribute to the remodeling of
the AT extracellular matrix (ECM) and play a role in the recruitment and activation of leukocytes. MC degranulation has been
linked to brown adipocyte activation, and evidence indicates an important link betweenMCs and the appearance of BRITE/beige
adipocytes in white AT. Cell crosstalk betweenMCs and AT-resident cells, mainly adipocytes and immune cells, shows that these
cells play a critical role in the regulation of AT homeostasis and inflammation.
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Abbreviations
AT Adipose tissue
BMMC Bone marrow-derived mast cells
HFD High-fat diet
IR Insulin resistance
MC Mast cell
MCP-1 Monocyte chemoattractant protein-1
PPARγ Peroxisome proliferator-activated receptor-gamma
T2D Type 2 diabetes
WAT White adipose tissue
VEGF Vascular endothelial growth factor
bFGF Basic fibroblast growth factor

Introduction

Adipose tissue (AT) acts not only as an energy depot and
regulator of energy homeostasis but also as an active endo-
crine organ capable of producing hormones and adipokines
including leptin, adiponectin, TNF-α, IL-1β, IL-6, IL-8, and
monocyte chemotactic protein-1 (MCP-1), [1, 2]. Obesity is
accompanied by the accumulation of immune cells in ATafter
which they promote inflammation and negatively influence
systemic metabolism [1]. Hyperplasia and hypertrophy of
AT are two common findings during obesity through which
ATexpands in size [3]. Hypertrophy of adipocytes surrounded
by a rigid extracellular matrix (ECM) causes physical pressure
on the vasculature system that disturbs the blood flow of the
tissue to promote inflammation and fibrosis [4]. Additionally,
perivascular AT reduces arterial contraction by releasing
perivascular-derived relaxation factors [5]. Alteration of AT
residing cells during obesity has been well documented in
which neutrophils, pro-inflammatory M1 macrophages, and
mast cells (MCs) accumulate while populations including
Th2, Treg, and eosinophils (populations that support anti-
inflammatory responses and immunoregulation) are decreased
[1] (Fig . 1) . The br idging of inf lammat ion and
immunometabolism was highlighted by Hotamisligil et al. in
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1993, by showing that TNF-α has elevated levels in obese fa/
fa rats and its neutralization by a recombinant TNFR-IgG
chimeric protein resulted in a marked increase in peripheral
insulin-dependent uptake of glucose [6]. Investigations in
humans then confirmed these findings. Elevated levels of
TNF-α in obese individuals were shown to reduce during
weight loss [7].

An increasing number of researchers have reported the ac-
cumulation of MCs in AT of obese individuals [8, 9]. MCs
stimulate the release of cysteinyl cathepsins from vascular
cells and adipocytes to catabolize ECM protein fibronectin
to support adipogenesis [10]. Intraperitoneal injection of
disodium cromoglycate (DSCG; a widely used inhibitor of
MC activation and degranulation) of wild-type (WT) mice
was reported to hamper the ability to gain body weight [11].
Interestingly, recent investigations linked the positive effects
of traditional foods such as Chinese bitter melon and quercetin
(a bioflavonoid found in dietary plants) with the capability of
reducing body weight gain and insulin resistance (IR) to MC
in which using such foods reduces the infiltration of MCs in
AT and prevents the formation of an inflammatory microenvi-
ronment [12, 13]. Having a molecular understanding of the
crosstalk between AT resident and infiltrated cells including
monocytes and macrophages may shed light on better treat-
ment of obesity and related diseases such as IR and diabetes.

Mast Cell Origin, Development, and Function

MCs are cells of innate immunity that reside in tissues includ-
ing AT and produce a range of pro-inflammatory cytokines
[14]. They are granular long-lived cells that develop from
CD34+/CD117+ pluripotent progenitor cells. These precur-
sors, after being released from the bone marrow into the cir-
culation, reach different target organs through chemokine and
integrin-dependent trafficking [15, 16]. The progenitors under
the influence of growth factors, mainly stem cell factor (SCF),
differentiate and mature into functional MCs expressing
FcεRI [17]. IgE-FcεRI interaction accounts for the main MC
activation pathway through which MC degranulation occurs

