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SUMMARY

Comparative analyses of multiple genomes are used extensively to examine the
gains and losses of chemosensory receptors across the genus Drosophila. How-
ever, few studies have delved into functional olfactory characteristics. Here we
assess olfactory function across 20 species, and identify and describe several
similar elements of evolution. We document (a) minor changes in functional li-
gands based on amino acid substitutions, (b) major changes in olfactory function
or perhaps entire receptor replacements, and (c) that only a few receptors are
subject to repeated changes, whereas 32 out of 37 OSNs are largely functionally
conserved. In addition, we generate a robustmodel for identifying olfactory func-
tion using genomic data and comprehensive ligand-receptor combinations, which
includes the prediction of binding pockets. Moreover, this study highlights that
functional olfactory evolution does not affect all chemosensory receptors
equally, and that ecological, evolutionary, and developmental forces repeatedly
affect only a small subset of available receptor proteins.

INTRODUCTION

One of the advantages of working within the Drosophila genus is the wide array of evolutionary specializa-

tions that these species display, especially in regard to host preference, but also habitat choice,

morphology, and mate selection (Keesey et al., 2019a; Markow, 2015). As an additional benefit, the genus

affords a vast amount of genomic data generated and accumulated since the early 21st century (Adams

et al., 2000; Clark et al., 2007; Khallaf et al., 2021). The last ten years of research have also brought attention

toward another novelty, an agricultural pest species in the form of D. suzukii, which has now invaded North

and South America, Europe as well as its native Asian origins (Asplen et al., 2015; Cini et al., 2012; Deprá

et al., 2014; Lee et al., 2011; Walsh et al., 2011). Furthermore, this pest insect has prompted both integrated

pest management efforts as well as evolutionary neuroethology research, where the distinct ecological

niche of attacking fresh or ripening fruit has afforded a unique opportunity for comparison among the other

model species within this well-studied genus of flies. Thus, whereas most species within the subgenus

Sophophora usually only target rotten, softened, or fermented host resources, D. suzukii has been shown

repeatedly to target fresh, hardened, and ripe fruits for feeding and oviposition (Karageorgi et al., 2017;

Keesey et al., 2015, 2019b; Maderspacher and Stensmyr, 2017).

Previous research has sought to outline either the olfactory or gustatory systems of several species of

Drosophila, either for evolutionary or ecological comparisons of the host plant, mate preference, or repro-

ductive isolation, includingDrosophila melanogaster, Drosophila sechellia, and Drosophila simulans (Auer

et al., 2020; Fan et al., 2013; Hallem and Carlson, 2006; Seeholzer et al., 2018). However, only a few studies

have conducted electrophysiological assessments of members outside of this subgroup (Crowley-Gall

et al., 2016; de Bruyne et al., 2010), withmost research examining non-melanogaster species only in regards

to a single, specific olfactory sensory neuron (OSN) of interest. Moreover, usually only as a means to show

the conserved nature of that functional neuronal type (Dekker et al., 2006, 2015; Ebrahim et al., 2015; Linz

et al., 2013; Stensmyr et al., 2012). Somemore distantly relatedDrosophila species have begun to be exam-

ined in more depth, such as Drosophila mojavensis (Crowley-Gall et al., 2016, 2019; Khallaf et al., 2020,

2021). This species is an excellent model for incipient speciation; however, this species is a member of

an entirely different subgenus, and, as such, is quite far removed from the more robust data sets afforded
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by themelanogaster clade and the other members of Sophophora subgenus. These factors may also mean

that these distantly related species (i.e., D. mojavensis and the Drosophila subgenus) are much more diffi-

cult to utilize to assess patterns and mechanisms of evolutionary selective pressure, at least in their direct

comparison with the more established molecular model species within themelanogaster clade. Therefore,

in contrast, the non-melanogastermembers of the Sophophora subgenus, which itself includes substantial

variation in host and habitat choice, perhaps represents a closer group of relatives to optimize the compar-

isons of evolutionary variation in chemosensation. Here again, D. suzukii and its related subgroups offer an

ideal, genetically tractable model for unraveling the complexities of olfactory evolution, especially given

their relative phylogenetic proximity to the principal scientific models within themelanogaster clade (Kee-

sey et al., 2019a; Markow, 2015).

For many Drosophila species, there already exists a robust library of molecular resources, as nearly com-

plete genomic data sets are publicly available; however, far less information is available describing the

functional components of host ecology, such as olfactory, gustatory, auditory and visual preferences, or

describing behavioral or habitat variations between these species. Thus, for most members across this

incredibly well-studied genus, more is known about their genome than their ecology. In an effort to expand

our knowledge about these species, here we provide a functional olfactory comparison encompassing 20

different species within the Sophophora subgenus, with particular focus on D. suzukii and its closest rela-

tives, in order to examine the variables and olfactory attributes that are associated with the evolutionary

emergence of this insect pest. In addition, we address how protein sequence coding of olfactory receptors

correlates with the functional evolution of odorant binding and ligand selectivity, through comparison of

chemosensory variation overlaid with tertiary protein structures from the available species.

Thus, in summary, the present study establishes the missing ingredients to begin understanding the trends

and mechanisms of olfactory evolution, whereas also providing critical chemosensory evaluations and a

foundation of knowledge across 20 species within this genus of insects. We show that only a few OSNs

of the identified orthologues between species typically display elevated levels of sequence divergence

as well as functional variation between species, including both large and small deviations in olfactory re-

sponses at the periphery. This study also proposes that the comparative approach, which examines olfac-

tory function as well as amino acid or receptor sequence alterations and patterns of selection across a

multitude of species, may provide further insight into the evolution of sensory systems. Moreover, the iden-

tified OSN locations within this study (and the potential ORs that they contain) appear to repeatedly be

important for further examination across the subgenus Sophophora, and will be potential targets for future

research concerning the mechanisms of chemosensory divergence and ecological adaptation.

RESULTS

Complete screening of D. suzukii olfaction

In order to assess olfactory ligand spectra for all OSN types, we first revisited the classical model,

D. melanogaster, where the responses of most OSNs have been previously established (Crowley-Gall

et al., 2016, 2019; Dweck et al., 2016; Hallem and Carlson, 2006; Lin and Potter, 2015; Mathew et al.,

2013; van der Goes van Naters and Carlson, 2007). Here we again mapped out the response profile from

each known receptor across the adult fly antenna and palps using a panel of 80 odorants (Figure 1). We

found that out of 37 unique olfactory sensory neurons (OSNs), only 3 are still currently without a strong

ligand candidate (i.e., Or23a, Or2a, Or65a/b/c), although, in addition, several co-expressed receptors

also have poorly defined response profiles (e.g., Or33a, which is found in OSN ab4B). Next, we shifted

our focus toward the antenna and palps of D. suzukii using the same diverse panel of 80 odorants in order

to examine any changes in functional ligand spectra between these two species. Here we determined that

of the 37 OSNs found in D. suzukii, 32 out of 37 OSNs are functionally conserved between the two species

(Figure 1A). We identified only fiveOSNs that showed robust functional deviation from theD.melanogaster

model, including the ab2B-like, ab3A-like, ab9B-like, ab10A-like, and ai3A-like sensory neurons (Figure 1A).

Data on the palps of D. suzukii were more difficult to confirm, for example, whether each sensillum con-

tained only two OSNs. This is also owing to the reduced literature and molecular support available from

other papers addressing the palps of most Drosophila species. However, we did not find enough evidence

to determine that any additional OSNs were functional in theD. suzukii palp screens, though future studies

will need to address this olfactory organ in more detail, especially pb1 sensilla. We also documented

changes across ab5 and ab7 on the antennae of D. suzukii, though not as strong (i.e., weak), and we

note that we found in total very few ab8 sensilla across D. suzukii trials. Two of the larger deviations in
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Figure 1. Complete olfactory sensory neuron screen of D. suzukii

(A) Information for each olfactory channels and sensillum type found across antenna or palps. In total, 37 neurons were analyzed from each species using

single sensillum recordings (SSR), where 32 out of 37 of the receptors retain the same ligand spectra, whereas only five OSNs (14%) displayed variation.

Responses that were different are highlighted. ‘‘Best ligand’’ is the strongest excitatory ligand in the screen.

(B–E) Immunostaining with neurobiotin (green) and nc82 (red or magenta) across the antennal lobes of D. suzukii adults that were backfilled from the ab2- or

ab3-like sensillum types. Each sensillum type was identified with electrophysiological contact and odor response recordings before the application of the

neurobiotin.

(B) Spatial map of the antennal lobe (AL) atlas of D. melanogaster of neurons from ab2 sensillum.

(C) Neuronal wiring in D. suzukii that stem from single-sensillum backfills of ab2-like sensillum, showing similar mapping.

(D) Spatial map of the AL of D. melanogaster of neurons from ab3 sensillum.
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olfactory response for D. suzukii have been previously described, including ab2B and ab3A (Keesey et al.,

2015). Interestingly, in the present study, we identified two distinctly responding ab3A OSN types, with an

approximately 60:40 split ratio for OSN abundance, where the first (type i) was tuned toward isobutyl ace-

tate (IBA) and the second (type ii) responded most strongly to beta-cyclocitral (bCC). In the last few years,

increasing evidence has been provided to support the notion that the closest relative for D. suzukii is actu-

ally Drosophila subpulchrella, and not Drosophila biarmipes (Hickner et al., 2016; Ramasamy et al., 2016).

