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ABSTRACT
Objective: To develop an algorithm to quantify indices of  sleep quantity and quality using the 
SenseWear armband (SWA) and to compare indices of  sleep from this novel algorithm to standard 
wrist actigraphy (Actiwatch 2; AW2) under free-living conditions. Material and Methods: Thirty 
participants (47±10 years; 33.0±4.8kg/m2) wore the SWA and AW2 for seven consecutive days. 
Participants self-reported bedtime and waketime across these 7 days. Bedtime, sleep onset, sleep 
offset, waketime, total sleep time (TST), time in bed (TIB), sleep effciency (SE), sleep onset latency 
(SOL), wake after sleep onset (WASO), sleep fragmentations (SF), sleep regularity (calculated as 
SD of  waketime), and mid-point of  sleep were calculated using each device. Results: There was 
significant evidence for equivalence of  means (or mean ranks) for bedtime, sleep onset, sleep 
offset, waketime, TST, TIB, SOL, WASO, and midpoint of  sleep measured by the SWA and AW2 
(p<0.05). There was insuffcient evidence for equivalence of  means in SF (SW: 25±6 vs. AW2: 10±3 
events; p=1.0), mean ranks in sleep regularity (SW: 58±33 vs. AW2: 68±40 min; p=0.11), and mean 
ranks in SE (SW: 84.7±5.1% vs. AW2: 86.3±5.5%; p=0.05). When comparing minute-by-minute 
sleep/wake status, the sensitivity and specificity of  the SWA were 0.94 (95%CI: 0.93, 0.95) and 
0.88 (95%CI: 0.85, 0.90), respectively, using AW2 as the criterion measure. Conclusion: The 
algorithm developed for the SWA produced relatively accurate and consistent measurements of  sleep 
quantity, timing, and quality compared to the AW2 under free-living conditions. Thus, the SWA is a 
viable alternative to standard wrist actigraphy.
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INTRODUCTION
Polysomnography (PSG) is considered as the gold 

standard for measuring indices of  sleep1. This technique, 
which is typically employed under laboratory conditions, 
includes continuous monitoring of  brain waves, oxygen 
saturation, breathing patterns, skeletal muscle activity and 
body movements, and eye movement and requires a trained 
technician to perform sleep scoring1,2. Alternative, less invasive 
methods have been used to estimate sleep/wake behavior across 
populations under free-living conditions. The most common 
method to objectively assess free-living sleep/wake behavior 
is wrist actigraphy, which uses accelerometry to detect periods 
of  movement and inactivity3,4. Wrist actigraphy is relatively 
inexpensive, unobtrusive, easy to analyze, and has been validated 
against PSG5,6. By defining sleep or wakefulness in minute-
by-minute epochs, wrist actigraphy data can estimate indices 
of  sleep duration and sleep quality. When compared to PSG, 
wrist actigraphy has been shown have high sensitivity (>90%; 
actigraphy = sleep when PSG = sleep), high accuracy (>90%; 
total proportion correct), but more variable and typically lower 
specificity (33%-96%) in adults6-8.

Consumer and research-grade wearable devices can also 
estimate parameters of  sleep. Almost all wearable devices are 
equipped with accelerometers that can detect movement and 
posture, both of  which can be used to discern sleep/wake 
behaviors. In addition, some devices have additional sensors (e.g., 
light-sensor, thermal sensors, electrocardiographs, gyroscopes, 
and photoplethysmographs) that capture other physiological 
parameters which can be applied to further understand sleep/
wake behavior. Several of  these wearable devices have been 
validated against PSG or wrist actigraphy for measuring indices 
of  sleep quantity and quality9. While most devices identify 
time in bed and sleep duration, there are limited methods 
and resources available to capture other metrics of  sleep 
(e.g., indices of  sleep quality and timing) that may be related to 
health outcomes (e.g., obesity, type 2 diabetes, and depression).

The SenseWear Armband Mini (SWA; developed by 
BodyMedia Inc., Pittsburgh, PA) is a wearable activity monitor 
that has been commonly used in clinical research. The accuracy 
and validity of  the SWA for measuring indices of  sleep quality and 
quantity under free-living conditions is unknown. The objective 
of  this analysis was to: 1) develop an algorithm to quantify indices 
of  sleep quantity and quality from the SWA; 2) to compare 
these indices to the widely accepted method of  wrist actigraphy 
(Actiwatch 2, AW2; Philips Respironics, Bend, OR); 3) and make 
the developed algorithm open-source and adaptable to other 
wearable devices that provide epoch-level data.