Fig. 1 Adipocytes are the main cell population in AT. However, several
types of cells are commonly found in AT which their number varies in
lean and obese AT, for example, while the number of M1 macrophages,
MCs, and neutrophils increases in obesity, the number of AT resident
Th2, Treg, and eosinophils decreases. AT in obesity is infiltrated by
inflammatory cells, and the formation of crown-like structures character-
ized by circled necrotic/damaged adipocytes with macrophages is a com-
mon finding. Adipocytes not only store lipids but also release several
cytokines and adipokines that influence immune responses and hemosta-
sis of the tissue. An increase in number and the size of adipocytes sur-
rounding the vasculature system results in the formation of physical pres-
sure and consequent disruption of blood flow. MCs through inducing the
release of cysteinyl cathepsins from endothelial and adipocytes play a role
in catabolizing fibronectin
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[17]. They produce and release three categories of molecules:
(1) granule stored pre-formed mediators including histamine,
heparin, tryptase, and chymase; (2) de novo synthesized me-
diators such as PAF, PDG2, and LTB4 and LTD4; and (3)
cytokines including TNF-α, TGF-β, IL-1, IL-3, IL-5, IL-8,
and IL-10 [18]. In humans, there are two subpopulations of
MCs, namely MCTC, containing tryptase, chymase, carboxy-
peptidase, and cathepsin that can be found in connective tis-
sues and MCTwhich contain tryptase and are found mainly in
the lung and gut [17] (Fig. 2a). MCs beyond their role in
allergic reactions are involved in a variety of physiologic pro-
cesses including angiogenesis (by releasing FGF, vascular en-
dothelial growth factor (VEGF), and TGF-β) [19] and wound
healing (through releasing IL-4, VEGF, and basic fibroblast
growth factor (bFGF) [14]. Similar to other tissues, MCs re-
side in AT; however, their boosted infiltration into AT is a
common finding during obesity. They promote the formation
of an inflammatory milieu during obesity owing to their capa-
bility to release pro-inflammatory mediators [20, 21].

Adipose Tissue Structure and Biology

Although AT was initially considered an inert storage or-
gan of fat, this view changed over the past decades. It is
now defined as a highly metabolic and active tissue, which
reacts to certain chemicals and produces many adipokines
(acting as an endocrine organ) that regulates metabolism
[22]. AT is a loose connective tissue comprised of a variety
of cells mainly adipocytes which are surrounded by a ma-
trix of collagen fibers, fibroblasts, blood vessels, and im-
mune cells [23]. Excess caloric intake is accompanied by
fat deposition and growth of adipocytes followed by acti-
vation of endoplasmic reticulum stress and orchestration of
oxidative stress responses [24]. Activation of these path-
ways results in the production and release of pro-
inflammatory cytokines mainly IL-6 and TNF-α [24].
Formation of such a pro-inflammatory environment sup-
ports the activation of resident leukocytes and the infiltra-
tion of other inflammatory cells including macrophages,
neutrophils, dendritic cells, lymphocytes, and MCs [24,
25]. The ECM plays a key role in homeostasis and regula-
tion of AT. The accumulation of ECM proteins including
collagen in the early stages of obesity contributes to tissue
remodeling through which fibrosis and infiltration of pro-
inflammatory leukocytes into the AT are promoted [26].

Fig. 2 a MCs express a wide spectrum of receptors for chemokines and
cytokines. Their main receptors for IgG, IgE, and SCF are depicted. b
Adipocytes are derived from adipocyte progenitor cells. Their main
surface receptors and molecules involved in the recognition of cells are
shown. c Molecular mechanism of UCP1 in producing heat
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AT produces a wide range of adipokines that play key roles
in the regulation of glucose and lipid metabolism [27], and
their dysregulation has been linked to systemic inflammation
[28]. (Table 1).

AT of lean individuals produces and releases adipokines
with anti-inflammatory properties mainly adiponectin and
apelin while AT of obese individuals releases pro-
inflammatory cytokines such as resistin, leptin, and visfatin
[43]. Additionally, some investigations reveal the immunoreg-
ulatory properties of adipokines such as adiponectin that sup-
presses the activation of M1 macrophages while promoting the
proliferation of the M2 subtype [44]. Proliferation and differ-
entiation of preadipocytes or adipocyte progenitor cells within
the stromal vascular fraction result in the formation of the new
adipocytes [45]. Committed murine white adipocyte progeni-
tors with CD31−, CD45−, CD29+, CD34+, Sca-1+, and CD24+/
− phenotype are involved in adipogenesis [45] (Fig. 2b).

Two types of AT, namely white adipose tissue (WAT) and
brown adipose tissue (BAT), are known in human [23]. WAT
is the main energy storage tissue, whereas, BAT dissipates
energy in the form of heat and therefore plays a role in ther-
moregulation [46]. Both hypertrophy and hyperplasia of adi-
pocytes are required for normal AT expansion. There is an
approximately 8% rate of annual adipocyte turnover to match
the rates of cell death [45]. Generally, white adipocytes act as
the lipid storage units and release the stored free fatty acids
during fasting periods while their counterparts brown adipo-
cytes contribute to maintaining thermal homeostasis by burn-
ing glucose and lipids [47]. Brown adipocytes have a smaller
size in comparison with white adipocytes, and their cytoplasm
contains many smaller lipid droplets, a roundish nucleus and
spherical mitochondria [47]. There are two distinct types of
brown AT, the classical brown fat which is derived from a
myf-5+ve cellular lineage and inducible brown fat that is

