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Quantifying accuracy and heterogeneity in
single-molecule super-resolution microscopy
Hesam Mazidi1, Tianben Ding 1, Arye Nehorai1 & Matthew D. Lew 1✉

The resolution and accuracy of single-molecule localization microscopes (SMLMs) are rou-

tinely benchmarked using simulated data, calibration rulers, or comparisons to secondary

imaging modalities. However, these methods cannot quantify the nanoscale accuracy of an

arbitrary SMLM dataset. Here, we show that by computing localization stability under a well-

chosen perturbation with accurate knowledge of the imaging system, we can robustly

measure the confidence of individual localizations without ground-truth knowledge of the

sample. We demonstrate that our method, termed Wasserstein-induced flux (WIF), mea-

sures the accuracy of various reconstruction algorithms directly on experimental 2D and 3D

data of microtubules and amyloid fibrils. We further show that WIF confidences can be used

to evaluate the mismatch between computational models and imaging data, enhance the

accuracy and resolution of reconstructed structures, and discover hidden molecular het-

erogeneities. As a computational methodology, WIF is broadly applicable to any SMLM

dataset, imaging system, and localization algorithm.
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S ingle-molecule localization microscopy (SMLM) has
become an important tool for resolving nanoscale structures
and answering fundamental questions in biology1–3 and

materials science4,5. SMLM uses repeated localizations of blinking
fluorescent molecules to reconstruct high-resolution images of a
target structure. In this way, quasi-static features of the sample
are estimated from noisy individual images captured from a
fluorescence microscope. These quantities, such as fluorophore
positions (i.e., a map of fluorophore density), blinking on times,
emission wavelengths, and orientations, influence the random
blinking events that are captured within an SMLM dataset. By
using a mathematical model of the microscope, SMLM recon-
struction algorithms seek to estimate the most likely set of
fluorophore positions and brightnesses (i.e., a super-resolution
image) that is consistent with the observed noisy images.

A key question left unresolved by existing SMLM methodol-
ogies is: How well do the SMLM data, i.e., the images of blinking
single molecules (SMs), support the super-resolved image pro-
duced by an algorithm? That is, what is our statistical confidence
in each localization? Intuitively, one’s interpretation of an SMLM
reconstruction could dramatically change by knowing how
trustworthy each localization is.

Existing metrics for assessing SMLM image quality can be
categorized broadly into two classes: those that require knowledge
of the ground-truth positions of fluorophores (e.g., Jaccard index
and imaging DNA calibration rulers)6–9, and those that operate
directly on SMLM reconstructions alone, possibly incorporating
information from other measurements (e.g., diffraction-limited
imaging)10–12.

While these methods are able to provide summary or aggregate
measures of performance, none of them directly measure the
accuracy of individual localizations in an arbitrary SMLM dataset.
Such knowledge is critical for harnessing fully the power of
SMLM for scientific discovery.

Here, we leverage two fundamental insights of the SMLM
measurement process: (1) we possess highly accurate mathema-
tical models of the imaging system, and (2) we know the precise
statistics of the noise within each image. Our proposed compu-
tational method, termed Wasserstein-induced flux (WIF), uses
this knowledge to assess quantitatively the confidence of each
individual localization within an SMLM dataset without knowl-
edge of the ground-truth. Localizations with high confidences
indicate that their positions and brightnesses are accurate and
precise and thus lead to improved image resolution, while those
with low confidences exhibit inaccuracies, poor precision, or both
and lead to poor resolution and image artifacts. With these
confidences in hand, the experimenter may filter unreliable
localizations from SMLM images without removing accurate ones
necessary to resolve fine features. These confidences may also be
used to detect mismatches in the mathematical imaging model
that create image artifacts13, such as misfocusing of the micro-
scope, dipole-induced localization errors14, and the presence of
optical aberrations15,16.

Results
Measuring localization confidence via Wasserstein-induced
flux. In contrast to Poisson shot noise, which degrades the
achievable measurement precision, modeling errors arising from
the sample, microscope, and SMLM software (e.g., isotropic vs.
dipole-like emission, dense SM blinking, optical aberrations, and
sub-optimal software parameters) can cause inaccuracies per
localization beyond intrinsic errors from shot noise, thereby
degrading image resolution and introducing imaging artifacts. As
these confounding effects are often hidden or difficult to detect,
we must somehow estimate the degree of uncertainty or

confidence of each localization. Our key observation is that
unreliable localizations, i.e., a set of SM position and brightness
estimates, are unstable upon a well-chosen computational per-
turbation17. To leverage this mathematical principle, we develop a
computational imaging algorithm consisting of two stages. In the
first stage, we perturb each localization (Fig. 1a) by dividing its
photons among eight adjacent positions with equal brightnesses
(Fig. 1b, “Methods”). Next, we solve a regularized transport
problem, which basically computes how the perturbed sources
move while minimizing the regularized negative log likelihood
(Fig. 1b, “Methods”). In order to estimate the stability of a
localization, we measure the degree of photon flux that returns
toward the original localization from the perturbed positions
(Fig. 1, “Methods”). Normalized from −1 (least confidence) to 1
(highest confidence), we call this quantity WIF, as it has an ele-
gant connection to Wasserstein gradient flows (Supplementary
Note 1)18. Consider when half of the perturbed sources exhibit
transport trajectories that equally converge and diverge from the
original estimate, and thus contribute a net zero to the flux, while
the remaining converge toward the original localization: in this
case, WIF approaches 0.5, and our confidence in the localization
is half as certain. Thus, we interpret WIF= 0.5 as a threshold for
detecting inaccurate localizations (Supplementary Fig. 2), but
others may be chosen depending on a specific imaging task.