MATERIAL AND METHODS

Participants

This study leveraged data collected as part of  a study 
followed individuals who completed an 18-month weight loss 
intervention at the University of  Colorado - Anschutz Medical 
Campus (NCT01985568). The objective of  the parent study 

was to evaluate the effects of  two different behavioral weight 
loss interventions on change in body weight, body composition, 
and cardiorespiratory fitness. These findings have been 
published previously10. As part of  an ancillary study, individuals 
who completed the weight loss intervention were invited 
for an assessment visit 3 years after the completion of  the 
intervention. The present study utilized participants enrolled in 
this ancillary study. The Colorado Multiple Institutional Review 
Board approved all study procedures and participants provided 
informed consent prior to data collection. Eligibility criteria 
included adults aged 18-55 years with overweight and obesity 
(BMI≥27.0 to 42.0kg/m2) who were not physically active 
(self-reported <150min/wk of  moderate intensity physical 
activity). Exclusion criteria included: significant cardiovascular 
metabolic and thyroid disease, cancer within the past 5 years, 
contraindications to exercise, previous weight loss surgery, 
eating disorder, medications affecting body weight, nicotine use, 
current or recent pregnancy.

Assessment of  sleep

Indices of  sleep quantity and quality were assessed 
using wrist actigraphy (AW2) and the SWA. Participants were 
asked to wear each device for 24 hours (h) per day (d) for seven 
consecutive days. The AW2 was worn on the non-dominant 
wrist and the SWA was worn on the upper left arm. The SWA 
and AW2 were only removed during showering, bathing, and 
swimming. Valid days for both devices were defined as having 
at least 95% wear-time (1,361min/d). Because this analysis 
was focused specifically on sleep, days were classified as 12:00 
to 11:59 the next day. The SWA and the AW2 epoch data 
were aligned, so only days with valid data for both devices 
were analyzed. For weekly summary analyses, participants 
needed to have valid data on ≥2 weekdays and ≥1 weekend 
day. Participants were also asked to keep a sleep/wake log by 
recording the time they went to bed (bedtime), the time they 
woke up (waketime), the time of  naps if  applicable, and if  they 
removed either device during the observation period.

Estimating sleep using AW2

The AW2 sleep data was scored using a standardized 
method11. Data were collected in minute-by-minute epochs 
and rest intervals (i.e., intervals from bedtime to waketime) 
were set using the following criteria: participant provided event 
markers at bedtime and waketime, self-reported sleep/wake log, 
defined activity/light thresholds, all of  which were determined 
by manual inspection by trained study staff11. Data were scored 
as active (i.e., awake and not attempting to sleep), rest (i.e., 
awake but attempting to sleep), or sleep using manufacture 
provided software and a wake threshold of  40 counts (Actiware 
v. 6.0.9; Philips Respironics). The following indices of  sleep 
were calculated: 1) bedtime – start of  rest; 2) sleep onset – first 
time sleep is recorded; 3) sleep offset – period of  wakefulness 
following a bout of  sleep which is not followed by more sleep; 
4) waketime – time out of  bed in the morning; 5) total sleep 
time (TST) – sum of  minutes classified as sleep between sleep 
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onset and sleep offset; 6) time in bed (TIB) – sum of  minutes 
between bedtime and waketime; 7) sleep efficiency (SE, %) – 
percent of  time classified as sleep between sleep onset and sleep 
offset; 8) sleep onset latency (SOL) – minutes from bedtime 
until sleep onset; 9) wake after sleep onset (WASO) – sum of  
minutes scored as awake between sleep onset and sleep offset; 
10) sleep fragmentations (SF) – sum of  independent occasions 
scored as awake between sleep onset and offset; 11) sleep 
regularity – the standard deviation (SD) of  waketime; and 12) 
midpoint of  sleep calculated as the halfway point between sleep 
onset and sleep offset. Minute-by-minute, daily data, and weekly 
summary data were used in analyses. The AW2 has been shown 
to have accuracy ranging from 88-89%, sensitivity ranging from 
91-97%, and specificity ranging from 39-66% when compared 
to PSG in adults12,13.