Table 1 List of AT-derived adipokines and their biologic functions

Adipokine Immunobiologic function in AT Ref

Leptin Activates CD4 T cells and induce their production of TNF-α, IL-6, and IL-12
Activates MCs and induces the release of cysLTs
Hypothalamic modulator of food intake, the regulator of energy expenditure
Upregulates monocyte activation markers including CD11b, CD11c,

MHC class II, CD25, CD38, and CD69
Promotes neutrophil chemoattraction and the production of ROS
Leptin deficiency-induced obesity correlates with increased MCs in abdominal lymph nodes

[29]
[30]
[30]
[29]
[29]
[31]

Adiponectin The most abundant peptide secreted by adipocytes
Acts as a regulator of thermogenesis
Antagonizes TNF-α expression in adipocytes and macrophages
Acts through AdipoR1 (mainly expressed in skeletal muscle) and AdipoR2

(predominantly expressed in the liver)
Promote M2 macrophage polarization and improves insulin sensitivity

[23]
[32]
[29]
[23]
[33]

Lipocalin-2 (LCN2) Also known as neutrophil gelatinase-associated lipocalin (NGAL)
Upregulated in the presence of IFN-γ and TNF-α in obese individuals

[25]
[29]

Retinol-binding protein 4 (RBP4) Promotes IR and increases the T2D risk
Majority of circulating RBP4 is found in complex with retinol
RBP is a cardiometabolic marker in chronic pathologic conditions including MetS
Activates APCs

[34]
[35]
[36]
[36]

Fibroblast growth factor 21 (FGF21) Regulates glucose and fat metabolism under fasting condition
It is inactivated by fibroblast activation protein alpha (FAP-α)
Engages its receptor FGFR1 and co-receptor β-Klotho
Involved in fatty acid oxidation and lipid metabolism improves glucose tolerance

[37]
[37]
[38]
[29]

Resistin Produced mainly by macrophages and acts as an inflammatory molecule
Secreted mainly by AT in rodents and macrophages in humans
Regulates the production of TNFα and IL-6 in macrophages via activation of NF-κB signaling
Binds to TLR4

[29]
[39]
[39]
[39]

Visfatin Also known as a pre-B cell colony-enhancing factor (PBEF), involved in
chemoattraction of neutrophils

Induces the production of cytokines in monocytes
Acts through insulin receptor-1 and possesses hypoglycemic effect
Activates monocytes, promotes the secretion of IL-1β, TNF-α, and IL-6

[28]
[28]
[27]
[29]

Monocyte chemotactic protein-1 (MCP1) Mediated the infiltration of monocyte and macrophage to the site of inflammation
Its expression correlates with body BMI and adiposity

[40]

Fetuin-A Promotes IR by inhibition of insulin receptor’s tyrosine kinase activity
Mainly secreted by the liver and taken up by AT
AT secreted fetuin-A increases in metabolic syndrome

[34]
[41]
[42]
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generated in WAT from a non-myf-5 lineage [48]. Both types
of brown adipocyte express uncoupling protein 1 (UCP1) on
the inner mitochondrial membrane. The brown adipocytes
present inWATare termed BRITE (“brown inwhite”) or beige
adipocytes [46]. Relatively few beige adipocytes are detected
when animals are kept in normal vivarium conditions (22 °C).
However, upon exposure to cold temperatures, the recruitment
of beige adipocytes and also UCP1 increases [49]. The brown-
like adipocytes in WAT depots are known for their high mito-
chondrial number and elevated expression of UCP1 [50] (Fig.
2c) and like classical brown fat, are able to respond to cyclic
AMP [48]. Adipocytes express a variety of antigen-presenting
molecules and complexes through which they mediate im-
mune responses in other cell types, i.e., MHC I to mediate
CD8 T cell responses, MHC II molecules for orchestration
of CD4 T cell responses, and CD1d to present lipid antigens
(including isoglobotrihexosylceramide, β-glucosylceramide,
and plasmalogen lysophosphatidylethanolamine [51]) to
iNKTs [52].

Immune Cells Within the Adipose Tissue

Cells of Innate Immunity

Role of Monocytes and Macrophage Within AT

A distinct feature of low-grade inflammation in AT is the
formation of crown-like structures (CLS) which are syncy-
tial arrangements comprised of encircled necrotic/damaged
adipocytes with macrophages. The presence of CLS is as-
sociated with elevated levels of inflammatory mediators,
mainly TNFα and prostaglandin E2 [53]. Investigations
have revealed that these macrophages may resorb the lipid
remnants of encircled dead adipocytes and also contribute
to inflammation [54]. One difference between the two
types of white AT is the lower number of CLS present in
subcutaneous AT compared with visceral AT both in obese
and lean mice [55]. The number of F4/80+CD11b+ macro-
phages increases in obese WAT. They produce IL-6,
TNFα, and metalloproteinases (MMPs) which are associ-
ated with the development of IR and establishment of an
inflammatory microenvironment [24, 56].