Quantifying subtle model mismatches in SMLM is a challen-
ging problem. For 2D SMLM, the fitted width σ̂ of the standard
point-spread function (PSF) is commonly used; if σ̂ is
significantly smaller or larger than the expected width of the
fitted PSF, then the corresponding localization is deemed to have
low confidence. To test this metric, we analyzed images of an SM
and two closely spaced molecules (70 nm separation) whose
images overlap. In both scenarios, SMLM algorithms always
detect only one molecule, such that in the latter, the estimated
positions exhibit significant deviations from the true ones (Fig. 1c,
d). However, the distributions of σ̂ in both cases are virtually
identical, suggesting that simple perturbations to the PSF, e.g., a
change in σ̂, are insufficient for detecting errors due to
overlapping molecules. More fundamentally, mismatches in
SMLM between model and measurement generally cannot be
quantified via simple image-based features such as PSF width. For
example, when localizing a dipole emitter (e.g., a fluorescent SM)
defocused by 200 nm, its anisotropic emission pattern induces a
significant bias in the estimated positions. The distribution of
fitted widths is noisy due to photon-shot noise and broadening of
the PSF (Fig. 1e). Interestingly, these fitted widths are comparable
to those of a dim molecule with an isotropic emission pattern,
whose localizations have no systematic bias (Fig. 1f). In contrast,
we see that when the estimated localizations are close to the
ground-truth positions, their estimated confidences or WIFs are
concentrated close to 1 (Fig. 1c, f). On the other hand, for
inaccurate estimates, localization confidences become signifi-
cantly smaller, indicating their unreliability (Fig. 1d, e). Note that
knowledge of the ground-truth molecule location is not needed to
compute these confidence values.

WIF computes the consistency of a set of localizations with
respect to the raw SMLM data and a given PSF model, which can
be estimated directly from experimental images of SMs or from a
calibration dataset (see “Methods”). To assess the performance of
WIF for detecting model mismatch, and thus localization errors,
we simulate images of fluorescent molecules, generated using a
vectorial image-formation model19, with perturbations to various
hidden sample parameters such as defocus, molecular rotational
diffusion, and sample refractive index (Supplementary Note 6 and
“Methods”). To compute WIF, we set the 2D PSF model to that of
an isotropic emitter at zero defocus. We observe that WIF
provides a consistent and reliable measure of localization
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confidence in the presence of experimental mismatches for a
broad range of molecular brightness (Supplementary Figs. 4–8
and Supplementary Note 6). Notably, confounding factors (e.g., a
defocused dipole-like emitter) may cause estimates of PSF width
to appear unbiased, while our WIF metric consistently detects
these image distortions, yielding small confidence values
(Supplementary Figs. 7, 8) and producing a quantitative,
interpretable measure of image trustworthiness. Moreover, in
the case of 3D SMLM, we have found that WIF reliably detects

errors in axial localization caused by index mismatch-induced
PSF aberrations (Supplementary Fig. 9).

Next, we characterize the impact of signal-to-noise ratio (SNR)
on WIF’s sensitivity to detect and quantify position errors. Here,
we define (peak) SNR as the ratio of the number of photons (ssig)
in the brightest pixel of a PSF to the square root of the sum of ssig
and the detected background photons in that pixel20. Intuitively,
we expect that as SNR decreases, the likelihood landscape
becomes increasingly rough and uninformative; severe noise will
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Fig. 1 Quantifying confidence in single-molecule localization microscopy (SMLM). a Left: Simulated image of a single molecule (SM, position denoted by
red triangle) with isotropic emission. Right: Localization (orange circle) refers to a position r̂1 and brightness ŝ1 estimate returned by an SMLM algorithm.
b Proposed confidence quantification framework. Localizations are represented as positions and brightnesses referenced to a grid without loss of generality
(pale blue squares, “Methods”). Left: A perturbation divides the photons of each estimated source molecule equally across eight neighboring grid points
with brightnesses ŝ½1;j� at positions r̂½1;j� . Middle: The perturbed source molecules are fed to a regularized transport optimization algorithm that minimizes a
regularized negative log likelihood using its own PSF model, resulting in transport trajectories Δ~r½1;j�. Wasserstein-induced flux (WIF) measures the
normalized amount of inward photon flux from the neighboring perturbed source molecules, taking values from −1 (least confidence) to 1 (highest
confidence). c–f Examples of localizing and quantifying confidence. c 100 simulated images of an isotropic, in-focus SM analyzed by ThunderSTORM (TS).
Scatter plot: localizations (black dots) and true positions of the molecules (red triangles). Gray histogram: fitted widths of the PSF (σ̂) estimated by TS.
Magenta histogram: estimated WIF confidences using the proposed method. d Similar to (c) but for two molecules separated by 70 nm. e Similar to (c) but
for a dipole-like molecule defocused by 200 nm. f Similar to (c) but for a dim isotropic molecule in focus. Color bars: a, c, d and e, f photons per 58.5 × 58.5
nm2. Scale bars: a and f left: 500 nm, f right: 50 nm.
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cause the regularized transport process to prefer sparser solutions
whose transport trajectories return toward the position of the
original estimate. In particular, position errors that are compar-
able to the achievable localization precision, especially at low
SNRs, may not be detected by WIF (Supplementary Fig. 10a).
However, when the position error is beyond three times the
achievable localization precision (error >3× the square root of the
Cramér−Rao bound), WIF is able to detect inaccurate localiza-
tions with accuracy greater than 80% (Supplementary Fig. 10b, c).
We also measured how well WIF detects errors in expected
brightness due to aberrations in the PSF; WIF confidences fall
significantly below 0.5 as the brightness error becomes much
larger than the achievable brightness precision (Supplementary
Fig. 11). We also observe that WIF is more sensitive to brightness
errors due to astigmatism versus defocus (Supplementary Fig. 11a,
c). This effect may arise from the higher effective SNR of the
astigmatic images and the asymmetric distortion of the astigmatic
PSF (Supplementary Fig. 11g, h), both of which contribute to
transport trajectories that significantly deviate from the original
localization (Supplementary Fig. 11e, f). We stress that WIF
detects these errors without prior assumptions on the source of
the error or statistical averaging over many localizations.