Estimating sleep using SWA algorithm

The SWA utilizes multiple sensors (accelerometer, skin 
temperature, heat flux, galvanic skin response) and a proprietary 
algorithm developed by the manufacturer to characterize body 
position, sleep/wake, and physical activity intensity data into 
minute-by-minute epochs. Summary data includes TST, but sleep 
timing and indices of  sleep quality are not quantified from the 
manufacturer software. The goal of  this study was to improve 
the accuracy and validity of  the manufacturer sleep/wake 
algorithm by applying additional criteria to better characterize 
indices of  sleep quantity and quality. Figure 1 illustrates an 
overview for how our SAS Macro code utilized the minute-by-
minute data to create daily and weekly summaries of  the sleep 
variables. The SAS Macro imported the following variables 
from the manufacturer minute-by-minute files: date-time, a 
binary indicator for lying down, and a binary indicator for sleep. 

During step 1, the Macro cleaned the data by requiring user-inputted 
validation criteria on number of minutes required for a valid day and 
valid number of  weekdays and weekend days required for a valid 
week. Next, the Macro defined the potential nighttime sleep 
window based on user input: 19:00-11:59 the following day. During 
steps 2 and 3, the Macro searched the minute-by-minute data to 
define the sleep window (sleep onset to sleep offset), defined as 
the first time during the defined night where the participant was 
classified as lying down and asleep until the last time during the 
defined night where the participant was classified as lying down 
and asleep. If  the initial sleep onset was followed by extended 
wake time (≥10 minutes) prior to 24:00 then the start of  the sleep 
window was redefined to the first minute identified sleep prior to 
24:00. If  the participant was awake at 24:00 then the first minute 
identified as sleep after 24:00 was used as the start of  the sleep 
window. The sleep window continued into the next day until the 
last minute of  sleep, which was followed by ≥90 minutes of  upright 
time. Once the sleep window was defined, the Macro determined 
time in bed (TIB) by searching for the first minute of  lying down 
prior to sleep onset. This was defined as Bedtime. Next the Macro 
searched for the last minute of  lying down following sleep offset. 
This was defined as waketime. The window from bedtime to 
waketime was defined as TIB. Midpoint of  sleep, TST, WASO, 
SOL, SF, and SE were all determined using the same definitions as 
the AW2 above. The Macro utilized the sleep/wake binary variable 
from the manufacturer software and searched within each TIB or 
sleep window to determine these metrics of  sleep quantity and 
quality. Criteria and rationale for these variables followed previously 
published procedures14. The SAS Macro is openly available at: 
https://github.com/graulaurak/sleep15. While the Macro and criteria 
within the Macro are designed to analyze specific input data, the 
macro is modifiable for other devices that provide epoch-level data.

Figure 1. SAS macro algorithm criteria.
Notes: This figure demonstrates the flow of  data using the created SAS Macro to score the minute-by-minute armband data. BT = Bedtime; S-On = Sleep onset; S-off  = Sleep offset; TIB = Time in bed; TST = Total sleep time; 
SE = Sleep efficiency; SOL = Sleep onset latency; WASO = Wake after sleep onset; SF = Sleep fragmentations.
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Statistical analyses

Statistical analyses were performed using SAS 9.4 (SAS 
Institute Inc., Cary, NC). The AW2 was classified as the standard 
criterion for assessing free-living sleep variables. Thus, our 
primary comparisons were indices of  sleep as determined by 
the SWA compared to the AW2. Data are reported and were 
analyzed as person-days (i.e., each day for each subject counted 
separately) and weekly summaries (i.e., mean ± SD for each 
subject calculated across valid days). For weekly summaries, 
variables were compared between the two devices using two 
one-sided tests for paired samples or Wilcoxon Signed-Rank. 
These analyses were performed using NCSS 2021 Statistical 
Software v21.0.2 (NCSS. LLC; Kaysville, UT).  Equivalence 
margins were specified a priori as 30 minutes for bedtime, sleep 
onset, sleep offset, waketime, midpoint of  sleep, TIB, and TST; 
10 minutes for regularity of  sleep, SOL, and WASO; 5 events 
for SF; 3% for SE. We also compared bedtimes and waketimes 
from AW2 and SWA to those from the self-reported sleep logs 
using two one-sided tests with 30-minute margins.