Classically activated macrophages (M1) with F4/80+
CD11b+ CD11c+ iNOS+ phenotype release high levels of
pro-inflammatory cytokines including TNF-α, MCP-1, IL-
1β, IL-6, IL-12, and iNOS, whereas alternatively activated
macrophages (M2) having F4/80+CD11c-, CD301+, Arg1+,
and CD206+ phenotype produce anti-inflammatory cytokines
including IL-4, IL-10, and TGF-β1 [29]. The M2 population
is normally predominant in AT of lean mice and a shift to M1
occurs as obesity progresses [29]. Activation of the M2 pop-
ulation contributes to the upregulation of immunomodulatory

cells, mainly Tregs [57]. Macrophage-released CXCL2 which
is upregulated in obesity stimulates the adhesion of neutro-
phils to WAT endothelial cells and may accelerate their infil-
tration in AT [58]. The M2 population plays a role in clearing
and removal of non-functional adipocytes from AT and medi-
ates the recruitment of adipocyte progenitors (APs) into AT.
Clinical investigations showed that CD206+ M2-like macro-
phages crosstalk with APs through which they participate in
adipogenesis, growth/differentiation of APs, and improve in-
sulin sensitivity [59]. Arkan et al. found a macrophage asso-
ciation between inflammation and insulin resistance. They
generated a mouse lacking IκB kinase β in myeloid cells
including macrophages and reported that these mice have
higher insulin sensitivity, suggesting that inhibition of
IKK-β may be promising in the treatment of IR [60]. Very
low-density lipoprotein receptor signaling in macrophages
mediates pro-inflammatory responses and supports the polar-
ization of the M1-like phenotype, and during obesity, expres-
sion of this receptor is increased [61]. These findings support
that macrophages induce inflammation in AT [61]. The re-
cruitment of monocytes in AT is facilitated by MCP-1/CCR2
interaction [33]. Dendritic cells (CD11c+CD1c+ in human and
CD11chighF4/80low in mouse) have been reported to accumu-
late in AT during obesity and act in favor of differentiation of
Th17 cells [62]. Eosinophils play a role in metabolic homeo-
stasis by supporting the presence of M2 macrophages through
releasing IL-4 and IL-13 [63]. The mechanism of action may
include engaging PPARγ receptors expressed on M2 macro-
phages by eosinophil-derived IL-4 and IL-13 [63].

Role of Neutrophils Within AT

Neutrophils are among the first cells that infiltrate AT upon
starting a high-fat diet (HFD) in mice [64]. They can be
attracted to AT by IL-8 secreted from adipocytes and
CXCL2 secreted by macrophages [24, 58]. Neutrophil-
secreted elastase contributes to the polarization of M1 mac-
rophages via TLR-4 and degrades insulin receptor
substrate-1 which leads to decreased insulin sensitivity of
the AT [24]. Within the AT, neutrophils release pro-
inflammatory cytokines including IL-8, CCL2, MMP-9,
and myeloperoxidase which aggravate the inflammation
state [58]. Evidence for the role neutrophil activation in
obesity includes the increased expression of the activation
marker CD66b and increased circulatory neutrophil-
r e l e a s e d my e l o p e r o x i d a s e a n d c a l p r o t e c t i n .
Myeloperoxidase contributes to the development of obesi-
ty and its ablation or inhibition prevents weight gain and
IR [65]. Additionally, neutrophil-released superoxides in-
duce apoptosis and activate macrophages through which
they contribute to the formation of a pro-inflammatory
state [29]. Elastase among neutrophil-released mediators
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is of importance in inducing IR, and inhibition of elastase
improves insulin sensitivity [64].

Cells of Adaptive Immunity

Like the cells of innate immunity, orchestration of immune
responses by cells of adaptive immunity determines the me-
tabolism and biology of AT. IR is associated with increases in
cell populations with a pro-inflammatory phenotype including
Th1, Th17, CD8+ cytotoxic T cells, and B-2 over those cell
populations with regulatory properties mainly Treg and B-1a
[66]. IFNγ and IL-17 secreted by Th1 and Th17 cells, respec-
tively activate the pro-inflammatory functions of macro-
phages through the release of TNF-α, IL-6, and IL-1. In con-
trast, IL-4 and IL-13 secreted by Th2 cells induce macrophage
differentiation into the anti-inflammatory IL-10 secreting M2
subset [67]. Tregs are the predominant T cell population in AT
of lean mice; however, under HFD, their number decreases,
whereas Th1 cells increase [62]. Interaction between OX40 on
Treg and OX40L on MCs results in suppression of MC de-
granulation and FcεRI expression. IL-9 produced by Tregs
plays a role in the recruitment of MCs in AT [68] (Fig. 3).
Feuerer et al. investigated the role of Tregs in AT and IR by
inducing selective apoptosis in Tregs. For this purpose, they
used diphtheria toxin receptor (DTR) expressing mice in
which the DTR expression was under the control of the
Foxp3 promoter. Following Tregs depletion in these mice by
diphtheria toxin administration, IL-6, TNF, and RANTES ex-
pression in fat increased. They also reported elevated levels of
insulin in Treg-depletedmicewhich could be a sign of IR [56].