Here we identify for the first time a second species that responds strongly to beta-cyclocitral, namely

D. subpulchrella (Figure 4), which further supports an ecological the connection (Keesey et al., 2015; Piñero

et al., 2019). Although the ecology of D. subpulchrella is understudied, based on the serrated ovipositor

(Figure S7), it has been assumed that it also lays eggs in fresh or ripening fruit resources (Atallah et al.,

2014; Ramasamy et al., 2016), just like the D. suzukii pest.

Both of these ab3A-type OSNs in D. suzukii were tuned quite differently than those found within the cor-

responding sensillum of D. melanogaster, which is tuned instead toward ethyl hexanoate (EH). However,

both species (and both types and type ii, in D. suzukii) share identical ligand spectra for the second

OSN in the same ab3 sensillum, which responds characteristically toward 2-heptanol as the strongest excit-

atory ligand.We also found that although the ab2BOSN fromD. suzukii deviates fromD.melanogaster, the

ab2AOSN appears identical. As such, we believe these two sensilla inD. suzukii (ab2-like and ab3-like) pro-

vide the strongest match for the comparative sensilla in D. melanogaster, despite the deviations in ligand

spectra for select OSNs. This idea is further supported by the morphological structure of the sensillum (i.e.,

large basiconic), and by the large amplitudes that are characteristic of these sensillum types relative to the

small basiconics. All these factors combine to strongly support the identity of these two sensillum types in

D. suzukii adults, despite the variation in olfactory ligand spectra, as previously proposed (Keesey et al.,

2015).

Conservation of neuronal wiring despite ligand spectrum shifts

To continue to explore the neural pathways for the ab2- and ab3-like OSNs in D. suzukii, we next docu-

mented the circuitry from the antenna toward the antennal lobe (AL) using the single-sensillum backfill

neuronal staining technique (Hansson et al., 1992). By comparing the labeled glomeruli from D. suzukii

with the known AL atlas of D. melanogaster (Figures 1B–1E) (Grabe et al., 2016), we could provide addi-

tional support for the ab2 and ab3-like sensillum type identification, as these two fly species shared iden-

tical wiring for the corresponding OSNs, despite the observed deviation in ligand spectra for D. suzukii

adults.

Spatial mapping of sensillum subtypes

We next mapped the position of all sensillum subtypes on the D. suzukii and D. melanogaster antenna

and palps using several individuals to create an aggregate diagram. The heads of both D. suzukii and

D. melanogaster were positioned in four ways to completely map the spatial pattern for sensillum abun-

dance, including antennal arista down, arista side, arista up as well as across the maxillary palp

(Figures 2A–2D). Here, as we had established ligand spectra for all OSNs of both species, we used

SSR data to document the position of each sensillum type on the antenna (n = 6–8 individuals), which

provided spatial information as well as the relative abundance (where each dot represents the approx-

imate location of each recorded sensillum), and these data matched previous studies of

D. melanogaster antenna (Linz et al., 2013; Stensmyr et al., 2003). The positioning of each specific

sensillum type was nearly identical in both species and arranged in concentric circles or zones; however,

we did observe large variations in the abundance of sensillum types between species (Figures 2E–2H).

For example, within the large basiconics, whereas the ab1 sensillum counts were nearly identical, we

found that D. suzukii had almost twice as many ab2 as D. melanogaster (22 and 12, respectively). In

contrast, we found that D. melanogaster had more than twice as many ab3 sensilla compared with

D. suzukii (13 and 6, respectively). It was possible to identify large basiconics owing to physical metrics,

like width, tip shape, and length (Figure S1). In addition, we could also positively identify large basiconics

Figure 1. Continued

(E) Neuronal wiring in D. suzukii from single-sensillum backfills of ab3-like sensillum. This spatial congruence, combined with the morphological (e.g. large

basiconic) and odor ligand data from the other neuron housed in either ab2 or ab3 sensillum (e.g. Or59b and Or85b), continues to provide strong,

corroborating evidence that the wiring for D. suzukii and D. melanogaster is unchanged. This conservation of wiring within the antennal lobe is despite

changes in odorant sensitivity and ligand spectra for the ab2B and ab3A OSNs between these two species.
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Figure 2. Olfactory sensory neuron mapping across the antennae of D. suzukii

(A–D) The antennae were prepared in several different positions to optimize access to the various sensillar subtypes.

(E) Schematic drawing of the third antennal segment from both species, where spatial distribution and sensillum abundance were identified during single

sensillum recordings (SSR). Each color denotes a unique subtype. Shown are the sensillar mappings from the arista down configuration from both target

species (n = 6–8 individuals).

(F) Arista side configuration.

(G) Arista up preparation.

(H) Maxillary palp preparation.

(I) Shown are example traces of the ab2 sensillum type, note maximum amplitudes well over 2 mV for each species.

(J) Consistent ratio of amplitude differences between the A and B neurons for both ab2 and ab3 sensillum. Here there was a significant difference between

amplitudes across receptor types, but not between species. Error bars denote SEM; normally distributed data were analyzed using two-tailed, paired t-tests

(* denotes p < 0.05).

(K) Example traces of ab3 sensillum type, where we note maximum amplitudes near 2 mV for each species. Here the relative size of the ab3B neuron

amplitude is much larger when compared to ab2B, in relation to their respective A neurons for ab2 and ab3 sensillum types. In general, these stereotyped

response dynamics appear conserved between species, and add an additional layer of confirmation to the chemical and morphological identification of

sensillum type in novel Drosophila species. For scanning electron microscopy photos of D. melanogaster and D. suzukii, see related Figure S1. For details of

electrophysiology data, see related Figure S2.
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based on the amplitude of SSR spike responses (Figures 2I–2K). Here the ab2 and ab3 sensilla are also

uniquely identifiable based on the ratio of the A neuron to B neuron spike sizes, where ab2 has an exag-

gerated disparity between the two neurons, whereas the ab3 neurons are much closer in spike size

(Figures 2I–2K). Moreover, the ab1 sensillum is straightforward to identify owing to its unique housing

of four OSNs, as well as the characteristic response to CO2 (Kwon et al., 2007). Whereas our sensillum

counts are not the absolute total number of large basiconics, this was provided previously for these

two species (Keesey et al., 2019a), and we are confident that the preparations and the zones of interest

we counted from were the same during the comparison of the two species (Lin and Potter, 2015). As

such, these counts represent strong relative values for species-specific comparisons of sensillar abun-

dance. In addition, it is important to note that the flies do differ in absolute size, as does their antennal

surface area (Keesey et al., 2019a, 2020). However, we still show a consistent difference that is not ex-

plained by the larger size of D. suzukii relative to D. melanogaster adults; therefore, additional evolu-

tionary factors are in play concerning sensillum abundance.

Figure 3. Large basiconic sensilla across the subgenus Sophophora

The proportions of ab1 (yellow), ab2 (green), and ab3 (red) sensilla are shown for each of the 20 species examined, with total sample sizes of large basiconic

sensillum contacts (R) listed in parentheses above each species, as well as the number of individuals that were pooled (n). In general, there is an increase of

the ab3 sensillum type for the melanogaster clade (those in red on phylogeny), with extreme examples including D. sechellia and D. erecta, where we also

note a drastic reduction in the ab2 sensillum type that is inversely related with the larger proportions of the ab3 type. In contrast, we notice an increase of the

ab2 sensillum type across the spotted wing species, including the suzukii clade (those in green on phylogeny). Here, we see a relative reduction in ab3 that

correlates with the increases for ab2 sensillum number. In addition (shown in yellow on phylogeny), there is a trend for increased ab1 representation in

several species, whereas those species in gray denote a more even proportion for each of the three large basiconic types. For proportions of large basiconic

sensillum types, see related Figure S11 and Table S1.
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Proportional analyses of sensilla across Sophophora

As we were interested in the evolution of olfaction in D. suzukii, we next sought to examine 18 additional

species within the Sophophora subgenus in order to generate an evolutionary framework of sensillar vari-

ation (Figure 3). Here we screened each new species for ab1-, ab2-, and ab3-like sensilla using a smaller

panel of odorants from the original 80. The total sample sizes across individuals (n) and across large basi-

conic sensillum recordings (R) is listed above each species (Figure 3), and we present the data for different

sensillum types as proportions of these total SSR basiconic contacts. As has been shown previously (Linz

et al., 2013), we confirmed a large number of the ab3 sensillum for most of themelanogaster clade (Figure 3;

ab3 increase; shown in red), including the confirmation of the most abundant ab3 species, D. sechellia and

Drosophila erecta. Intriguingly, we also documented that each of the spotted wing species within the

A

DCB

Figure 4. SSR and ligand spectra of four sensillum types across 20 species

(A) Olfactory receptor neurons (OSNs) shown at the top without color were identical in their ligand responses across all 20 tested species (e.g. ab1A that

houses Or42b in D. melanogaster).

(B) Strong sensitivity variation noted for the ab1C neuron that contains the CO2 detecting GRs; however, strongest excitatory ligand was identical for all

species.

(C) Frequent ligand shift in the ab2B neuron (shown in green, which contains Or85a inD. melanogaster). Here the majority of species retained the exact same

ligand spectra; however, 7 of the 20 species had an entirely novel ligand, which did not match with any of the other tested species, and we could not identify

any odorant that activated this OSN in four different species.