Since WIF depends on the log likelihood function, the
statistical distribution of our confidence estimates (e.g., those
shown in Fig. 1) depends on SNR and the degree of model
mismatch or error in the original localization. That is, both shot
noise and localization errors will affect individual WIF estimates,
as well as their mean and standard deviation over many
measurements (Fig. 1c−f). Interestingly, we see that when the
SNR is low, the width of the WIF distribution is wider for
inaccurate localizations than that for accurate ones (Fig. 1e vs.
Fig. 1f). Therefore, we can use estimates of WIF’s stability or
precision, especially at low SNRs, to further improve WIF’s error-
detection capability. Intuitively, if a localization is unreliable
under a low SNR, its likelihood landscape should be locally rough
and thus exhibit various local minima. Thus, if we allow
perturbed sources to explore various regions around the
estimated source (by testing a variety of optimization con-
straints), then we expect heterogeneous WIF estimates for
inaccurate localizations under low SNR. In contrast, we expect
WIF to be less sensitive to changes in the constraint for both
accurate and inaccurate localizations under high SNR (Supple-
mentary Figs. 12, 13).

We estimate WIFs for a range of constraints (or equivalently
regularizer strengths ν) and compute the median and median
absolute deviation (MAD) statistics (Supplementary Note 3),
which are more robust to outliers than mean and standard
deviation. A confidence interval then can be constructed for the
estimated WIF by approximating the WIF variance as
1.48× MAD. For the largely inaccurate localizations of a fixed,
defocused dipole (Fig. 1e), remarkably, we find that using
thresholds on both the median and (MAD) standard deviation
of WIF (median threshold of 0.5 and std. dev. threshold of 0.1)
can detect inaccurate localizations with an accuracy of 84%
(Supplementary Fig. 14). We note that although using the
standard deviation of WIF improves detecting inaccurate
localizations at low SNRs, it comes with a cost of computing
multiple WIFs, which could be computationally expensive. In
addition, at typical SMLM SNRs, WIFs computed based on a
single constraint adequately quantify localization inaccuracies.

Next, we consider the behavior of WIF for two closely located
molecules at various separation distances. When their separation
distance is small (70 nm), the localizations’ WIF values are
significantly smaller than one (Supplementary Fig. 15a). These
low values directly arise from diverging transport trajectories of
the perturbed sources (Supplementary Fig. 15h), signaling that

the original localizations have large biases. On the other hand,
when the molecules are well separated (280 nm), the trajectories
return toward the original localizations, and thus we observe high
WIF confidences (Supplementary Fig. 15i, j).

To consider more complex scenarios, we analyze a typical
SMLM dataset of stochastically blinking molecules simulated
using an ideal imaging model, i.e, with no mismatch (Supple-
mentary Note 8 and “Methods”). We propose average confidence
WIFavg as a novel metric for quantifying the collective accuracy of
localizations returned by an algorithm: WIFavg ≜ 1

N

PN
i¼1 ci, where

N and ci denote the number of localizations and the confidence of
the ith localization, respectively. As a demonstration at various
blinking densities (number of molecules per μm2; see “Methods”),
we compare the performance of three algorithms, RoSE7, a
sparsity-promoting maximum likelihood estimator (MLE); FAL-
CON21, another sparse deconvolution algorithm with a different
formulation; and ThunderSTORM (TS)22, which uses local peak
detection followed by MLE (Supplementary Fig. 16a, b). For
RoSE, FALCON, and TS, we observe excellent agreement between
WIFavg and the Jaccard index (“Methods”), which identifies
accurate localizations using the ground-truth molecule positions,
for densities as high as 5 mol μm−2 (Supplementary Fig. 16c). In
addition, by removing localizations with poor confidence, we gain
a significant increase in detection precision as high as 180% for
TS and 23% for RoSE (density= 9 mol μm−2, Supplementary
Fig. 16d). Remarkably, these improvements come with a
negligible loss in detection performance (13% drop in recall in
the worst case) across all densities for all algorithms (Supple-
mentary Fig. 16e). These observations consistently hold for 3D
datasets as well (Supplementary Fig. 17). We further used WIF to
construct a confidence map of localizations for a synthetic
benchmark high-density (HD) SMLM dataset6. In contrast to
other error metrics, the WIF confidence map enables us to
discriminate specific SM localizations that are trustworthy, while
also assigning low confidence values to those that are not, thereby
maximizing the utility of SMLM datasets without throwing away
useful localizations (Supplementary Fig. 18).

Calibrating and validating WIF using SMLM of microtubules.
A super-resolution dataset often contains well-isolated images of
molecules, e.g., after a significant portion of them are bleached.
These images can therefore serve as a useful internal control,
taken under realistic conditions, to assess the performance of a
PSF model as well as SMLM algorithms themselves on a parti-
cular dataset. As a practical example, we examine an SMLM
dataset of blinking Alexa Fluor 647-labeled microtubules
(“Methods”). We randomly selected 600 images of bright mole-
cules sampled over the entire field of view (Fig. 2a). We used an
ideal PSF model to localize these molecules using RoSE, but found
that the mean confidence of these localizations is notably small
(WIFavg=−0.36), implying the presence of significant aberra-
tions and PSF model mismatch (Supplementary Fig. 19). We
therefore calibrated our physics-based PSF model in both the
localization and confidence measurement steps and re-analyzed
the data (“Methods”). After calibration, the estimated confidences
of RoSE’s localizations show a notable average increase of 0.79
(WIFavg= 0.43). We also observe a rather broad distribution of
confidences, suggesting that optical aberrations, such as defocus,
vary throughout the structure (Supplementary Fig. 19). We fur-
ther observe that RoSE’s use of this calibrated PSF produces
localizations with higher confidence values (WIFavg= 0.43)
compared to TS’s use of an elliptical Gaussian PSF (WIFavg=
0.15) (Fig. 2a). The higher average confidence score for RoSE
suggests that it should recover the underlying structure with
greater accuracy compared to TS.
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We confirm the reliability of our WIF confidence metric, in the
absence of the ground-truth, through its correlation with the
perceived quality of the super-resolution reconstructions (Fig. 2b).
We expect more confident localizations to result in an image with
greater resolution, whereas localizations with poor confidence
should fail to resolve fine details and could potentially distort the
structure. Within a region containing a few parallel and well-
separated microtubules, we see similar confidences for both
algorithms (Fig. 2h) resulting in images of similar quality (Fig. 2f,
g). Conversely, for a region with intersecting microtubules, we
observe marked qualitative and quantitative differences between
the two reconstructions (Fig. 2c, d). RoSE is able to resolve
structural details near the intersections, while the TS image

contains missing and blurred localizations near the crossing
points. Moreover, RoSE recovers the curved microtubule
faithfully, whereas TS fails to reconstruct its central part (lower
red arrow in Fig. 2c, d). Quantitatively, RoSE exhibits significantly
greater confidence in its localizations compared to TS, which
shows negative confidences for an appreciable number of
localizations (Fig. 2e). This confidence gap is likely caused by
hidden or unmodeled parameters within the data, such as high
blinking density.