Adipose Tissue Residing Mast Cells

Immunostaining of AT sections for tryptase and CD117 is a
common approach used to determine the presence of MC
populations within AT [11]. MCs with their pro-
inflammatory profile of mediators promote the state of inflam-
mation and participate in apoptosis and angiogenesis and may
contribute to the progression of obesity and glucose intoler-
ance via the release of IL-6 and IFN-γ [11] (Table 2).

The MC population in adipose tissue is dynamic in nature
showing changes associated with tissue remodeling in obesity.
Both maturation and differentiation of MCs could occur in
WAT as c-Kit+Thy−1loLin−Sca+ cells found in mouse subcu-
taneous fat pads differentiate into MMCs in vitro [22, 68].
Based on the anatomical positions of fat pads such as subcu-
taneous and epididymal fat, MCs show different activity and
distribution [31]. For instance, visceral WAT of obese mice

Fig. 3 Involvement of cells of innate and adaptive immunity in the
orchestration of responses in AT. Inflammatory and anti-inflammatory
activity of M1 and M2 macrophages are shown
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shows higher numbers of MCs compared with those of lean
mice. Moreover, there is no significant difference inMC num-
ber in subcutaneous WAT between obese and lean mice [68].
Profound differences have been found when comparing MCs
in the adipose tissue at morbid obesity and after bariatric
surgery-inducedweight loss. Surprisingly, there was a dramat-
ic increase in the adipose resident MCs in the weight loss
group with a ten-fold increase in the visceral and four-fold
increase in subcutaneous adipose tissue [70]. MC-deficient
mice and MC-stabilizing agents such as disodium
cromoglycate have served to attempt to define the roles of
AT-resident MCs in obesity and IR. Additionally, pharmaceu-
tical reduction of MCs has been reported when pioglitazone, a
PPARγ agonist, was applied [4, 11].

MC Crosstalk with Cells of Adipose Tissue

During obesity, MCs accumulate in ATwhere they are distrib-
uted among adipocytes or around vessels. The contribution of
MCs to promote fibrosis has been investigated and their pres-
ence in fibrosis bundles and the proximity of fibrosis sur-
rounding vessels has been reported [8]. Within AT, MCs se-
crete mediators that influence the immune responses of sur-
rounding immune and non-immune cells. MC-released
IFN-γ, chymase, tryptase, IL-6, and cysteinyl cathepsins are
capable of activating vascular cells and adipocytes through
which they support angiogenesis and differentiation of adipo-
cytes [71]. Adipocytes release adipocytokines that may induce
a series of immune responses in surrounding cells within AT.
For instance, leptin acts on the leptin receptor expressed by
MCs and triggers the release of mediators including cysLTs
and CCL3 [30, 72]. MC mediators including IFN-γ, MMP-9,
and phospholipase A2 regulate activation of macrophages
[24]. MC-derived MCP-6 has been reported to induce colla-
gen 5 expression in AT-resident fibroblasts and plays a role in
fibrosis [69]. Prostaglandins are mediators produced by MCs
and the metabolite, 15-deoxy-delta-12,14-PGJ2 (15-deoxy-
delta PGJ2), acts as the endogenous ligand of PPARγ [73].

Tanaka et al. showed that supernatants obtained from MCs
activated by calcium ionophore contained 15-deoxy-delta
PGJ2 which induces adipogenesis of 3T3-L1 cells and prima-
ry preadipocytes [73].

Function of MC Mediators in Adipose
Tissue—Lessons from Animal Models

The observed increase in MCs in adipose tissue in obesity led
to the study of their role in metabolic dysregulation associated
with inflammation. Several different in vivo models have re-
sulted in a degree of controversy with profoundly different
phenotypes observed when different approaches have been
taken to investigate the roles of AT-resident MCs. The in-
volvement of MCs in obesity and IR has been investigated
by the in vivo application of MC stabilizers that block degran-
ulation and the release of mediators. Kumar et al. put C57BL/
6 mice on HFD to initiate a progressive glucose intolerance,
IR, and AT senescence [74]. Their flow cytometric results
showed an interesting fluctuation in AT cellularity during the
HFD diet. M1 macrophages showed a rise from nearly 1.4%
of total immune cells and reached 15.7 ± 1.5% at 20 weeks.
Eosinophils, the presence of which positively correlates to
insulin sensitivity showed a decrease from 8.7 ± 1.04% at
the early phase of 4 weeks to 5.6 ± 0.6% at 16 weeks and their
population restored at 20 weeks. FcɛRIa+MCs showed a fluc-
tuation in which their population rose from 39.5 ± 2.8% at
4 weeks and dropped in number to 27 ± 1% at 12 weeks and
then reached to 32.62 ± 1.5% at 20 weeks of HFD. To inves-
tigate the role of macrophages, they were depleted using
clodronate sodium liposomes (CLODs). Additionally, MCs
were stabilized by disodium cromoglycate sodium liposomes
(DSCGs). The strategy indicated that macrophages and MCs
are involved in the progression of obesity, AT fibrosis, and
glucose homeostasis [74]. A notable rise in serum glycerol
level in both CLOD- and DSCG-treated mice showed the
mobilization and burning of fat [74] (Fig. 4a).