(D) We noted the most consistent changes in ab3A neurons between these 20 species (shown in red, which co-expresses Or22a and Or22b in

D. melanogaster). Here we observed four or more separate ligand tunings, as defined by the strongest response at the 10–4 odorant concentration (diluted

in hexane). For two species, we could not identify a strong ligand for this OSN, despite screening with over 80 synthetic compounds and thousands of natural

compounds via GC-SSR high-throughput examination using a variety of plant, flower or fruit headspace materials (E3HB, ethyl-3-hydroxy butyrate; IPA,

isopentyl acetate; 3H2B, 3-hydroxy-2-butanone; MH, methyl hexanoate; EH, ethyl hexanoate; IBA, isobutyl acetate; bCC, beta-cyclocitral) (n = 3–4 indi-

viduals). For olfactory responses of the ab2B and ab3Aneurons, see related Figures S12 and S13 and Tables S2 and S3.
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suzukii clade all displayed, in contrast to the melanogaster clade, a reduction in ab3 and a corresponding

increase of the ab2-like sensillum (Figure 3; ab2 increase; shown in green). We believe the ab3 increase of

the melanogaster clade might be linked to ecologically associated detection of strong fermentation com-

ponents, whereas the ab2 sensillum is perhaps more tightly associated with fresh fruit esters or the fruit

ripening process, but more work is needed to examine this in behavioral experiments. Our screen of the

Sophophora subgenus also provided evidence for an ab1 increase in several species (Figure 3; shown in

yellow). We do not have enough ecological information about many of these species, but we can speculate

that perhaps there exists a common association with higher altitudes and altered CO2 concentrations in

these alpine habitats. This, in turn, may help explain the ab1 abundance for some species (e.g., Drosophila

birchii) (Griffiths et al., 2005), or that floral-, foliage-, and yeast-derived host signals might play a role in this

association with CO2 sensitivity (Chandler et al., 2012; Cooper, 1960; Lachance et al., 1995). Lastly, four spe-

cies had a roughly even proportion of basiconic sensillum types, which are shown in gray. Again, we are

greatly limited owing to the unknown ecology of most species; thus, it is currently unclear what the evolu-

tionary or ecological rationale could be for these differences in relative sensillum abundance.

Functional ligand spectra for sensillum types across Sophophora

As we had established that some of the main olfactory differences betweenD. suzukii andD. melanogaster

were related to large basiconics, we sought to test this hypothesis (i.e., that large basiconics play a consis-

tent role in olfactory evolution) by looking at olfactory ligand variation across our 20 species within the

Sophophora subgenus (Figure 4). Here we screened each species with a diverse panel of 80 odorants,

as well as high-throughput testing that utilized fruit, foliage, and floral headspace extracts via gas chroma-

tography-mass spectrometry combined with single-sensillum recordings (GC-SSR). Of the ten OSN types

we examined from each of the 20 species, only three showed any dynamic variation in ligand spectra or

ligand sensitivities (i.e., ab1C, ab2B, ab3A; Figure 4). We noted that the ab1C neuron (which co-expresses

Gr21a and Gr63a in D. melanogaster) is narrowly tuned to CO2, although with varied sensitivities among

the species tested (Keesey et al., 2015; Krause Pham and Ray, 2015; Pan et al., 2017; Robertson and

Kent, 2009). Other neurons within this sensillum type, such as ab1A (which expresses Or42b in

D. melanogaster), were functionally identical in each new species that we tested, with all species respond-

ing most strongly to ethyl acetate.

In general, ab3A (which co-expresses both Or22a and Or22b in D. melanogaster) was the most commonly

changedOSNwithin the 20 fly species studied (Figure 4), and the response usually fell into one of four main

categories of best odorant profile (i.e., methyl hexanoate (MH), ethyl hexanoate (EH), isobutyl acetate (IBA)

or beta-cyclocitral (bCC)). The different ligands for ab3A often seemed to be conserved between closely

related species. Further work is needed to confirm and reconstruct the neural circuit for these two sensillum

types in D. suzukii, as while they map to the same glomerulus (DM2-like), it was unclear from our neuronal

backfills whether types i and ii map to different regions within this same glomerulus. We note that several

functional types of this ab3A OSN have been recently reported within D. melanogaster populations (Man-

sourian et al., 2018; Shaw et al., 2019). One variant expression is a chimeric gene, Or22ab, which arises from

the fusion of both the Or22a and the Or22b gene products into a single receptor protein (Mansourian et al.,

2018; Shaw et al., 2019). Moreover, we note that the ligand spectrum reported for this Or22ab variant is

functionally similar to our current data in cases where we observe that IBA is the strongest excitatory ligand

for many of these Sophophora species, including D. suzukii. Thus, it is possible that this variant receptor

type also occurs within non-melanogaster members of this genus. Another consideration is that Or22c,

which is usually expressed only in larvae, detects 2-acetylpyridine, which bears aromatic, chemical similar-

ities to bCC (Mathew et al., 2013); therefore, another chimeric form, such as Or22ac, may also be possible in

nature (Figures S2B–S2E). Overall, the olfactory changes for ab3A were more of a gradient or moderate

shift between species, such as the transition from EH to MH as the strongest excitatory ligand (e.g.,

D. melanogaster and D. sechellia). We also note two species for which we could not identify any strong

ligand for ab3A, Drosophila elegans and Drosophila subobscura. Here, not much is known about the ecol-

ogy, and despite efforts to perform gas chromatography-coupled single sensillum recordings (GC-SSR)

with a variety of headspace collections from flowers, fruits, and tree sap (including in total several thousand

compounds), we could not identify any ligand candidates for this OSN in these two species.

Intriguingly, we also observed several changes in the ab2B neuron across our 20 examined species. In this

case, most species responded to exactly the same ligand (i.e., ethyl-3-hydroxybutyrate (E3HB)). However,

seven Sophophora members had an acute change in ligand spectra, where none of these seven species
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Figure 5. Protein sequence alignments of receptor orthologues

(A) Heatmap (greyscale) between the sequences representing the percent pairwise identity between species. Darker colors illustrate higher similarity, and

lighter colors denote receptor proteins with high variability. An X denotes receptors with insufficient sequence data available for comparison.

(B) Identification of amino acid positions where changes were most consistent in their effect on receptor function for OR22a across 14 species. Each position

was ranked using the full data set of 14 species (numbers in brackets, heatmap). As a test of robustness of this analysis, all sequence positions in the protein

are sorted according to the frequency with which they appear among the top 20 positions re-calculated from each of the 14 reduced data sets (formed by

excluding one species at a time from the full dataset). Note that the 20 most frequently seen positions in the recalculations match the original top 20

positions.

(C) A second test of robustness of our analysis: each point shows the number of the original top 20 amino acid positions calculated from the full dataset that

were retained in each of the recalculations from a reduced dataset. Note that a large fraction (�17 out of 20, on average) of the original positions are retained

in each recalculation.

(D) The top 20 amino acid positions across the 2D structure of the D. melanogaster Or22a protein.

(E) Predicted protein folding for Or22a sequence, with top 20 positions highlighted in red. Side view (through plasma membrane) of Or22a protein structure.

(F and G) Heatmaps showing the relative prediction error (measured as DPred, Actual�DCtrl, Actual) for each species-odorant pair for the sets of 21 odorants and

14 Drosophila species. Note the high frequency of negative values (shown in red) and very low frequency of positive values (in blue), indicating that the
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shared any overlap for their novel ligand, making each of these changes entirely species-specific. For

example, as was published previously (Keesey et al., 2015), we again demonstrated that D. suzukii ab2B

has changed ligand spectrum toward the detection of isopentyl (isoamyl) acetate (Figures 1 and 4), which

is an odor associated more with ripe as opposed to overripe fruit. For two of the other six species with

changes in this ab2B OSN, we could identify a strong ligand (Figure 4), including Drosophila ananassae

(3-hydroxy-2-butanone; also known as acetoin) and Drosophila affinis (methyl indole and a-pinene); how-

ever, again, very little is known about the ecology of these two drosophilids. Despite the high throughput

GC-SSR screening of the remaining four species, we did not identify any strong ligands. We believe that

screening with host-related odors (once more ecological information is known) will most likely lead to

the identification of ligands for all of these Drosophila species with functional changes in ab2B, but it is

also possible that some of these olfactory receptors are non-functional pseudogenes owing to natural mu-

tation in the amino acid sequence. Thus, at this stage, we cannot definitively say whether the variation in

ab2B is (a) owing to a drastic ligand shift in the receptor (i.e., protein sequence variation), (b) owing to

the replacement with a new or duplicated olfactory receptor (Prieto-Godino et al., 2020), or lastly, (c) a

result of non-functional pseudogenes. However, at least in D. suzukii we have shown that the ab2B neuron,

despite an acute shift in ligand spectrum, remains fully functional. Moreover, this OSN still maps via the

same neural circuit to the same location within the AL (Figures 1B–1E), and thus might carry a similar behav-

ioral relevance for D. suzukii as that of the D. melanogaster model.

Receptor sequence alignments across the Sophophora subgenus

As we had established both functional variation and conservation across OSNs within the Sophophora sub-

genus, we next sought to examine the structural basis of these evolutionary changes by analyzing the

olfactory receptor (OR) protein sequences. Our assumption was that when functional SSR data did not

vary between species, we would observe a lower number of amino acid changes in OR sequence ortho-

logues. Thus, we first identified as many sequences from our 10 OSNs (e.g., those olfactory receptors

housed (at least in D. melanogaster) in ab1, ab2, ab3, and ab4 sensilla) from as many of our 20 species

as were publicly available in databases such as Flybase and GenBank. The alignment of these orthologues

provided a wealth of information in conjunction with our SSR functional data screen. Here we observed that

the response profile of ORs that were identical between our 20 species during SSR testing were indeed

nearly identical at the amino acid sequence level (Figure 5A; e.g., Or42b). Although it has been suggested

that the geosmin-detecting receptor, Or56a, is the most widely conserved receptor across the genus

Drosophila (Stensmyr et al., 2012), here we observed that other ORs are equally or even more functionally

conserved, such as Or42b, which is housed in the ab1A OSN and responds to ethyl acetate (an attractive

odorant). We found very few amino acid changes in most receptors, which echoed our lack of functional

shifts in ligand sensitivity or selectivity in our SSR datasets (Figure S2F; shown is Or42b; note high pairwise

identity between species, in black). However, other receptors, such as those found in ab3A (i.e., Or22a/

Or22b in D. melanogaster), which were highly variable between species in our SSR data, were also demon-

strated here to be highly variable at the amino acid sequence level (Figure S2G; shown is Or22a; note low

pairwise identity between species, in grey/white). The same trend was true for ab2B (which houses Or85a in

D. melanogaster), where sequence variance mirrored the diversity in SSR response profiles between our

species (Figures 5A and S3). Further phylogenetic analysis showed, in general, that olfactory ligand varia-

tion positively correlates with amino acid variation in the corresponding ORs (Figures S7 and S8).