Three-dimensional SMLM datasets, especially those obtained
using engineered PSFs, pose several challenges for localization
algorithms, including mismatches between ideal and experimental
PSFs, frequently overlapping SM images arising from dense 3D
structures, and spatially and temporally varying background
(Fig. 3a). Here, we further validate the usefulness of WIF in
quantifying the accuracy of 3D PSF models and algorithms. We first
built a 3D PSF model from a z-stack of bright fluorescent beads
imaged with the Double-Helix PSF (DHPSF)23, using optimal-
transport (OT)-based interpolation to align multiple beads in a
field-of-view (“Methods”). We found that OT interpolation
substantially improves WIFs compared to pupil-based phase
retrieval (Supplementary Note 9) and that WIF is correlated with
the accuracy of the beads’ estimated positions (Supplementary
Fig. 21). Our experimentally derived PSF also accurately modeled
isolated images of Alexa Fluor 647 molecules attached to
microtubules (mean confidence= 0.71, Supplementary Fig. 22b, c).

Next, we analyzed 3D SMLM images of a complex microtubule
network spanning a 1-μm axial range (Fig. 3a) using two
algorithms, RoSE and Easy-DHPSF24. Interestingly, WIF revealed
a degradation in RoSE’s performance when DHPSF images
overlapped frequently (mean and median WIFs of 0.42 and 0.52
respectively, Supplementary Fig. 22f). We inferred that model
mismatch induced fitting instability within RoSE, and we
optimized its iterative fitting scheme to significantly increase
WIF performance (mean and median WIFs of 0.69 and 0.8
respectively, Supplementary Fig. 22g, Supplementary Note 4).

We compared the performance of RoSE and Easy-DHPSF by
randomly selecting 500 raw SMLM frames (corresponding to
2,425 of the 48,445 localizations plotted in Fig. 3c, d) and
computing the corresponding WIFs. Notably, we see that RoSE
has appreciably higher WIFs (mean and median of 0.66 and 0.78)
compared to Easy-DHPSF (mean and median of 0.45 and 0.61)
(Fig. 3b). Indeed, these higher WIFs are consistent with the
superior perceived quality of RoSE’s reconstruction (Fig. 3d)
compared to that of Easy-DHPSF (Fig. 3c). In particular, in a
region with an isolated microtubule (region 1), both algorithms
reveal the circular cross-section of the microtubule (Fig. 3e);
however, RoSE’s localizations exhibit slightly higher precision
along the z axis (Supplementary Fig. 23). Moreover, in a dense
region (region 2), multiple crossing microtubules are clearly
resolved in RoSE’s localizations (Fig. 3f). In terms of WIF, we see
that RoSE’s WIFs in region 1 (mean 0.71 and median 0.87)
slightly outperform those of Easy-DHPSF (mean 0.7 and median
0.76), while in region 2, RoSE’s WIF distribution (mean 0.62 and
median 0.74) has dramatically better confidence than that of
Easy-DHPSF (mean 0.38 and median 0.43). Further, we observe
that regions with high WIF scores consistently show better image
quality (Supplementary Fig. 24); for example, the reconstructed
microtubule in region 1 appears to be narrower than those in
region 2, which is reflected in the superior WIFs for both
algorithms (Fig. 3).

Overall, these data indicate that WIF detects sub-optimal PSF
models and algorithms directly from experimental SMLM data,
obviating the need to know the ground-truth structure. Unlike
correlation-based resolution metrics, relatively few imaging
frames are required (e.g., only a few hundred) to meaningfully
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Fig. 2 Comparison of 2D SMLM algorithms on experimental images of
Alexa Fluor 647-labeled microtubules. a Left: isolated images of Alexa
Fluor 647 molecules. Right: localization confidences for 600 isolated
molecules using RoSE (red) and TS (green). b SMLM image of microtubules
recovered by RoSE. c, d Enlarged top-left region in (b) for RoSE and TS,
respectively. e Histogram of confidences corresponding to localizations in
(c) and (d) for RoSE (red) and TS (green), respectively. f, g Similar to (c, d)
but for the middle-right region in (b). h Similar to (e) but for localizations in
(f) and (g). Color bars: a photons detected per 160 × 160 nm2, b number of
localizations per 40 × 40 nm2. Scale bars: a 500 nm, b 1 μm, and g 500 nm.
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quantify the performance of localization algorithms on individual
localizations and subregions within SMLM reconstructions.

Quantifying algorithmic robustness and molecular hetero-
geneity. Next, we used WIF to characterize algorithmic perfor-
mance for transient amyloid binding (TAB)25,26 imaging of
amyloid fibrils (“Methods”). Here, the relatively large shot noise
in images of Nile red (<1000 photons per frame) tests the
robustness of three distinct algorithms: TS with weighted-least
squares (WLS) using a weighted Gaussian noise model; TS with
maximum likelihood estimation (MLE) using a Poisson noise
model; and RoSE, which uses a Poisson noise model but also is
robust to image overlap.