Minute-by-minute data from the AW2 and the SWA were 
compared using multiple methods. The proportion of  AW2 
minutes correctly identified as sleep by the SWA (sensitivity) 
and the proportion of  AW2 minutes correctly identified as 
awake by the SWA (specificity), as well as the corresponding 
positive and negative likelihood ratios were calculated using the 
epoch data. Sleep indices were compared using Bland-Altman 
plots, depicting the relationship between the mean SWA and 
AW2 variables and the difference (SWA - AW2).  Within-subject 
correlation was accounted for in the calculation of  the mean 
difference and limits of  agreement in the Bland-Altman plots. 
Generalized estimating equation (GEE) models with working 
independence were used to quantify the bias in the Bland-
Altman plots. Intra-class correlations (ICCs) were calculated for 
the sleep variables between SWA and the AW216.

Figure 2. Consort diagram.

Table 1. Participant characteristics.

n (%) or mean ± SD

Sex

Female 24 (80%)

Male 6 (20%)

Ethnicity

Not Hispanic/Latino 20 (67%)

Hispanic/Latino 10 (33%)

Race

White 21 (70%)

Black 6 (20%)

Other 3 (10%)

Age (years) 46.7 ± 9.9

BMI (kg/m2) 33.0 ± 4.8

Weight (kg) 91.7 ± 17.8

Self-reported health conditions

Cardiometabolic disorders 14 (47%)

Sleep and breathing disorders 6 (20%)

Mental health disorders 7 (23%)

Musculoskeletal pain 14 (47%)

Valid days 6.3 ± 1.7

RESULTS
Thirty participants had ≥1 day of  valid data for 

both the SWA and the AW2, for a total of  187 person-days 
(Figure 2). Four participants were excluded from all analyses 
due to insufficient wear time, device malfunction, or evidence 
of  nighttime shift work. Twenty-seven participants had valid 
weekly data (defined as having >2 valid weekdays and >1 valid 
weekend day). Participants had an average of  6.3±1.7 days of  
valid data with both devices. Participant characteristics are in 
included in Table 1.
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There was significant evidence for equivalence 
of  means (or mean ranks) for bedtime, sleep onset, sleep 
offset, waketime, TIB, TST, SOL, WASO, and midpoint 
of  sleep (Table 2). There was insufficient evidence for 
equivalence of  means in SF (SW: 25±6 vs. AW2: 10±3 
events; p=1.0), mean ranks in sleep regularity (SW: 
58±33 vs. AW2: 68±40 min; p=0.11), and mean ranks 
in SE (SW: 84.7±5.1% vs. AW2: 86.3±5.5%; p=0.05). There 
was significant evidence for equivalence of  means between 
the bedtimes and waketimes calculated using the SWA or the 
AW2 compared to the self-reported times (p>0.05). Average 
self-reported bedtimes and waketimes were 22:44 ± 1:00 and 
06:46 ± 1:02.

Bland-Altman plots comparing person-day data on 
bedtime, sleep onset, sleep offset, and waketime from the SWA 
and AW2 are displayed in Figure 3. The SWA underestimated 
bedtime and sleep onset and overestimated sleep offset 
and waketime. There was a significant linear relationship 
between average waketime and the difference in waketime. 
For every 1 hour increase in waketime, the average difference 
increased by 0.14 (95%CI: 0.07, 0.20) hours (p<0.0001). 

Table 2. Two one-sided tests for equivalence.

Sleep variable AW2 SWA p-value

Bedtime (HH:MM) 22:48 ± 01:01 22:41 ± 01:05 <0.001

Sleep onset (HH:MM) 23:03 ± 01:02 22:55 ± 01:04 <0.001*

Sleep offset (HH:MM) 06:35 ± 01:07 06:43 ± 01:16 <0.001*

Waketime (HH:MM) 06:47 ± 01:07 06:56 ± 01:18 <0.001*

TIB (min/d) 479.3 ± 60.1 485.4 ± 80.0 <0.001*

TST (min/d) 405.4 ± 51.1 418.2 ± 69.7 0.02

SE (%) 84.7 ± 5.1 86.3 ± 5.5 0.05*

SOL (min/d) 13.6 ± 13.5 14.0 ± 8.7 <0.001*

WASO (min/d) 48.8 ± 17.0 51.6 ± 29.8 0.02*

SF (number of  awakenings) 24 ± 6 10 ± 3 1.00

Midpoint of  sleep (HH:MM) 02:49 ± 00:58 02:49 ± 00:59 <0.001

Sleep regularity (SD of  waketime) 58 ± 33 68 ± 40 0.11
Notes: Equivalence margins were specified a priori as 30 minutes for bedtime, sleep 
onset, sleep offset, waketime, midpoint of  sleep, TIB, and TST; 10 minutes for 
regularity of  sleep, SOL, and WASO; 5 for SF; 3% for SE. *Wilcoxon signed-rank 
tests.