The species-specific responses of these two sensillum types (ab3A and ab2B) also show up in a principal

component analysis (PCA), with D. suzukii closely clustering with Drosophila eugracilis, Drosophila pseu-

doobscura, and D. biarmipes in their ab3A responses (Figure S9D). However, D. suzukii showed overall

much less similarity regarding both SSR in ab2B-like sensillum and sequence data as compared with the

other species (red dots; Figures S9F and S9G), indicating that Or85a (ab2B) may have been replaced by

another receptor protein in this species (Prieto-Godino et al., 2020). We further observed that the sequence

similarities tended to be relatively low within the transmembrane regions 1 and 3 (Figures S9H and S9I),

suggesting that these regions of the protein might be associated with species-specific differences across

Figure 5. Continued

modeled predictions were closer to the actual value than the control in most cases. Top inset: column averages depicting the predictive strength for the

different species’ Or22a receptors; right inset: row averages depicting the predictive strength for each odor ligand. For protein sequence alignments,

see related Figures S3, S4, S5, S6, and S10. For Trees based on sequence similarity, see related Figures S7 and S8. For the protein tertiary structure, see

related Figure S9. For OR and GR accession numbers, see related Table S4.
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the Drosophila genus, as was previously suggested from analyses of the melanogaster clade (Auer et al.,

2020).

Identification of response-determining positions in OR22a

Using an empirical approach described in (Chepurwar et al., 2019), we identified the top 20 amino acid po-

sitions that predict the odorant responses of ORs. These amino acid positions were determined using the

response data from the OR22a receptors across 14 Drosophila species for which genomic sequence data

were available (Figures 5 and S5A). To quantify the robustness of these top 20 positions, we recalculated

the top positions by removing the data of one species at a time from the dataset (i.e., calculating top po-

sitions using a reduced dataset of only 13 species, where this recalculation was done 14 times by removing

a different species each time). We then looked at two indicators of robustness: (1) which sequence positions

appear most frequently among the top 20 positions recalculated from each of the 14 reduced datasets, and

(2) how frequently the original top 20 positions calculated from the full dataset appear in each of the recal-

culations from the reduced datasets. For the first indicator, we found that the 20 most frequently occurring

sequence positions in the recalculations from the reduced datasets were identical to the original 20 amino

acid positions calculated from the full dataset (Figure 5B). For the second indicator, we found that about 17

of the original top 20 positions predicted from the full data set were retained, on average, in each recalcu-

lation from a reduced dataset (Figure 5C). Overall, these results suggest that the identified top 20 amino

acid positions are robust to perturbations in the training data set, and therefore could serve as reliable pre-

dictors of OR22a responses across the genus.

Locations of the top response-determining residues

To establish where these top 20 response-determining amino acid positions are located within the pro-

tein structure, we first visualized these positions in the secondary structure of OR22a of D. melanogaster

(Figure 5E) using the Protter tool (Omasits et al., 2014). These residues were not limited to any one helix

or loop, but were instead, found across several regions of the seven transmembrane proteins. Next, we

checked the location of these amino acid residues within the 3D structure (Figures 5F and 5G), generated

using the ORCO structure as reference ((Butterwick et al., 2018); SWISS-MODEL tool). Interestingly, we

found that our predicted top 20 positions were concentrated in primarily two clusters across the

3-dimensional space, one at the entrance (which is suggested by (Butterwick et al., 2018) to be essential

for preserving the specificity of the OR) and another cluster at the putative binding site (Auer et al., 2020).

To quantify the concentration of top residues in the first region (entrance), we selected one residue in

that region, R166, and checked all residues within 15 Å (angstrom) radius from it. Out of 41 residues pre-

sent in the selected volume of the Or22a tertiary structure, 6 were among the top 20 response-deter-

mining positions, nearly three times the number expected by chance in a protein of length 397

(41 3 20/397 = � 2.07; p = 0.011; hypergeometric test). One of these six positions (F159) has been pre-

viously shown to be important for determining olfactory responses by mutagenesis in D. melanogaster

OR85b (orthologous position: Y150 (Nichols and Luetje, 2010)). In the second region (putative binding

pocket), we selected one residue (F265) and checked all residues within a 15-Å distance. Here, out of

70 residues present in that surrounding volume, seven positions were among the top 20 response-deter-

mining amino acids, twice the number expected by chance (70 3 20/397 = � 3.53; p = 0.044; hypergeo-

metric test). One of these seven positions, A260, has also been shown to be important via mutagenesis in

Bombyx mori OR1 (orthologous position: D299 (Nakagawa et al., 2012)). Overall, 13 of the top 20 amino

acid positions were present within the two volumes containing only 111 of the 397 residues present in the

protein (p < 0.0001; hypergeometric test), suggesting a significant role for these regions in determining

the observed olfactory response variation between species.

This Or22a protein structure data support the changes that have been reported from several members of

the melanogaster clade (Auer et al., 2020; Dekker et al., 2006). Here we find again similar amino acid po-

sitions that were previously identified, and which were predicted to be the putative binding pocket of

the Or22a receptor (Figures 5E–5G, in red). However, it is not clear how these protein sequence alterations

would affect protein folding and thus tertiary structure, therefore additional study is needed to address

these hypotheses, especially as it relates to ligand selectivity and binding pocket function (Butterwick

et al., 2018; Leary et al., 2012; Yang et al., 2017). As the cryo-EM structure of ORCOhas now been elucidated

(Butterwick et al., 2018), we anticipate a highly researched olfactory receptor such as Or22a would be the

next viable candidate for crystallography and cryo-EM studies, and thus would allow for an expanded

testing of the before-mentioned hypotheses about functional changes to binding pocket structure. Here
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we have used ORCO as the template in this analysis as at the time it was the only OR with known structure.

More reliable homology modeling and stronger inferences will become possible using the same approach

as structures of more similar ORs become available. A recent study has emerged utilizing advanced

modeling techniques to examine ligand affinity and binding in three-dimensional protein structures

from an OR of the jumping bristletail (Machilis hrabei), and their findings complement and enhance our

findings and interpretations of potential chemosensory evolution (del Mármol et al., 2021). In the present

study, we also addressed the protein sequences for the gustatory receptors that detect carbon dioxide

(CO2; Gr21a/Gr63a; ab1C; Figures 4B and S10). However, as very few of the target species had genomic

data, it remains unclear how these minor changes in sequences account for shifts in ligand sensitivity,

where, again, all species detect CO2 but to a variable degree (Figures 4B and S10).

OR22a selection analysis

To determine the selection regimen governing the evolution of the OR22a genes, we performed four

different tests. BUSTED was used to test for selection across the complete OR tree as well as by selecting

the OR22a and OR85a foreground branches with synonymous rate variation. BUSTED found no evidence

(LRT, p value = 0.05) of gene-wide episodic diversifying selection in any of the branches of the OR22a

and OR85a phylogeny, indicating that there is no evidence that any sites have experienced diversifying se-

lection. To test if positive, lineage-specific selection has occurred on only a proportion of branches, signa-

tures of diversifying selection were inferred using aBSREL. A total of 26 branches were formally tested for

diversifying selection. aBSREL found no evidence of episodic diversifying selection in the OR phylogeny.

We performed the RELAX test to search for a putative signal of relaxation among the OR22a CDS, using as

reference all branches of the OR phylogeny. RELAX Test for selection relaxation (K = 0.32) was significant

(p = 0.000, LR = 162.68). Next, we used MEME (Mixed Effects Model of Evolution) to identify sites that have

experienced episodic positive selection. Using a p value threshold of 0.05, MEME found evidence of

episodic positive/diversifying selection at eight sites of the OR22a sequences. Positions 18, 166, 184,

207, and 227 overlap with sites that predict OR22a odorant responses using the empirical approach

described in (Chepurwar et al., 2019). In addition, sites 32, 57, and 209 were only found in our analysis

(Figure S5A).

Response prediction using identified positions

Is it possible to predict the odorant responses of a novel receptor protein, if we already know the response

of orthologous receptors in other closely related species? In our data set of responses for 14 orthologous

OR22a receptors toward a set of odorants, we excluded the responses of one species at a time, and then

predicted the responses of this excluded species using an adapted computational approach (Chepurwar

et al., 2019). This earlier paper focused on predicting the olfactory response utilizing the responses of pa-

ralogous receptors within the same species, whereas in the present study, we base our predictions on or-

thologous receptors across closely related species. As previously described (Chepurwar et al., 2019), we

used a shuffled control and a distance-based metric to assess the quality of our model predictions. We

define DPred;Actual as the absolute difference between the predicted response and the actual response of

an OR toward an odor, and DCtrl;Actual as the absolute difference between the control prediction and the

actual response. Thus, these two terms indicate the error in the actual and the control predictions. If our

predicted response is better than the control prediction (e.g., closer to the actual observed response),

the value of DPred;Actual �DCtrl;Actual should be negative (colored in red; Figure 5B). In each iteration, we

excluded data from the receptor of a single species, then determined the top 20 residues using the remain-

ing 13 receptors, and predicted the response of the excluded species using these top residues and the

responses of the available 13 receptors; thus, predictions were made for the 14 receptors in 14 different

iterations (Figure 5B).