Qualitative and quantitative differences are readily noticeable
between reconstructed images, particularly where the fibrillar
bundle unwinds (Fig. 4a–c, insets). We attribute the poor
localization of WLS, exemplified by broadening of the fibrils
(40 nm full-width at half-maximum [FWHM] of the well-
resolved region within the dashed white box, Fig. 4a), to its lack
of robustness to shot noise. By using instead a Poisson noise
model, MLE recovers marginally thinner (39 nm FWHM) and
better resolved fibrils, but struggles to resolve fibrils at the top end
of the structure (Fig. 4b, e). This inefficiency is probably due to
algorithmic failure on images containing overlapping molecules.
In contrast, RoSE localizations have greater precision and
accuracy (27 nm FWHM), thereby enabling the parallel
unbundled filaments to be resolved (Fig. 4c, f). These perceived
image qualities are reliably quantified via WIF. Indeed, RoSE
localizations show the greatest confidence of the three algorithms
with WIFavg= 0.78 while WLS shows a low WIFavg of 0.18,
attesting to their excellent and poor recovery, respectively
(Fig. 4g–i). Interestingly, we found that, in terms of FRC10, RoSE
has only 3% better resolution compared to MLE.

To further confirm that WIF is a reliable measure of accuracy
at the single-molecule level, we filtered out all localizations with

confidence smaller than 0.5. Remarkably, filtered reconstructions
from all three algorithms appear to resolve unbundled fibrils
(Fig. 4j–l and Supplementary Figs. 25c, 26c).

In contrast, filtering based on estimated PSF width produces
sub-optimal results. Notably, retaining MLE localizations within a
strict width range W1∈ [90, 110 nm] improves filament resolva-
bility at the cost of compromising sampling continuity (Supple-
mentary Fig. 25a). For a slightly larger range, W2∈ [70, 130 nm],
the filtering is ineffective and the fibrils are not well resolved
(Supplementary Fig. 25b). Similarly, using estimated localization
precision27 as a filter, which is largely equivalent to using the
estimated SM brightness, removes many useful localizations while
also retaining bridging artifacts between individual fibers
(Supplementary Figs. 26a, b).

A powerful feature of WIF is its ability to quantify an arbitrary
discrepancy between a computational imaging model and SMLM
measurements. This property is particularly useful since hidden
physical parameters, which may be difficult to model accurately,
can induce perturbations in the observed PSF. Therefore, we can
use WIF to interrogate variations in the interactions of Nile red
with amyloid fibrils that are encoded as subtle features within
SMLM images. To demonstrate this capability, we analyzed TAB
datasets using RoSE and calculated the WIFs of localizations with
>400 detected photons (Fig. 5). Interestingly, WIF density plots
reveal heterogeneous regions along both fibrils. Specifically, for
segments of fibrils that are oriented away from the vertical axis,
we see a larger fraction of localizations that have low confidence
(<0.5) compared to regions that are vertically oriented (Fig. 5a, b).
Quantitatively, the upper regions of two fibrils have 17% (Fig. 5c)
and 37% (Fig. 5d) more localizations with confidence >0.8
compared to the bottom regions.

To examine the origin of this heterogeneity, we directly
compare observed PSFs from high- and low-confidence regions.
Curiously, PSFs in the bottom regions are slightly elongated along
an axis parallel to the fibril itself, whereas PSFs from the top
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Fig. 3 Comparison of 3D SMLM algorithms on experimental images of Alexa Fluor 647-labeled microtubules. a Representative imaging frame of blinking
SMs using the DHPSF. b Histogram of confidences of the Easy-DHPSF algorithm (green) and RoSE (red) corresponding to 500 randomly chosen frames
from the 10,718-frame dataset. c 3D SMLM image of Easy-DHPSF localizations with apparent brightness greater than 1300 photons, color-coded as a
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(c) (window width= 492 nm) corresponding to Easy-DHPSF (green) and RoSE (red). f Similar to (e), but for the dotted line (2) in (c) (window width=
726 nm). Color bars: a photons detected per 160 × 160 nm2, c, d depth (nm), e localization density per 15 × 15 nm2, f localization density per 20 × 20 nm2.
Scale bars: a, d 1 μm, e 100 nm, and f 200 nm.
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regions better match our model (Supplementary Fig. 27). These
features may be attributed to specific binding orientations of Nile
red molecules to amyloid fibrils26,28–30 in TAB imaging. We note
that instrument aberrations may introduce confounding errors
when uncovering the true source of heterogeneity. Therefore,
when using WIF to detect the source of heterogeneity, e.g.,
alignment of molecules w.r.t. amyloid fibrils, it may be necessary
to calibrate the PSF over the field-of-view.

Discussion
WIF is a computational tool that utilizes mathematical models of
the imaging system and measurement noise to measure the

statistical confidence of each localization within an SMLM image.
We used WIF to benchmark the accuracy of SMLM algorithms
on a variety of simulated and experimental datasets. We also
demonstrated WIF for analyzing how sample non-idealities affect
reconstruction accuracy. Intuitively, low signal to noise ratios
make the detection of minor model mismatches, such as defocus,
comparatively difficult (Supplementary Fig. 6). While WIF has
excellent sensitivity for detecting overlapping molecules (Fig. 1d),
dipole-like emission patterns (Fig. 1e and Supplementary Figs. 7,
8), and sub-optimal localization algorithms (Fig. 3 and Supple-
mentary Fig. 15), WIF cannot explain the source of low con-
fidence values that cause localization inaccuracies or
heterogeneities; rather, it detects and quantifies these effects
without needing knowledge of a specific mismatch to search for.
Nonetheless, the geometry of the transport trajectories themselves
can provide insight into the specific mismatch observed in the
data (Supplementary Fig. 11).