Table 2 Bio-function of MC
mediators in adipose tissue
biology

MC mediator Bio-function in AT Ref

Chymase Promotes angiogenesis in AT [24]

IFN-γ Activation of AT-resident macrophages [24]

MMP-9 Activation of AT-resident macrophages [24]

Tryptase Activates PAR2 through which upregulates the expression
of inflammatory factors, such as TNF-α, IL-1β, and IL-6
in endothelial cells

[2]

MCP-6 Promotes the fibrosis in AT [69]

IL-6 Induces the inflammation in AT [8]

MCP-1 Induces the inflammation in AT [8]

TNF-α Pro-inflammatory cytokine involved in the pathogenesis of obesity, i.e., IR [31]
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Initial studies of the role of AT MCs under physiological
conditions were investigated by Ishijima et al. by assessing the
MC-deficient KitW-sh/W-sh mice [75]. These mice, due to the
presence of the W-sash (W(sh)) inversion mutation in their
white spotting (W) locus, lack the normal signaling of c-kit
tyrosine kinase when compared with wild-type Kit+/+ mice
[76]. KitW-sh/W-sh mice are fertile and non-anemic but histo-
logically lack a variety of cells mainlyMCs, melanocytes, and
interstitial cells of Cajal [77]. Body weight gain induced by
HFD was suppressed in the KitW-sh/W-sh mice compared with
the control group. Investigations of the levels of the
preadipocyte markers Pref-1, AEBP1, and GATA2 revealed
a notably higher expression in the epididymal WAT and stro-
mal vascular fraction of the MC-deficient mice comparing
with counterpart WT mice [75]. They suggested that MCs
have positive effects on the transition of preadipocytes to ma-
ture adipocytes [75] (Fig. 4b). Liu et al. to provide a line of
evidence on MC involvement in obesity investigated the ef-
fects of a 12-week Western diet. They concluded that KitW-sh/

W-sh mice gained less weight in comparison with WTcounter-
parts. Moreover, using intraperitoneal (i.p.) injections of
DSCG, they reported the positive effects of MC stabilizer to
reduce the weight gain in mice [11]. Additionally, this group
investigated the role of MC mediators in obesity progression.
They reconstituted KitW-sh/W-sh mice with bonemarrowmono-
nuclear cells (BMMCs) prepared in vitro from WT mice and
mice lackingMC cytokines IL-6 (Il6−/−), TNF-α (Tnf−/−), and
IFN-γ (Ifng−/−) and put them on Western diet for 13 weeks.
They reported that KitW-sh/W-sh mice reconstituted with WT
and Tnf−/− gained more weight when compared with non-
reconstituted mice. Interestingly, KitW-sh/W-sh mice that re-
ceivedWTand Tnf−/−BMMCs were found with higher serum
glucose levels, leptin, and insulin. They also reported that
KitW-sh/W-sh mice reconstituted with Il6−/− and Ifng−/−

BMMCs had improved glucose tolerance [11].
Although the initial studies using genetic mouse models

with c-kit mutation indicated the involvement of MCs in obe-
sity, several investigators have reported results that are incon-
sistent with these findings following the application of alter-
native genetic models. Gutierrez et al. found that Kit deficien-
cy and not the lack of MCs play a central role in metabolic
improvements when exposed to HFD. They highlighted the
role of Kit deficiency to protect the mice from HFD-induced
obesity which was due to the hematopoietic system. This
group of researchers studied the role of MCs in obesity in
two MC-deficient mice models, KitW/Wv (mice with deficien-
cy in Kit) and Cpa3Cre/+ (mice with Kit-independent MC de-
ficiency), and studied the process of obesity and IR after
employing diet-induced obesity [78]. They first fed
Cpa3Cre/+ and Cpa3+/+ (as control) with HFD and low-fat diet
for 16 weeks and reported identical weight gain in each group.
Investigation of AT of these mice showed that obese Cpa3+/+