The heatmaps in Figure 5 show the comparisons for all our modeled predictions, and reveal a very high

abundance of negative values (shown in red), which indicates that our predicted response was better

than the control. The average DPred;Actual of an OR (14.71) was smaller than the average DCtrl;Actual (31.02)

by 16.31 spikes, a predictive improvement of more than 53% over the control (Figures 5F and 5G). Thus,

overall, our modeling predictions using the sequence similarity at the top 20 response-determining posi-

tions were significantly closer to the actual responses than control predictions. These predictive improve-

ments were substantial considering the absolute values of odorant responses in OR22a from 14 Drosophila

species (mean G SD = 28.78 G 33.48 spikes; N = 14 3 21 species-odorant combinations).
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In summary, our modeling results show that the chemical responses of an olfactory receptor can be reason-

ably predicted using the available data from orthologous receptors (i.e., Or22a) across closely-related spe-

cies when combined with functional characteristics (Figure 5). We also note that as moreDrosophila species

continue to be sequenced, the responses of orthologous receptors in new species can continue to bemore

accurately predicted using just their OR sequence or genomic data combined with our current olfactory

response data set. This finding greatly extends the utility of the present study toward future novel species

or novel olfactory receptor proteins within this genus.

DISCUSSION

Despite the fact that the first odorant receptors were described almost 30 years ago (in mammals (Buck and

Axel, 1991); and insects (Vosshall et al., 1999)), and that the study of receptor–ligand interactions have been

established using various expression systems (Hallem et al., 2004; Katada et al., 2003), it has remained

elusive how chemical ligands interact with their corresponding receptors. Perhaps most importantly,

the evolution of olfactory systems of related species occupying different ecological niches remained

unexplored. Only recently, progress has been made regarding predictions of unique receptor–ligand in-

teractions. For example, either for predicting a novel ligand based on chemical similarity using the ligand

of interest and already established ligands of a similar receptor (Haddad et al., 2008; Schmuker et al., 2007),

or for predicting a receptor function based on sequence similarities with another receptor using previously

established ligands (Chepurwar et al., 2019). Here we analyze the olfactory response profiles of different

olfactory receptors in 20 closely relatedDrosophila species. We first started by identifying all 37 OSN types

inD. melanogaster andD. suzukii (Figure 1), and then highlighting thoseOSN types that deviate strongly in

their olfactory function (e.g., ab2B, ab3A, ab9B, ab10A, and ai3A). We next characterized 10 OSN re-

sponses across another 18 species from the Sophophora subgenus (Figure 3), where we found that the

ab2B neurons showed conserved responses to ethyl-3-hydroxybutyrate in the majority of the species; how-

ever, seven species exhibited completely non-overlapping response patterns in this OSN type. Here we

propose that a series of olfactory receptor replacements is the most viable evolutionary explanation for

this chemosensory variation across our 20 members of the Sophophora subgenus (Figure 4).

Contrary to the ab2B neurons, the ab3A neurons of the 20 total species exhibited only gradually changed

chemical response profiles, suggesting that perhaps homologues of the same receptor (i.e., Or22a in

D. melanogaster) are expressed in ab3A neurons of all species tested. By correlating these ligand response

profiles with the species-specific Or22a receptor sequences (e.g., for those 14 species, where the se-

quences were available) we were able to localize the top 20 amino acid positions that determine the func-

tional response profile of this receptor protein (Figure 5). Interestingly, 3Dmodeling of the receptor protein

localized these 20 amino acids into two distinct spatial regions that had already been suggested to be

involved in determining receptor specificity or ligand binding pocket (Auer et al., 2020; Butterwick et al.,

2018) (Figures 5F and 5G). Although standard tests for positive selection across OR22a genes were nega-

tive, we found evidence for trends and/or shifts in the stringency of natural selection. Our finding that

OR22a sequences bear putative signals of relaxation of purifying selection as well as episodic positive se-

lection acting at specific functional sites of OR22a could be explained by the broader functional response

profile of the OR22a receptor, permitting the evolution of new ecological adaptations (Andersson et al.,

2015). In addition, based on the sequence locations for these 20 amino acid positions across the functional

receptor of each species, we could begin to predict receptor function across novelDrosophila species with

previously unmatched accuracy (Figure 5D).

An important observation from our dataset is that some OSN locations are far more likely to change than

others, for example, we observe consistent alterations in ab2B and ab3A across our 20 species, whereas

other OSNs remain functionally identical as well as continue to be highly conserved in their amino acid

sequence (Figure 4). One explanation for these specific OSN changes could be related to yeast or host-

specific microbial odorants. It has been shown previously for Drosophila species that yeast control attrac-

tion and oviposition more so than the host plant material (Becher et al., 2012); thus, it is possible that the

repeated alterations in olfactory function of these OSNs, especially ab2B and ab3A, are related to yeast-

specific and ecologically vital odors for each fly species (Koerte et al., 2020). Another possible explanation

for the observation that elevated levels of amino acid sequence variation between species more consis-

tently occurs for a particular OR could be related to the stability of tertiary structures, especially within

transmembrane regions or putative binding pockets, or the stability during folding of the protein sequence

itself (Chepurwar et al., 2019; Dalton et al., 2013). In a similar fashion, it is also possible that a stability
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explanation could account for why some amino acid regions within a protein sequence are also more likely

to change. For example, it is unclear why amino acid positions 45, 67, or 93 of the Or22a sequence display

lower levels of sequence conservation between six species within the melanogaster clade (Auer et al.,

2020), a general region we also show is consistently variable across our 20 examined species (Figure 5).

It could also be argued that relaxed constraints at the amino acid sequence level are not necessarily re-

flected at the level of tertiary structure in cases where the amino acid changes are conserved (i.e., basic

amino acids are exchanged for another basic amino acid). Here, less conserved parts of the ORsmight carry

many changes in coding sequences that are neutral since they do not affect function. In cases with ligand

shifts, instead, the observed amino acid changes could be in positions that allow variability in ligand bind-

ing, potentially changing the odorant perceived (i.e., bound) by a particular OR. Moreover, it is likely that

several specific regions of the protein sequence and corresponding tertiary structure are excellent candi-

dates to further examine how specific amino acid substitutions relate to ligand spectra shifts between spe-

cies, or perhaps toward the stability of ligand binding affinities within the binding pocket (Auer et al., 2020;

Dalton et al., 2013; Shykind et al., 2004).

Since its introduction into Europe in 2008, D. suzukii has been extensively studied, primarily as an agricultural

pest, but also as an emerging model for speciation and evolutionary neuroethology (Crava et al., 2016; Dekker

et al., 2006; Hickner et al., 2016; Karageorgi et al., 2017; Keesey et al., 2015, 2019a). Here we provide significant

progress toward the functional characterization of all OSNs in both the antenna and the palps of this adult fly.

Surprisingly, 32 out of 37 OSNs that we compare between D. suzukii and the classical model,D. melanogaster,

show conserved odorant binding affinities. Thus only five OSNs deviate strongly in their olfactory function,

including ab2B, ab3A, ab9B, ab10A, and ai3A, where several of these receptors in D. suzukii were predicted

to be functionally divergent, according to the analyses of genomic data alone (Crava et al., 2016; Hickner

et al., 2016; Ramasamy et al., 2016). For this study, we primarily focus on the two large basiconic sensillum types

(e.g., ab2 and ab3), and further document that, although their odorant tuning differs,D. suzukii appears tomain-

tain the sameneural connectivity to the primary olfactory processing centers within theAL (Figures 1B–1E). How-

ever, it was shown recently inD. simulans that even when peripheral odorant spectra are conserved, changes in

neural circuitry can occur in the higher brain regions, and can lead to behavioral valence shifts (Seeholzer et al.,

2018). Thus, additional work should be conducted to assess neural connections in D. suzukii for variations that

may not be apparent at the periphery or within the input side of the AL.

Another interesting phenomenon that we observe is that there are seemingly two different functional types

of the ab3A-like neuron in this pest insect, one that is tuned toward IBA, and the other toward bCC, where

both functional types are found in the same animal. This suggests that sensillum types across the antenna

are non-uniform, and that OR gene duplication events and sequence divergence are potentially important,

perhaps playing a wider role in the evolution of species-specific use of olfactory cues (e.g., Or22a, which has

six functional duplications in D. ananassae). Here we propose that variation of expression may exist be-

tween gene duplications, and could vary between individuals within the same population. Alternatively,

duplication events may allow new copies to have relaxed constrains on the amino acid sequence as long

as the original OR retains its function. However, we again note that the ab3B OSN remains identical be-

tween these two types of ab3 inD. suzukii as well as identical to that recorded from D. melanogaster adults

(i.e., detecting 2-heptanol). Thus, both ab3B (Or85b) and ab2A (Or59b) can act as anchors for identifying

ab2-like and ab3-like sensilla within all 20 examined Drosophila, as these OSNs are highly conserved

and seemingly identical throughout our Sophophora phylogeny despite the paired OSN in the same

sensillum often shifting ligand affinity (Figures 4 and 5).