Figure 3. Differences in bedtime, waketime, sleep onset, and sleep offset.
Notes: A = Bland Altman illustrating differences in bedtime between the SWA and AW2; B = Bland Altman illustrating differences in sleep onset between the SWA and AW2; C = Bland Altman illustrating differences in 
sleep offset between the SWA and AW2; D = Bland Altman illustrating differences in waketime between the SWA and AW2; (n=187 person days); each color represents one subject’s data; x-axes are the average of  the two 
device measurements, y-axes are the difference between SWA and AW2 (SWA - AW2).
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There was also a significant linear relationship between average 
sleep offset and the difference in sleep offset. For every 1 hour 
increase in average sleep offset, the difference in sleep offset 
increased by 0.10 (95%CI: 0.04, 0.16) hours. There was no 
relationship between average bedtime and difference in bedtime 
(p=0.64) or between average sleep onset and difference in 
sleep onset (p=0.92). There were 20 (10.7%), 22 (11.8%), 24 
(12.8%), 19 (10.2%) person-days with a >60-minute difference 
in bedtime, sleep onset, sleep offset, and waketime, respectively. 
Bland-Altman plots comparing person-day data on SOL, WASO, 
SE, and SF are shown in Figure 4. The SWA overestimated SOL 
and WASO and underestimated SF. There was a significant 
linear relationship between average WASO and the difference 
in WASO, as well as between the average SF and the difference 
in SF. For every one-minute increase in average WASO, there 
was, on average, a 0.82 (95%CI: 0.56, 1.09) minute increase 
in the difference (p<0.0001). For every one event increase in 
average SF, there was a 0.52 (95%CI: -0.76, -0.28) unit decrease 
in the difference of  SF (p<0.0001). There was not a significant 
linear relationship between average SOL and the difference 
in SOL (p=0.09) or between average SE and the difference in 

SE (p=0.26). Sixty-five person-days (34.8%) had an absolute 
difference in WASO >30 minutes. 166 person-days (88.8%) had 
an absolute difference in SF of  >5 awakenings.

In the minute-by-minute comparisons, across all 
participants, 91.1% of  minutes at night had agreement in 
categorizing sleep and 93.7% had agreement in defining 
rest/lying down time between the SWA and AW2. The 
sensitivity across all minutes was 0.97 and the specificity was 
0.85. The corresponding positive likelihood ratio was 6.51, and 
the corresponding negative likelihood ratio was 0.04. Sensitivity 
and specificity were also calculated across all nighttime minutes 
(19:00 until 11:59 the next day) for everyone to assess variation 
across individuals. Across individuals, mean sensitivity was 0.94 
(95%CI: 0.93, 0.95) and mean specificity was 0.88 (95%CI: 0.85, 
0.90). Intraclass correlations (ICC) for each sleep parameter are 
reported in Table 3. The ICC Shrout-Fleiss reliabilities for 
absolute agreement [ICC(2,1)] for bedtime, sleep onset, sleep 
offset, waketime, TIB, TST, WASO, SE, and SOL were good 
to excellent. The ICC for SF was poor.  The ICC Shrout-Fleiss 
reliabilities [ICC(3,1)] for consistency for all variables were 
good to excellent.