mice had a higher number of MCs when compared with the

Fig. 4 Graphic summary of three animal models to show the involvement
ofMCs in diet-induced obesity. (WT: wild type, AT: adipose tissue, HFD:
high-fat diet, HSC:hematopoietic stem cell, CLODs: clodronate sodium
liposomes, DSCGs: disodium cromoglycate sodium liposomes, BMMCs:
Bone marrow-derived mast cells)
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lean Cpa3+/+ mice. Interestingly, the reconstitution of KitW/Wv

mice with Cpa3Cre/+ bone marrow could completely normal-
ize stem and progenitor cell compartments. Additionally,
Kit+/+ hematopoietic transplantation could reverse all the met-
abolic phenotypes of the KitW/Wv mice including weight gain
during HFD, baseline hyperglycemia, and loss of protection
from glucose tolerance [78] (Fig. 4c). An additional model of
MC deficiency has utilized a mouse line in which the Cre-
recombinase-dependent expression of diphtheria toxin is trig-
gered in cells under the control of the mast cell protease
(Mcpt) 5 promoter. Mcpt5-Cre+R-DTA+ and Cre-negative
R-DTA+ mice were subjected to HFD for 21 weeks. No dif-
ference in terms of accumulation of M1-macrophages, or up-
regulation of inflammatory cytokines including IL-1β, IL-6,
IL-10, and TNF, was reported. Furthermore, MC deficiency
had no marked differences in obesity and obesity-related dys-
regulation [79]. Although MC numbers increase upon expo-
sure to high-fat diet, the weight of evidence, taking into ac-
count the different genetic models used, indicates that the
absence of these cells does not protect from obesity and IR.
There are lines of evidence linking AT residing MCs to other
pathologic conditions. For example, periaortic perivascular
adipose tissue of patients with abdominal aortic aneurysm
was shown to be populated by leukocytes including MCs.
The presence and capability of MCs to produce pro-
inflammatory mediators could aggravate the condition [80].

Role of MC in AT Browning

There is accumulating evidence supporting a role for MCs in
the browning of white adipocytes. It has been found that re-
peated cold exposure promotes beiging of human subcutane-
ous WAT and it is associated with increases in adipose tissue
MC recruitment [9]. Recently, Finlin et al. reported that MCs
release histamine in response to cold, and this mediator in-
duces the expression of UCP1 that is capable of uncoupling
mitochondrial oxidative respiration and generating heat [81].
Such a mechanism may hamper the process of obesity by
increasing energy expenditure. A study of seasonal beiging
of human subcutaneous WAT identified a set of immune
markers that were predictive of the UCP1 gene expression.
There was a correlation with IL-4 and carboxypeptidase-A3
(CPA3), a protease that is specifically expressed by MCs [81].
As IL-4 expression was also correlated with CPA3, it could
indicate that MCs may be a source of this cytokine.
Importantly, in vitro studies found that MC degranulation
and histamine release promoted UCP1 expression and stimu-
lated lipolysis. Furthermore, histamine treatment of adipo-
cytes potently induced UCP1 protein and mRNA along with
histamine receptors. The primary mechanism of brown and
beige adipocyte activation is via the sympathetic nervous sys-
tem through norepinephrine action. Importantly, it has also

been reported that MCs express β-adrenergic receptors and
can respond to norepinephrine to degranulate and release his-
tamine [9]. BAT is highly vascularized with a complex net-
work of blood vessels, and when activated, there is an increase
in blood flow [82]. In the rat, expression of histamine H3
receptors has been found in capillaries within BAT. This raises
the possibility that histamine signaling could be involved in
the regulation of thermogenesis by acting as a vasodilator on
the endothelial cells [83].

A recent report has indicated that rather than having a
positive effect on browning of WAT, MCs have an inhib-
itory role in this process. Zhang et al. studied the process
of AT browning in Kitw-sh/w-sh and MC-stabilized (WT)
models which received a chow diet. They reported that
MC inactivation induces the proliferation of adipocyte
precursors with platelet-derived growth factor receptor A
(PDGFRα) expression, supports the beige adipocyte dif-
ferentiation, and improves the thermogenesis in subcuta-
neous AT. Gene expression analysis showed upregulation
of key brown fat genes in the subcutaneous AT of Kitw-sh/
w-sh mice compared with WT controls including Ucp1,
Cidea, and Elovl3. Immunostaining of UCP1 of subcuta-
neous AT samples obtained from Kitw-sh/w-sh mice receiv-
ing DSCG showed that they have a higher number of
UCP1+ beige cells compared with WT mice. Moreover,
considering the role of serotonin in energy balance and
AT browning and that serotonin suppresses the expression
of UCP1 [84], Zhang and colleagues investigated trypto-
phan hydroxylase 1 (TPH1) which catalyzes the produc-
tion of serotonin from tryptophan in Kitw-sh/w-sh mice and
DSCG-treated WT mice. They reported a significant sup-
pression of the enzyme in these two models in comparison
with the control group. Further investigation using WT
model receiving TPH1 inhibitor (LX1031) could support
their findings by showing that TPH1 inhibition increases
the UCP1 expression and that serotonin is capable of in-
hibition of browning in subcutaneous AT [84]. The data
from this study indicate that there is a profound browning
of the WAT in the Kitw-sh/w-sh mouse and this could help
explain the obesity resistance of the model. However, an
examination of the available microarray data on the ex-
pression of genes in AT of low-fat diet-fed KitW/Wv,
Cpa3Cre/+, and Cpa3+/+ (GEO: GSE67091, and analyzed
using GEO2R [78]) did not reveal any differences in the
levels of UCP1 or Cidea. To definitively conclude that
browning is associated with loss of MCs within the AT
will require further investigations using alternative genetic
models that are not dependent on c-kit mutations. There is
a wide range of evidence supporting the role of MCs in
the browning of adipose tissue. However, further research
is required to fully understand the actions of MCs in white
AT and MC-derived histamine in BAT and beige fat
activation.
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Discussion and Conclusion