Hereweposit that receptorcopiesmaybedifferentiallyexpressed (in locationandrelativeabundance)across the

antenna, potentially promoting disparities in ecological preferences. This may also support observations of

behavioral and neuronal differences between individuals within a single species (Honegger et al., 2019; Linne-

weber et al., 2020). A similar duplication was shown previously to occur with the Ir75 complex (Prieto-Godino

et al., 2017), in this case withinD. melanogaster, where these co-expressed OSNsmap to the same glomerulus,

but todiffering neural regions or spatial locations.Whereas our two ab3AOSN types appear tomap to the same

glomerulus, it is unclear whether they map to different regions within this single glomerulus. Future studies are

needed to test the hypothesis that a single glomerulus can split into two or more during the evolution of new

odorant function at the periphery or vice versa (Chai et al., 2019; Prieto-Godino et al., 2017). Again, we also pro-

pose that a developmental exchange between larval and adult copies ofOr22a/Or22b andOr22c could also ac-

count forD. suzukii adults detecting bCC, as this odorant matches closely with the best-known ligand for Or22c
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(a receptorusually onlyexpressed in larval stages forD.melanogasterand thatdetects 2-acetylpyridine) (Mathew

etal., 2013). InD.melanogaster,manyORsare adult- or larval-specific, andareonly functionally expressedduring

those developmental stages. Here we posit that these stage-specific OR expression patternsmay vary between

species. To our knowledge, genetic comparisons of olfaction across species are generally done from adult or

larval tissues only, but we hypothesize that evolutionary gains and losses of receptors may be better explained

through the inclusion of expression patterns fromboth life stages for more species. In general, it is possible that

larval and adult stages within a species display different olfactory preferences to reduce competition between

themselves (Dweck et al., 2018; Koerte et al., 2020). In addition, future examination of this stage-dependent phe-

nomenon could potentially address the order or sequence of events that facilitate new olfactory and ecological

niches (Keesey et al., 2020; Koerte et al., 2020; Prieto-Godino et al., 2020; Vogt et al., 2020).

Besides the similarity of odorant responses across the species of the suzukii clade, we also note for the first

time an increase of the ab2-like sensillumwithin this genus (Figure 3), which is in contrast to the well-studied

melanogaster clade that instead has a general increase in the ab3-like sensillum. As such, we continue to

compile additional strong support for the notion that relative size and energy allocation toward a particular

odorant is indicative of ecological relevance (Dekker et al., 2006, 2015; Keesey et al., 2019a; Linz et al.,

2013). Here it appears that D. suzukii and other spotted-wing relatives have enhanced their fresh fruit de-

tecting OSNs at the cost of those that detect fermentation by-products (Figure 3). Moreover, we also show

an additional shift in ligand spectra for two fermentation-related neurons, ab2B and ab3A, which, in turn,

now detect ripening fruit odors (Figures 1 and 4), thus seemingly pushing the suzukii clade further toward

an ecological niche and host preference that is different from the melanogaster clade.

As more effort is devoted toward research into the relatives ofD. melanogaster, an assumption has beenmade

that this species group is an ecological model for the entire Drosophila genus. However, current data illustrate

that themelanogaster clade is in fact themost divergent from the othermembers of the Sophophora subgenus,

where most of the tested species, as well as the more basal species in the phylogeny, show an ab3A odorant

tuning toward IBA and not EH or MH odorants (Figure 4). Here we also note that most basal species also

have different ligands for the ab2B OSN (Figure 4). Thus, our data mirror the hypothesis that the adaptation

of the melanogaster clade toward human commensalism and a cosmopolitan lifestyle, which is built around

fallen, fermenting fruit, perhaps related to human agriculture, is purported tobe amore recently derived pheno-

type for this subgroup (Mansourian et al., 2018). Similarly, it is likely that the ecological preference for fermented,

as opposed to ripe fruit, has perhaps evolved multiple times across the Sophophora subgenus, given that we

observe odorant tuning toward EH and MH several times within our screen of 20 species (Figure 4). Moreover,

we note this potential fermenting fruit preference inD. ananassae,D. birchii,Drosophila ficusphila, and again for

Drosophila takahashii, in addition to the six members of the melanogaster clade that we examine. At least for

D. takahashii, a member of the suzukii clade, this fermentation preference was tested and confirmed in previous

behavioral trials, where this species preferred to oviposit in fermented strawberries as opposed to ripe fruits

(Karageorgi et al., 2017). As such, an additional study is required to continue to test our hypotheses about

the ecological rationales for ligand spectra shifts in these other understudied Drosophila species. However,

we feel the functional, olfactory evidence we provide in the present study supports the idea that ab3A (e.g.,

Or22a/Or22b inD.melanogaster) is strongly associatedwith host choice, either for feeding or perhaps indirectly

for oviposition preferences as well.

In addition to the changes documented for the ab3A-like OSN, we also show a series of changes

throughout our 20 Sophophora species for the ab2B-like OSN. In D. melanogaster, this OSN expresses

Or85a, and whereas we find 13 of the 20 species retain the same ligand as D. melanogaster (i.e., E3HB),

we also uncover seven species with widely varied ligand spectra for this OSN (Figure 4). Recently, it was

predicted for D. suzukii that Or85a was lost during evolution, perhaps owing to pseudogenization (Hickner

et al., 2016; Ramasamy et al., 2016). However, we clearly show that a fully functional OSN is present in ab2B

(Figures 1 and 4). Thus, several options exist to explain this occurrence. Here we contend that the similarity

in response to different ligands of OR22a between species contrasts with the results obtained with ab2B/

Or85a, which responds to an entirely unique odorant in D. suzukii, and is narrowly tuned. Thus, several op-

tions exist to explain this occurrence.

First, it is possible that Or85a is a non-functional pseudogene that is not expressed in D. suzukii or that this

OR is not transported to the cell membrane by the Orco chaperone. In this case, it would be likely that a

different receptor is instead expressed in this OSN location as a replacement, and that this new receptor
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provides the unique SSR response profile that we describe (Prieto-Godino et al., 2020). In this scenario, the

closest olfactory receptor match for the observed ligand spectrum in D. suzukii would be Or47a from

D. melanogaster, which is co-expressed with Or33b within the ab5B sensillum subtype. Whether the co-

expression of ORs within an OSN is correlated with receptor replacement has yet to be tested. Similarly,

we suggest that other species may have also replacedOr85a within the ab2BOSN. For example, we predict

that D. affinis may have replaced Or85a with Or43a, given the response to methyl indole. Moreover, in

D. ananassae, Or85a may have been substituted with Or9a, given the ligand specificity toward 3-hy-

droxy-2-butanone.

Second, it is also possible that Or85a is only predicted to be a non-functional pseudogene from the

genomic analyses of D. suzukii owing to a premature stop codon. In this case, a shortened sequence for

Or85a in D. suzukii might retain functional expression, albeit with a completely unique ligand spectrum,

and thus Or85a acts as a pseudo-pseudogene, which is a phenomenon that has been previously described

in D. melanogaster (Prieto-Godino et al., 2016). However, this has only been documented for an ionotropic

glutamate receptor (IR), and the present suggestion could be the first known case of an OR that acts as a

pseudo-pseudogene. In either case, we demonstrate that a functional receptor exists at this OSN location

in D. suzukii, and that the ligand spectrum deviates strongly from that found in D. melanogaster. Interest-

ingly, we also document this same type of occurrence for ab2B in six other Drosophila species from our

screen (Figure 4), where in each case, the ligand spectrum is entirely species-specific, and does not overlap

with any other known species. This is unlike the slow changes or gradual shifts observed in ab3A/Or22a

(Figure 4), where olfactory deviations in ligand spectra are often shared across several species. However,

an additional possibility for ab3A is that a duplicate copy of Or22a, which contains several premature

stop codons and therefore looks like a pseudogene, could be, in fact, a pseudo-pseudogene as well (Ram-

asamy et al., 2016). This new copy of Or22a could then be expressed in one of the two ab3A subpopulations

of D. suzukii, and change or alter the response of the neuron. With all this in mind, whatever the cause for

this change in the ab2B and ab3A OSNs, we show it occurs repeatedly, and that it is therefore likely to pro-

vide a new avenue for rapid olfactory evolution throughout the Sophophora subgenus (Figure 4). Recent

research into D. melanogaster has also highlighted an additional large basiconic, currently named

abx(3), that is indistinguishable from ab3 based on morphological and morphometric features, though

its receptor identity and function have yet to be characterized (Gonzales et al., 2021).

Throughout the previous examinations of the olfactory system of several species within the genus

Drosophila, several mechanisms have been proposed for the evolution of chemosensory receptors. It

has been demonstrated that alterations in the neural circuitry of the P1 neurons (or neurons in higher brain

centers) can dictate attraction or aversion for different species, despite the conserved peripheral detection

of an odorant (Seeholzer et al., 2018). There have also been numerous publications describing the net gains

or losses of chemosensory receptors that result in dramatic changes to host or habitat preferences, such as

the variations shown for the Scaptomyza leaf-mining genus, which are still within the Drosophilidae family,

but have, for example, lost Or22a entirely (Goldman-Huertas et al., 2015). In addition, there has also been a

plethora of examples describing alterations in the relative abundance of chemosensory gene expression,

either increases or decreases, where each change corresponds with ecological specialization in regards to

either host or courtship preferences (Auer et al., 2020; Dekker et al., 2006; Keesey et al., 2019a; Linz et al.,

2013). In these cases, the peripheral abundance also always accompanies a corresponding shift in glomer-

ulus volume within the AL (Grabe et al., 2016; Linz et al., 2013). In the present study, we provide several new

examples of the latter two of thesemechanisms, both by illustrating a ligand spectrum shift at the periphery

and providing robust evidence for sweeping changes in the relative abundance of OSN types. Intriguingly,

we find that these two mechanisms often co-occur, that is, when ligands change their binding affinity, we

also notice changes in relative sensillum abundance connected to those sameOSN types. As such, it is diffi-

cult to determine what changes first in the timeline of olfactory evolution, ligand specificity, or receptor

expression. Therefore, future studies of Drosophila should continue to compare closest relatives or entire

clades of species in order to determine the potential chronology of evolution, which may or may not have a

consistent temporal mechanism within this genus.