Figure 4. Differences in SOL, WASO, SE, and SF.
Notes: A = Bland Altman illustrating differences in sleep onset latency (SOL) between the SWA and AW2; B = Bland Altman illustrating differences in wake after sleep onset (WASO) between the SWA and AW2; C = Bland 
Altman illustrating differences in sleep efficiency (SE) between the SWA and AW2; D = Bland Altman illustrating differences in sleep fragmentations (SF) between the SWA and AW2; (n=187 person days); each color 
represents one subject’s data; x-axes are the average of  the two device measurements, y-axes are the difference between SWA and AW2 (SWA - AW2).
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DISCUSSION
There is a need to develop and refine tools to objectively 

assess parameters of  sleep under free-living conditions. PSG 
is the gold standard measurement for sleep; however, it lacks 
utility for widespread use due to its high subject burden, need 
for technical expertise, and expense1. On the other end of  the 
spectrum, subjective tools, such as questionnaires, can produce 
valid and reliable sleep data17; however, as with all self-report 
data, these instruments suffer from limitations and biases. 
Wearable devices are a good compromise, offering the ability to 
produce objective data on sleep quantity and quality, while being 
rather inexpensive and easy to use. In this study, we compared 
measures of  sleep from the SWA to validated wrist actigraphy 
(AW2). The main finding from this study is that the algorithm, 
developed for the SWA, produced similar weekly average 
measures of  sleep quantity, sleep timing, and most indices of  
sleep quality as compared to the AW2. Thus, the SWA may be 
a viable alternative for assessing aspects of  sleep under free-
living conditions. Findings from this study may provide serve 
as a guide for future studies seeking to identify the utility of  
wearable devices for measuring sleep in adult populations. 
Several large clinical trials that have previously utilized the 
SWA may be able to perform secondary analyses using the 
algorithm developed in this study. In addition, the algorithm 
and available code is adaptable and can calculate parameters 
of  sleep quantity and quality from other research-grade (e.g., 
activPAL, Actiwatch, and Actigraph) and consumer-grade 
(e.g., Fitbit, Garmin, Apple, WHOOP, Polar, etc.) wearable 
devices that provide epoch-level data.

The SWA algorithm produced similar weekly estimates 
of  bedtime, sleep onset, sleep offset, waketime, sleep regularity, 
and mid-point of  sleep compared to AW2 and the self-reported 
sleep diaries. The SWA algorithm also produced a similar estimate 
of  TST compared to AW2; this aligns with the performance 
of  other wearable devices. Specifically, Mantua et al. (2016)17 
found that the Actiwatch Spectrum and several consumer-grade 
wearable devices, including models from Fitbit, Misfit, Basis, and 
Withings, produced similar estimates of  TST compared to PSG. 

A more recent study, found that the Fitbit Iconic and Oura smart 
ring produced accurate estimates of  TST, total awake time, and sleep 
efficiency comparted to the a validated electroencephalography 
(EEG) device, whereas the other consumer devices (Apple 
Watch 3, Beddit Sleep Monitor, Fatigue Science Readiband, 
Garmin Vivosmart 4, Polar A370, and WHOOP strap 2.0) all 
had various degrees of  bias and inaccuracy for these metrics18. 
Another recent study found that the Fatigue Science Readiband, 
Fitbit Alta HR, Garmin Fenix 5S, and Garmin VivoSmart 3 
performed similarly to the AW2 and performed well at detecting 
sleep compared to PSG13. Because the SWA performed similarly 
to AW2, it is likely that it performs similarly to current consumer 
wearable devices for estimating TST.

Research and consumer devices have made significant 
efforts in the past few years to capture indices of  sleep quality 
(sleep staging, SE, SOL, WASO, awakenings). We found that 
the SWA provided similar estimates of  SOL and WASO, but 
significantly overestimated SE and number of  awakenings per 
night compared to AW2. Chinoy et al. (2021)13 found that the 
Fatigue Science Readiband and Fitbit Alta HR produced relatively 
accurate estimates of  SE compared to PSG, while the AW2, 
Garmin Fenix 5S and Garmin Vivosmart 3 overestimated SE. In 
that same study, most consumer devices produced significantly 
different estimates of  SOL and WASO compared to PSG13. 
The magnitude of  difference between these devices and PSG 
for SOL was rather small (<5 minutes) while the differences in 
WASO were much more variable (2.1-49.5min). Other studies 
have also found various levels of  agreement between consumer 
devices and EEG or PSG. Stone et al. (2020)18 found that the 
Oura and Fitbit produced similar estimates of  SE compared to 
EEG but the Garmin and WHOOP were less accurate. There 
are several potential reasons for why consumer devices have 
produced more variable results in terms of  these sleep quality 
metrics. These possibilities could be device specific, such as 
differences in sensor inputs, device hardware, device software, 
and the sensitivity of  algorithms that determine sleep quality 
metrics. In addition, differences in the populations studied (age, 
weight, race/ethnicity, sleep disorders) and differences in wear 
protocols (number of  days, free-living vs. in-laboratory) may 
influence the accuracy of  these devices. Overall, the SWA suffers 
from similar limitations as other consumer and research grade 
devices when trying to assess sleep quality. In addition, several 
consumer-grade devices claim to capture sleep stages (e.g., light 
vs. deep sleep). The SWA does not have the capabilities of  
sleep staging; thus, it was not a focus of  this analysis. Further, 
validation studies have questioned the accuracy and validity of  
sleep staging estimates from most devices.