MCs in addition to orchestrating the inflammatory responses
in AT during the progression of obesity influence adipocyte
reaction to physical changes such as beiging in response to
cold to promote the thermogenesis [9]. The molecular mech-
anisms by which MCs respond to environmental physical
changes have not been completely understood. In addition to
a heterogeneous population of AT-resident cells, their inter-
play and similarity in expression of several receptors make
AT immunobiology much more complicated. In this regard,
expression of PAR2 (a G protein-coupled receptor which acts
as a receptor for MC-released tryptase [14]) by not only adi-
pocytes but also other AT-resident cells, including macro-
phages, makes the role of this receptor in AT biology in re-
sponse to MC-released tryptase even more complex.
Interestingly, even the expression levels of PAR2 vary among
different strains of mice which are widely used in AT biology-
related investigations. For example, ob/ob mice have signifi-
cantly higher levels of PAR2 receptors in comparison with
C57BL/6J (C57) mice [2]. Overexpression of PAR2 in AT
during obesity and the possibility of blocking it by antagonists
makes it a potential biomarker and pharmaceutical target in
controlling obesity. In this regard, Lim et al. used GB88, a
novel PAR2 antagonist in rats, and reported its benefits in
attenuation of adiposity, AT inflammation, and reducing infil-
tration of macrophages and MCs [85]. Further investigation is
needed to reveal the complex interaction of MCs and other
AT-resident cells.

Recent studies aimed to clarify that the MC-adipocyte in-
teractions have provided promising results in MC biology. In
this regard, Paupert et al. developed a method to generate pure
and functional human MCs in 3 weeks from AT. They cul-
tured the stromal vascular fraction of AT as spheroids in
serum-free medium enriched with SCF. Obtained human
MCs were able to degranulate in the presence of IgE, C5a,
substance P, and compound 48/80 and could produce prosta-
glandins, TNF-α, IL-6, GM-CSF, chymase, tryptase, and
CPA3. These AT-derivedMCs had the advantages of available
MC lines due to expressing FCεRI (unlike HMC-1 cells) or
responding to SCF (unlike LUVA cells) [86]. MC ablation or
stabilization due to the reported results may be promising
strategies to control obesity and IR. There is compelling evi-
dence implying the promising effects of using MC stabilizers
in controlling obesity and induced diabetes in rodent models.
However, only a small number of papers have reported such
investigations in humans. In this regard, El-Haggar et al. stud-
ied ketotifen (a commonMC stabilizer) in obese patients with
T2D treated with glimepiride. They concluded that co-
administration of ketotifen twice daily with glimepiride alle-
viates glycemic and inflammatory processes in treated obese
individuals with T2D [87]. Additionally, the exact role of
MCs in the pathology of metabolic syndrome (MetS) needs

to be investigated. Most recently, Gurung et al. provided a line
of evidence that subcutaneous adipose tissue (SAT) residing
MCs of individuals with MetS may contribute to insulin re-
sistance. Their results showed that the numbers of MCs (1)
increase in SAT of the studied individuals and (2) positively
correlate with IR in AT and the levels of glucose [88].

Although an overview of findings indicates that the ab-
sence of MCs does not prevent obesity, investigations aimed
to reveal the interactions of MCs, and adipocytes show that
MCs accumulate in AT of obese individuals including both
mouse models and humans. Moreover, AT-resident MCs un-
der the influence of AT-derived cytokines become activated
and release pro-inflammatory cytokines that worsen the in-
flammatory state. Besides, MCs play a role in the remodeling
of AT ECM and contribute to the recruitment of leukocytes
with inflammatory activity. Further investigations are required
to fully define the crosstalk between MCs and other AT-
resident cells and how this affects inflammation, energy ho-
meostasis, and induction of beige adipocytes.
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