In this study, we highlight that understanding the evolution of olfaction requires not just the determination

of which chemical odorant is detected by a given OSN, but also how the relative abundance of those de-

tectors combines to generate a more holistic view of olfactory function within the Drosophila phylogeny.

We identify several repeated examples of functional chemosensory evolution. First, we show that receptor
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expression can vary according to changes in relative sensillum number, for example, between the ab2- and

ab3-like morphological subtypes. Second, we observe that a receptor can vary in its sensitivity toward the

same odorant across our insect species (e.g., CO2). Third, we show that few amino acid sequence changes

can lead to variations in ligand affinity that are often shared between close phylogenetic relatives (i.e.,

Or22a). Lastly, from our data, we identify drastic changes in odorant detection within the ab2B sensillum

that, inD. melanogaster, contains Or85a. Here we propose that a series of olfactory receptor replacements

is the most viable explanation for this chemosensory variation across our 20 members of the Sophophora

subgenus. Importantly, we emphasize that all chemosensory changes are highly targeted, and repeatedly

affect only the same subset of genomic and neural locations. These locations may commonly correlate with

gene duplications events or sites of receptor co-expression (Auer et al., 2021), which may serve as potential

mechanisms for ecological and evolutionary shifts in host preference. Thus, olfactory evolution across these

20 species appears to be highly repeatable in regards to where chemosensory changes consistently occur.

Future studies should continue to examine all possible mechanisms to explain why someOROSN locations

are far more likely to shift than others within the Sophophora subgenus.

It is important to note that the persistent dearth of viable ecological and natural history information for the

majority of the known Drosophila species makes the subsequent extrapolation toward evolutionary pres-

sures, ecological mechanisms, or roles of niche partitioning difficult (Keesey et al., 2019c, 2020). This

paucity of ecological and host information leaves several species without known ligands for either ab2B

or ab3A, despite a chemically diverse and robust screening of these OSNs in the present study using known

host materials from other members of this subgenus. As such, we continue to implore the expansion of sci-

entific research to include a wider array of non-melanogaster species, especially those investigations that

could provide ecological, host, and environmental, habitat, or behavioral rationales for morphological and

chemosensory variation. We expect that as increased efforts are placed on additional Drosophila species,

in future, we may identify and test additional hypotheses or explanations for the observed olfactory shifts

within this incredibly diverse genus of flies. Through the utilization of the comparative method to study sen-

sory biology (i.e., auditory, visual, olfactory, gustatory, and tactile cues) and behavioral ecology (i.e.,

feeding, oviposition, attraction, and aversion), we can continue to increase our understanding of the funda-

mental mechanisms by which evolution shapes the nervous system.

Limitations of the study

We tested many aspects of functional olfaction, including relative abundance of sensillum types or esti-

mates of olfactory receptor copy numbers within and between many different species. We also tested che-

mosensory sensitivity toward the same odorant or chemosensory variation in the strongest excitatory li-

gands for a particular OSN or location. However, we did not test any behavioral variables. Thus, it will

be important in the future to address how (and if) biological variance in sensitivity or ligand type (e.g.,

changes in response to CO2 or EH/MH odorants) predicts valence (i.e., attraction versus aversion) and

the strength of any induced activity at the organismal level. These behaviors will also be critical to better

understand concentration dependent valence, where high levels can be attractive to some but not all spe-

cies that functionally detect the same odorants. It is also worth noting that whereas we test several repli-

cates across individuals within a species, population variance does occur, including genetic variability in

OR type and function, even in extremely well-studied model species such as D. melanogaster. Future

research will be required to confirm whether the species-specific differences we identify and describe

are typical of all populations of the species we focused upon in this study.
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Piñero, J.C., Barrett, B.A., Bolton, L.G., and
Follett, P.A. (2019). b -cyclocitral synergizes the
response of adult Drosophila suzukii ( Diptera :
Drosophilidae ) to fruit juices and isoamyl acetate
in a sex- dependent manner. Sci. Rep. 9, 10574.

Prieto-Godino, L.L., Rytz, R., Bargeton, B., Abuin,
L., Arguello, J.R., Peraro, M.D., and Benton, R.
(2016). Olfactory receptor pseudo-pseudogenes.
Nature 539, 93–97.

Prieto-Godino, L.L., Rytz, R., Cruchet, S.,
Bargeton, B., Abuin, L., Silbering, A.F., Ruta, V.,
Dal Peraro, M., and Benton, R. (2017). Evolution of
acid-sensing olfactory circuits in Drosophilids.
Neuron 93, 661–676.e6.

Prieto-Godino, L.L., Silbering, A.F., Khallaf, M.A.,
Cruchet, S., Bojkowska, K., Pradervand, S.,
Hansson, B.S., Knaden, M., and Benton, R. (2020).
Functional integration of ‘‘undead’’ neurons in
the olfactory system. Sci. Adv. 6, eaaz7238.

Ramasamy, S., Ometto, L., Crava, C.M., Revadi,
S., Kaur, R., Horner, D.S., Pisani, D., Dekker, T.,
Anfora, G., and Rota-Stabelli, O. (2016). The
evolution of olfactory gene families in Drosophila
and the genomic basis of chemical-ecological
adaptation in Drosophila suzukii. Genome Biol.
Evol. 8, 2297–2311.

Robertson, H.M., and Kent, L.B. (2009). Evolution
of the gene lineage encoding the carbon dioxide
receptor in insects. J. Insect Sci. 9, 1–14.

Schmuker, M., De Bruyne, M., Hähnel, M., and
Schneider, G. (2007). Predicting olfactory
receptor neuron responses from odorant
structure. Chem. Cent. J. 1, 1–10.

Seeholzer, L.F., Seppo, M., Stern, D.L., and Ruta,
V. (2018). Evolution of a central neural circuit
underlies Drosophila mate preferences. Nature
559, 564–569.

Shaw, K.H., Johnson, T.K., Anderson, A., de
Bruyne, M., and Warr, C.G. (2019). Molecular and
functional evolution at the odorant receptor Or22
locus inDrosophila melanogaster. Mol. Biol. Evol.
1–11.

Shykind, B.M., Christy Rohani, S., Nemes, A.,
Mendelsohn, M., Sun, Y., Axel, R., and Barnea, G.
(2004). Gene switching and the stability of
odorant receptor gene choice odors elicit
defined patterns of glomerular activation,
revealing a functional representation of the
anatomic map. Cell 117, 801–815.

Stensmyr, M.C., Dekker, T., and Hansson, B.S.
(2003). Evolution of the olfactory code in the
Drosophila melanogaster subgroup. Proc. R. Soc.
B Biol. Sci. 270, 2333–2340.

Stensmyr, M.C., Dweck, H.K.M., Farhan, A., Ibba,
I., Strutz, A., Mukunda, L., Linz, J., Grabe, V.,
Steck, K., Lavista-Llanos, S., et al. (2012). A
conserved dedicated olfactory circuit for
detecting harmful microbes in Drosophila. Cell
151, 1345–1357.

van der Goes van Naters, W., and Carlson, J.R.R.
(2007). Receptors and neurons for fly odors in
Drosophila. Curr. Biol. 17, 606–612.

Vogt, K., Zimmerman, D.M., Schlichting, M.,
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Flies were obtained from The National Drosophila Species Stock Center, NDSSC, at Cornell University

(Ithaca, USA), or from Ehime University (EHIME-Fly; Matsuyama, Japan). Stock numbers and reference

specimens include the following genetic lines: D. sechellia (14021-0248.07), D. simulans (14021-0251.01),

D. mauritiana (E-18901), D. melanogaster Canton-S (Hansson Lab Strain), D. yakuba (14021-0261.38),

D. erecta (14021-0224.01), D. suzukii (14023-0311.01), D. subpulchrella (E-15201), D. biarmipes (14023-

0361.10), D. takahashii (E-12201), D. pseudotakahashii (E-24401), D. eugracilis (E-18101), D. ficusphila

(E-13301), D. elegans (E-13201), D. birchii (E-24201), D. ananassae (14024-0371.12), D. pseudoobscura

(14011-0121.00), D. subobscura (14011-0131.04), D. affinis (14012-0141.00), D. willistoni (14030-0811.24).

All fly stocks were maintained on standard diet (normal food) at 22�C with a 12 h light/dark cycle at 40%

humidity (Keesey et al., 2019a). In addition, the following species had their diet supplemented with

freshly crushed blueberries: D. sechellia, D. suzukii, D. subpulchrella, D. biarmipes, D. takahashii,

D. pseudotakahashii, D. ficusphila, D. elegans, D. pseudoobscura, D. subobscura and D. affinis. Fly vials

were maintained with consistent numbers of founding females (15–20) per container, in order to maintain

consistent adult sizes via controlled population density. Phylogenetic information for all species was made

available from previous publications as well as other literature (Crava et al., 2016; Ramasamy et al., 2016).

Additional information about each organism is available through the Key resources table as well as the

websites for ordering Drosophila species stocks.