WIF exhibits several advantages over existing methods for
quantifying reconstruction accuracy in experimental SMLM.
First, WIF does not require labeled training data to judge the
trustworthiness of predetermined image features; a model of
the imaging system PSF and statistical noise suffices (see Sup-
plementary Fig. 29 and Supplementary Note 3 for an example
of how mismatch in the noise model leads to inconsistent
WIF scores), which can be obtained through calibration
techniques16,31–33. Second, it does not need ground-truth
knowledge of SM positions, which would be prohibitive in most
SMLM applications. Third, it obviates the need to align SMLM
images to a secondary imaging modality for comparison and is
therefore more robust than such approaches. More fundamen-
tally, WIF exploits a unique property of SMLM compared to
other non-SM super-resolution optical methodologies (e.g.,
structured illumination, RESOLFT, and STED); imaging the
entirety (peak and spatial decay) of each SM PSF synergistically
creates well-behaved gradient flows along the likelihood surface
that are used in computing WIF. Finally, computing mismatches
in image space (e.g., PSF width in Fig. 1c–f) is insensitive to
molecular overlap, defocus, and dipole emission artifacts without
assuming strong statistical priors on the spatial distribution of
molecules or a simplified PSF34.
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accuracy in SMLM of amyloid fibrils. Super-resolution image of twisted
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WIF can be used for online tuning of parameters (e.g., acti-
vation density and imaging buffer conditions) during an experi-
ment to maximize imaging accuracy and resolution. It also offers
a reliable means to detect otherwise hidden properties of the
sample of interest, such as molecular orientation shown here,
allowing for the discovery of new biophysical and biochemical
phenomena at the nanoscale. While a majority of neural network
training methods in SMLM utilize simulated data35 or experi-
mental data assuming a perfectly matched model36, the dis-
criminative power of WIF may enable these networks to be
trained robustly on experimental data in the presence of mis-
matches stemming from hidden parameters37.

WIF represents an advance in statistical quantification in image
science38, where the reliability of each quantitative feature within
a scientific image can now be evaluated. The benefits of inte-
grating WIF into downstream analysis39 (e.g., SM clustering,
counting, and co-localization) and even in other imaging mod-
alities (e.g., spectroscopy, astronomical imaging, positron emis-
sion tomography, and computed tomography) are exciting
opportunities yet to be explored.

Methods
Definitions and notations. In this section we define terms used in deriving and
computing WIF.

Notations. We represent vectorial quantities in bold. For a vector v, we denote its
Euclidean norm by vk k. We use δ(v) to represent the Dirac delta function, which is
zero everywhere except at v = 0. The inner product of two vectors v1 and v2 is
denoted by v1 ⋅ v2. Further, we denote ½N � as the set of integers f1; ¼ ;Ng.
Finally, we use x̂ to represent an estimate of a deterministic quantity x.

A set of localizations. We represent a set of localizations or a set of source molecules
as

M̂ ¼
X̂N
i¼1

ŝiδðr� r̂iÞ; ð1Þ

where ŝi ≥ 0 and r̂i 2 R2 denote the ith molecules’ estimated brightness (in pho-
tons) and position, respectively. Note that, throughout this paper, what we mean by
brightness is the expected number of photons emitted by a molecule during a
camera frame (see ref. 40 for background). We denote the mass of M̂, i.e., the sum
of the brightnesses of all molecules in M̂, by Ŝ. Further, N̂ represents the number
of molecules in M̂. We represent the collection of all valid M̂ by M.

Negative Poisson log likelihood. Consider a set of N̂ molecules given by M̂. The
resulting intensity μj, that is, the expected number of photons detected on a camera,
for each pixel j∈ {1, …, m} can be written as

μj ¼
X̂N
i¼1

f̂siqjðr̂iÞg þ bj; qjðr̂iÞ ¼
Z

Cj

qðu� r̂iÞdu; ð2Þ

where qjðr̂iÞ represents the integrated value of the PSF q (for the ith molecule) over
the jth pixel area (Cj), and bj denotes the expected number of background photons
at the jth pixel.

If we denote g 2 Rm as m pixels of photon counts captured by a camera, the
negative Poisson log likelihood L is then given by

LðM̂Þ ¼
Xm
j¼1

fμj � gjlog ðμjÞg; ð3Þ

where we have discarded terms that do not depend on M̂. If q is the true PSF, we
call L the true negative log likelihood, while conversely, if an estimated or candidate
model PSF q is used, then, we refer to L as the negative log likelihood of the model.
We note that the Poisson noise model considered here can be extended to account
for pixel-dependent readout (Gaussian) noise (Supplementary Note 3)41.

Grid points in object space. We consider a set of N Cartesian grid points repre-
sented by G ¼ frGi

g
i¼1:N for which the distance between any two adjacent grid

points is given by 2ρ. In this way, a set of localizations can be uniquely represented
via a discrete grid G:

M̂ ¼
X̂N
i¼1

ŝ½i�δðr� r̂½i�Þ; ð4Þ

where [i] represents a grid point index in ½N �, r̂½i� ¼ r̂G½i� þ Δr̂½i� , r̂G½i� is the closest

grid point to the ith molecule, and Δr̂½i� denotes a position offset (Supplementary
Note 3).

Local perturbation. We perturb a set of localizations M̂ by introducing a small
distortion in the positions and brightnesses of the molecules in M̂ to produce
another set of localizations M0:

M0 ¼
XN̂
i¼1

X8
j¼1

ŝ½i;j�δðr� r̂½i;j�Þ; ð5Þ

where
P8

j¼1 ŝ½i;j� ¼ ŝ½i� and r̂½i;j� is one of the eight neighboring grid points of r̂G½i�

(Fig. 1b). We denote Δû½i;j�≜ðr̂½i� � r̂½i;j�Þ=kr̂½i� � r̂½i;j�k as a unit perturbation vector
(Fig. 1b).

Wasserstein distance. We define the Wasserstein distance W2 between two sets of
localizations42,43, M1 2 M and M2 2 M, with equal masses as the minimum cost
of transporting one to the other among all valid transportation plans Π:

W2ðM1;M2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min
π2Π

XN̂1

i¼1

XN̂2

j¼1

kr̂i � r̂jk22πðr̂i; r̂jÞ
0
@

1
A

vuuut ; ð6Þ

where πðr̂i; r̂jÞ is the portion of photons from the molecule at position r̂i in M1

that is transported to the position r̂j in M2.

Derivation of WIF. WIF is derived based on the mathematical notion that accurate
localizations are global minima of the true negative log likelihood. Therefore, any
small, arbitrary perturbation of the true localizations will absolutely increase the
true negative log likelihood (Eq. (3)). In contrast, for inaccurate localizations, we
can find a local perturbation such that by transporting the localizations along some
perturbation trajectory, the true negative log likelihood decreases (Eq. (3)). In the
following subsections, we make these observations precise.

Given a set of input localizations, M̂, we aim to find a local perturbation that
minimizes the negative log likelihood of our model L:

M1 ¼ argmin
M2M:W2

2ðM̂;MÞ≤ ζ 0
LðMÞ; ð7Þ

where ζ 0 signifies the degree of uncertainty in M̂ expressed as the square of the
radius of the Wasserstein ball around M̂. For example, if ζ 0 ¼ 0, signifying
absolute certainty in the input localizations, then we get M1 ¼ M̂.

Alternatively, and perhaps more revealing, we can express Eq. (7) by shifting the
center of the uncertainty ball to M0 (Eq. (5)):

M1 ¼ argmin
M2M:W2

2ðM0 ;MÞ≤ ϵ0
LðMÞ; ð8Þ

where ϵ0 is related to ζ 0 in Eq. (7). The solution to Eq. (8) can be expressed as

M1 ¼
X̂N
i¼1

X8
j¼1

ŝ½i;j�δðr� ~r½i;j�Þ: ð9Þ

The set M1 characterizes the transport trajectories Δ~r½i;j� ≜~r½i;j� � r̂½i;j� for each
source molecule in M̂ (Fig. 1b), where r̂½i;j� are the set of perturbed molecule
positions (Eq. (5)) and ~r½i;j� are the molecule positions in M1. These trajectories

allow us to measure the stability in the position r̂i of a molecule in M̂ (Fig. 1b): if r̂i
is perfectly stable, then Δ~r½i;j� should point toward r̂i for all j∈ {1, …, 8}. Therefore,
we define WIF of a source molecule as the portion of photon flux that returns
toward it after a local perturbation (Eq. (5)) and regularized transport (Eq. (8)):

WIF≜
P8

j¼1 ŝ½i;j�Δ~r½i;j� � Δû½i;j�P8
j¼1 ŝ½i;j�kΔ~r½i;j�k

: ð10Þ

WIF takes values in [−1, 1] where 1 represents a source molecule with the
highest confidence. We justify rigorously the definition of WIF presented in Eq.
(10) using the theory of Wasserstein gradient flows (Supplementary Note 1)18.

Computing WIF. Solving for M1 in Eq. (8) is challenging, which involves an inner
optimization of the Wasserstein distance. To obtain an efficient algorithm to
compute WIF, we first consider an equivalent form of Eq. (8) using Lagrangian
relaxation as:

M1 ¼ arg min
M2M

W2
2ðM0;MÞþ ϵLðMÞ� �

; ð11Þ
where ϵ is related to ϵ0 in Eq. (8). Next, by approximating the continuous position
of source molecules using a set of grid points and position offsets, we can find a
tractable upper bound for Eq. (8) that can be solved efficiently via accelerated
proximal-gradient methods (Supplementary Note 3). In particular, we compute
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M1 according to the following regularized, negative log likelihood minimization:

M1 ¼ arg min
M2C\M

νRðMÞ þ LðMÞf g; ð12Þ

where ν > 0 is inversely related to ϵ, RðMÞ ¼PN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2i þ s2i Δrik k22

q
is a group-

sparsity norm, and C is a constraint set that limits Δri to be within its neighboring
grid points (see Supplementary Note 3 and Supplementary Table 2 for details).

Extension to 3D SMLM. A natural extension of WIF to 3D imaging involves
locally perturbing an estimated molecule within a small volume. Such a strategy
complicates the computation of WIF as it requires a distinct PSF model for each
molecule in the imaging volume. With this complexity in mind, we consider a
variant of WIF in 3D that lends itself to an efficient algorithm, which is identical to
that of WIF in 2D. Specifically, we capitalize on the observation that an accurate
localization in 3D should not only be stable w.r.t. a volumetric perturbation but
also w.r.t. an in-plane (xy) perturbation. Therefore, for any estimated molecule, we
consider a 2D perturbation similar to Eq. (5) in which each perturbed source
molecule maintains the same axial position of the original estimated molecule
(Supplementary Note 3).

Processing experimental data. Prior to analyzing experimental data, we first
estimated a pixel amplitude-offset map by averaging 100 camera frames with the
shutter closed. The offset map was subtracted from the raw camera images (pixels
with values smaller or equal than zero were set to 10−3). Next, we converted the
offset-subtracted images to photon counts based on the conversion gain of each
camera (assuming uniformity across the field-of-view, see below). These images
were then used for SM localization, WIF calculation, and estimating fluorescence
background (Supplementary Note 5).

Super-resolution imaging of labeled microtubules. The microtubules of BSC-1
cells were immunolabeled with Alexa Fluor 647 (Invitrogen) and imaged under
blinking conditions44 with glucose oxidase/catalase and mM concentrations of
mercaptoethylamine (MEA) as in ref. 45. The sample was imaged using an
Olympus IX71 epifluorescence microscope equipped with a 100× 1.4 NA oil-
immersion objective lens (Olympus UPlan-SApo 100×/1.40). Fluorophores were
excited using a 641-nm laser source (Coherent Cube, peak intensity ~10 kW cm−2).
Fluorescence from the microscope was filtered using a dichroic beamsplitter
(Semrock, Di01-R635) and bandpass filter (Omega, 3RD650-710) and separated
into two orthogonally polarized detection channels. Both polarized channels reflect
off of a phase-only spatial light modulator (Boulder Nonlinear Systems, SLM)
placed in the Fourier plane before being imaged onto a camera; a flat phase pattern
was used for the 2D SMLM experiments (Fig. 2), while the double-helix phase
mask was used for the 3D data as in ref. 45 (Fig. 3). Fluorescence photons were
captured using an electron-multiplying (EM) CCD camera (Andor iXon+ DU897-
E) at an EM gain setting of 300 with a pixel size of 160 × 160 nm2 in object space
and a conversion gain of 0.13 ADU photon−1. Only one polarization channel was
analyzed in this work. For the 284k localizations shown in Fig. 2b, 2287 photons
were detected on average with a background of 76 photons per pixel. For the 48,445
localizations shown in Fig. 3d, 2238 photons were detected on average with a
background of 89 photons per pixel. SMLM images in Fig. 3 were rendered by
plotting each localization as a symmetric 2D Gaussian function with a standard
deviation of (Fig. 3e) 15 nm and (Fig. 3f) 20 nm.