METHOD DETAILS

Chemical stimuli and single sensillum recordings

All synthetic odorants that were tested were acquired from commercial sources (Sigma, www.sigmaaldrich.

com and Bedoukian, www.bedoukian.com) and were of the highest purity available. Stimuli preparation

and delivery for electrophysiological experiments followed previously established procedures, and any

headspace collection of plant, fruit or microbial volatile odors was carried out according to standard pro-

cedures (Keesey et al., 2015, 2017). For SSR experiments, 10mL of a dilution (10�4 in hexane) of an odor was

loaded onto a filter paper disc that was placed inside a glass pipette. Electrophysiological contacts were

made with tungsten electrodes (reference electrode into the eye, recording electrode into a single

sensillum). Females were used from all species, and flies were between 2 and 7 days post-eclosion. An

odor panel of 80–90 compounds was selected based on previous literature (de Bruyne et al., 2010; Ebrahim

et al., 2015; Karageorgi et al., 2017; Keesey et al., 2015; Piñero et al., 2019), and was used to screen all OSNs

across the antenna and palps of each examined species. In addition, when this odor screen failed to identify

any strong ligands, we also utilized gas-chromatography single-sensillum recordings (GC-SSR). Here we

employed odor collections from diverse floral, fruit, and microbial origins. In total, we estimate our GC-as-

sisted screens included between 3000 and 5000 separate odorants, similar to previous studies (Dweck

et al., 2016).

Neuronal staining (single-sensillum backfills)

Flies were prepared as usual for SSR inside a plastic pipette tip, and sensilla were identified first with char-

acteristic odor screening using tungsten electrodes. The tungsten recording electrode was then removed

and replaced with a pulled glass capillary which contained a filament, where the filament was pre-filled with

neurobiotin via dipping the unsharpened end of the capillary into a 1–2% solution of the dye. Contact with

the targeted sensillum was re-made on the SSR table with this filled glass electrode, which punctured, but

did not pierce through both sides of the sensillum. A good contact was established when viable SSR spikes

were observed, and when appropriate odor responses could be generated using this glass electrode

(which replaced the tungsten wire). Light illumination was then removed, and this sensillum contact was

maintained for 30–45 min, with periodic odor puffs to help push the dye towards the antennal lobe (AL).

Both the A and B neurons were stimulated with their relevant odors every 5–10 min for the duration of

the contact with glass-filled electrode and neurobiotin. Thus, axonal projections of OSNs from ab2 and

ab3 sensilla were identified by SSR followed by this neurobiotin backfill. Sensillum types in D. suzukii

were identified by SSR with the diagnostic odors IPA/methyl acetate for ab2 and 2-heptanol/IBA for

ab3. Next, the recording electrode was replaced with a pulled glass capillary (with filament) that was filled

with neurobiotin (Invitrogen, 2%m/v in 0.25 M KCl). Neurobiotin was allowed to diffuse for 45–90 min under

periodic stimulation with the associated odors for each sensillum type. Brains were then dissected in PBS

and fixed in 4% paraformaldehyde (PFA) for 30 min at room temperature (RT), rinsed 33 15 min in PBS with

0.3% Triton X-100 (PT). This was followed by incubation with mouse monoclonal NC82 antibody (1:30,
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CiteAb, A1Z7V1) and streptavidin conjugated with Alexa Fluor 555 (1:500, S32355, Invitrogen) in 4% normal

goat serum (NGS,) in PT (48 h at 4C). Samples were washed 4 3 20 min in PT, incubated overnight with

Alexa633-conjugated anti-mouse (1:250, A21052, Invitrogen) in NGS-PT, then rinsed 4 3 20 min in PT

and mounted in VectaShield (Vector Laboratories) (Prieto-Godino et al., 2017). Images were acquired

with a Zeiss 710 NLO confocal microscope using a 40x water immersion objective. The D. suzukii DM2,

VM5d, DM4 and DM5 glomeruli identity was assigned based on similar 3D glomerular position and shape

within the AL, as compared to those of the D. melanogaster antennal lobe atlas (Grabe et al., 2016).

Mapping and counts of olfactory sensillum types

Adult flies were prepared as has been described previously for single-sensillum recordings (Keesey et al.,

2015; Lin and Potter, 2015). A single adult was immobilized in a plastic pipette tip, with only the head pro-

truding. The fly was positioned in one of four ways, in reference to the arista (e.g. arista down, up, side 1 and

side 2) (Figures 2A–2D). This positioning allowed for consistent orientation of the sensillar zones along the

antenna of each species, and enabled consistent counting of sensillum types across individuals. We

observe concentric rings or circular organization of the different sensillum types, especially the large basi-

conics. In this case, the ab3 is usually in the slight depression of the 3rd antennal segment, followed by

round concentric zones that increase in first ab1 and then ab2 sensillum types, and subsequently the state

of small basiconics such as ab4. Schematics of each species were produced based on contacts with each

sensillum type, where a sensillumwas identified using physical metrics (i.e. size, tip shape, width) (Figure S1)

as well as ligand identities of each OSN, and in addition, the electrical response dynamics such as ampli-

tude and relative ratio of OSN firing rates or size (Figures 2I–2K). We found all 20 species had similar

morphological characters for large basiconics, as well as electrical response dynamics; however, the den-

sity or abundance of each sensillum type varied greatly between species, but not between individuals. Pre-

vious estimates of abundance 19 utilized a sample size of 30–40 contacts, whereas here, we attempted to

make between 40 and 100 contacts on average per species (Figure 3). Our estimates of sensillum propor-

tions match very with previous examinations (Linz et al., 2013), which were universally restricted to the

melanogaster clade, thus all species beyond this group are to our knowledge, newly described here con-

cerning sensillar proportions.

Fly images (SSR heads, wings and ovipositor)

Dispatched flies were mounted and views of the ovipositor (180x) were acquired as focal stacks on an AXIO

Zoom V.16 (ZEISS, Germany, Oberkochen) with a 0.5x PlanApo Z objective (ZEISS, Germany, Oberkochen).

The resulting stacks were compiled to extended focus images in Helicon Focus 6 (Helicon Soft, Dominica)

using the pyramid method. Here we provided images of the serrated ovipositors of close relatives to

D. suzukii in order to highlight the physical deviations in egg-laying potential (Figure S1), which has

been described previously (Atallah et al., 2014). We also documented the differences in male wing pigmen-

tation (32x), as D. suzukii and D. subpulchrella can be difficult to distinguish (Figure S7). Moreover,

D. subpulchrella were shown recently in the most up to date phylogenetic analyses of thisDrosophila clade

to be the closest relatives toD. suzukii, as opposed toD. biarmipes (Dekker et al., 2015; Hickner et al., 2016;

Keesey et al., 2019a; Ramasamy et al., 2016). Images were also compiled of dissected heads (128x) to illus-

trate the mounting preparations for sensillum counts (Figures 2A–2D).

QUANTIFICATION AND STATISTICAL ANALYSIS

All images and drawings are originals, and were prepared by the authors for this publication. Figures were

prepared via a combination of Syntech AutoSpike32 (v3.7), R Studio (version 1.2.5033), Microsoft Excel,

Adobe Illustrator CS5, EzMol (v1.22), and Geneious Prime (v10.2.3). Statistics were performed using

GraphPad InStat version v3.10 and Past v3.25 at a= 0.05 (*), a= 0.01 (**), and a = 0.001 (***) levels. For trans-

membrane region predictions, several resources were utilized (TMHMM Server v2.0; http://www.cbs.dtu.

dk/services/TMHMM/; TMpred Server – EMBnet; https://embnet.vital-it.ch/software/TMPRED_form.

html), and any nucleotides converted to amino acid sequences were performed using ExPASy (SIB

Bioinformatics Resource Portal; https://www.expasy.org/). A multiple sequence alignment of protein was

generated using MAFFT (v7.402) with default setting. The final trees were reconstructed using a maximum

likelihood approach in FastTree (v2.1.8) with -gamma option to rescale the branch lengths. The tree was

visualized and processed in Figtree (v1.4.2). Numbers next to the tree branches indicate the support values.

The scale bar for branch length represents the number of substitutions per site.
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Positive selection analysis

A codon-based alignment of the OR coding sequences was generated using MUSCLE (UPGMA Cluster

method) implemented in MEGA X (Version 10.0.5). BUSTED (Branch-site Unrestricted Statistical Test for

Episodic Diversification) provides a gene-wide test for positive selection by asking whether a gene has

experienced positive selection at minimum one site on at least one branch (Murrell, B et al. "Gene-wide

identification of episodic selection." Mol. Biol. Evol. 32, 1365–1371 (2015)). Signatures of diversifying selec-

tion were inferred using aBSREL (adaptive Branch-Site Random Effects Likelihood) an improved version of

the commonly-used "branch-site" models, as implemented in Datamonkey (https://www.datamonkey.

org). Significance was assessed using the Likelihood Ratio Test at a threshold of p = 0.05, after correcting

for multiple testing.

RELAX was useful for identifying trends and/or shifts in the stringency of natural selection (and not to test

for positive selection as such) on a given gene. A significant result of k > 1 indicates that selection strength

has been intensified along the test branches, and a significant result of k < 1 indicates that selection

strength has been relaxed along the test branches (Wertheim JO, Murrell B, Smith MD, Kosakovsky

Pond SL, Scheffler K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol.

2015 Mar;32(3):820–32. https://doi.org/10.1093/molbev/msu400). RELAX Test for selection relaxation

(K = 0.32) was significant (p = 0.000, LR = 162.68). We used MEME (Mixed Effects Model of Evolution) to

identify sites which have experienced episodic positive selection (Murrell B, Wertheim JO, Moola S, Weig-

hill T, Scheffler K, Kosakovsky Pond SL. Detecting individual sites subject to episodic diversifying selection.

PLoS Genet. 2012;8(7):e1002764. https://doi.org/10.1371/journal.pgen.1002764). MEME was run in Data-

monkey (https://www.datamonkey.org) using standard parameters and a p value threshold of 0.05.
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