Transient Amyloid Binding imaging. The 42 amino-acid residue amyloid-beta
peptide (Aβ42) was synthesized and purified by Dr. James I. Elliott (ERI Amyloid
Laboratory, Oxford, CT) and dissolved in hexafluoro-2-propanol (HFIP) and
sonicated at room temperature for 1 h. After flash freezing in liquid nitrogen, HFIP
was removed by lyophilization and stored at −20 °C. To further purify the protein,
the lyophilized Aβ42 was dissolved in 10 mM NaOH, sonicated for 25 min in a cold
water bath and filtered first through a 0.22 μm and then through a 30 kDa cen-
trifugal membrane filter (Millipore Sigma, UFC30GV and UFC5030) as described
previously25. To prepare fibrils, we incubated 10 μM monomeric Aβ42 in
phosphate-buffered saline (PBS, 150 mM NaCl, 50 mM Na3PO4, pH 7.4) at 37 °C
with 200 rpm shaking for 20–42 h. The aggregated structures were adsorbed to an
ozone-cleaned cell culture chamber (Lab Tek, No. 1.5H, 170 ± 5 μm thickness) for
1 h followed by a rinse using PBS. A PBS solution (200 μL) containing 50 nM Nile
red (Fisher Scientific, AC415711000) was placed into the amyloid-adsorbed
chambers for transient amyloid binding.

Blinking Nile red molecules on fibrils were imaged using a home-built
epifluorescence microscope equipped with a 100× 1.4 NA oil-immersion objective
lens (Olympus, UPlan-SApo 100×/1.40). The samples were excited using a 561-nm
laser source (Coherent Sapphire, peak intensity ~0.88 kW cm−2). Fluorescence was
filtered by a dichroic beamsplitter (Semrock, Di03-R488/561) and a bandpass filter
(Semrock, FF01-523/610) and separated into two orthogonally polarized detection
channels by a polarizing beamsplitter cube (Meadowlark Optics). Both channels
were captured by a scientific CMOS camera (Hamamatsu, C11440-22CU) with a

pixel size of 58.5 × 58.5 nm2 in object space and a conversion gain of 0.49 ADU
photon−1. Only one of the channels was analyzed in this work. For the 12k
localizations shown in Fig. 4c, 390 photons were detected on average with a
background of five photons per pixel. For the 931 localizations shown in Fig. 5b,
785 photons were detected on average with a background of 2.4 photons per pixel.

Synthetic data. We generated images of molecules via a vectorial image-formation
model19, assuming unpolarized ideal PSFs. Briefly, a molecule is modeled as a
dipole rotating uniformly within a cone with a half-angle α. A rotationally fixed
dipole corresponds to α= 0, while α= 90° represents an isotropic molecule.
Molecular blinking trajectories were simulated using a two-state Markov chain7.
We used a wavelength of 637 nm, NA= 1.4, and spatially uniform background. We
simulated a camera with 58.5 × 58.5 nm2 square pixels in object space.

Jaccard index. Following ref. 8, given a set of ground-truth positions and corre-
sponding localizations, we first match these points by solving a bipartite graph-
matching problem of minimizing the sum of distances between the two elements of
a pair. We say that a pairing is successful if the distance between the corresponding
two elements is smaller than twice the full width at half maximum (FWHM) of the
localization precision σ, which is calculated using the theoretical Cramér−Rao
bound (σ= 3.4 nm with 2000 photons detected). The elements that are paired with
a ground-truth position are counted as true positives (TPs) and those without a
pair are counted as false positives (FPs). Finally, the ground-truth molecules
without a match are counted as false negatives (FNs). The Jaccard index is cal-
culated as TP/(TP+ FP+ FN).

PSF modeling for computing Wasserstein-induced flux. For simulation studies,
we used an ideal, unpolarized standard PSF resulting from an isotropic emitter
(Fig. 1 and Supplementary Figs. 3, 4, 6–8, 10–16, 18, 29), while for experimental
data (Figs. 2, 4, 5 and Supplementary Figs. 19, 25–27), we used a linearly-polarized
PSF, also resulting from an isotropic emitter (see Supplementary Table 2 for
details).

In addition to the ideal PSFs modeled above, we needed to calibrate the
aberrations present in the PSF used for microtubule imaging (Fig. 2). We modeled
the microscope pupil function P as

Pðu; vÞ ¼ exp j
Xl
i¼3

faiZiðu; vÞg
 !

� P0ðu; vÞ; ð13Þ

where (u, v) are microscope’s pupil coordinates; Zi and ai represent the ith Zernike
basis function and its corresponding coefficient; and P0 denotes the pupil function
of the uncalibrated model. We used 33 Zernike modes corresponding to l= 35.

Using RoSE, we localized well-isolated molecules over a large FOV
corresponding to Fig. 2. Next, for each localization, we extracted a raw image of
size 11 × 11 pixels with the localized molecule at its center. We excluded molecules
with brightnesses less than 3000 photons or with positions away from the origin by
more than one pixel. Next, we randomly selected 600 of these images to estimate
the Zernike coefficients, i.e., {a1, …, al}, as described previously46. The calibrated
PSF (Supplementary Fig. 19) is then computed based on the recovered pupil P.

Previous works on 3D PSF modeling applied robust averaging of finely sampled
axial scans of many beads by aligning them using polynomial interpolation47. Here,
we further robustify these methods by employing tools from OT43. Specifically, we
use displacement interpolation to obtain PSFs with a z spacing of 10 nm from a
reference bead scan taken at 40-nm axial intervals. We next use additional beads to
augment this model from the reference bead. We first estimate the z position of a
bead at top of the stack. Next, we use OT to obtain PSFs at model z planes. Next,
we register the two sets of PSF scans laterally using cubic interpolation. We repeat
this same process for other non-reference beads. Finally, we use B-splines to
smooth the 3D PSF (used for 3D microtubule imaging, Fig. 3) and obtain PSF
gradients in 3D (Supplementary Fig. 20).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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