Wearable devices that rely on movement to detect 
sleep/wake have inherent limitations detecting true wake, 
especially motionless wake. Thus, wearable devices typically 
have lower specificities ranging from 27-77% when compared 
to PSG5,6,8,19,20. The specificity of  the SWA was 85% when 
compared to all minutes from the AW2. These data suggest that 
the SWA likely suffers from the same limitations as other wearable 
devices and would be unable to accurately detect true wake. 

Table 3. Intraclass Correlations (ICC) for inter-rater reliability.
Sleep variable Absolute agreement ICC(2,1) Consistency ICC(3,1)

Bedtime 0.78 0.78

Sleep onset 0.83 0.83

Sleep offset 0.87 0.87

Waketime 0.88 0.88

TIB 0.73 0.82

TST 0.76 0.79

SE 0.75 0.78

SOL 0.66 0.66

WASO 0.66 0.66

SF 0.13 0.75

Midpoint of  sleep 0.65 0.65
TIB = Time in bed; TST = Total sleep time; SE = Sleep efficiency; SOL = Sleep onset latency; 
WASO = Wake after sleep onset; SF = Sleep fragmentations.



286Grau L, et al.

Sleep Sci. 2022;15(3):279-287

In fact, the SWA algorithm was even less sensitive at detecting 
wakefulness across the night compared to AW2 as evidenced 
by the lower SF and higher SE observed in the SWA. Without a 
PSG measurement in this study, it is difficult to discern which 
device was more accurate; however, a previous study found 
that the Actiwatch Spectrum provided similar SE estimates 
compared to PSG21. Additional sensors or more complex 
algorithms may be necessary to improve the specificity of  
the SWA and other wearable devices. For example, wearable 
devices with red and infrared photoplethysmographs offer the 
best estimates of  heart rate and heart rate variability during 
sleep which may help to provide more accurate estimates of  
sleep/wake and sleep staging22.

When comparing individual-level data from the SWA to 
the AW2, the SWA algorithm was less accurate and more variable. 
Other studies have also found that wearable devices have limited 
capability to accurately capture individual level data9. The 
poor daily estimates in this study were driven by a few specific 
participants. It is possible that the characteristics of  sleep (i.e., body 
movements, posture, body positioning, etc.) in these participants 
made it difficult to classify sleep/wake behavior using the SWA. 
There were also differences between the hardware in the devices, 
how the devices are worn, and how the data are processed that 
may have caused the incongruity between measures of  sleep from 
each device. First, the SWA and the AW2 may have been worn 
on opposite arms and have different wear locations (wrist vs. 
upper arm). The SWA utilized multiple inputs (movement, heat 
flux, skin temperature, and galvanic skin response) to determine 
sleep vs. wake while the AW2 uses movement and light exposure 
to determine sleep vs. wake. Additionally, these devices utilize 
different processing algorithms when deciphering between wake 
and sleep. Future studies should investigate the root cause of  
these discrepancies between devices.

The algorithm that was created to process SWA data 
and create the indices of  sleep is freely available and adaptable 
for use with other wearable devices. In the current form the 
algorithm utilizes inputs based on user-specified validation 
criteria (number of  hours per day, number days per week, etc.), 
postural changes, and a binary sleep/wake variable determined 
from the manufacturer’s proprietary software which utilized 
information from the accelerometer, galvanic skin response, 
skin temperature, and heat flux. Future studies could adapt 
this algorithm to other wearable devices that provide epoch 
level data. Algorithm inputs could be modified to include 
measurements of  raw acceleration, skin temperature, heart rate, 
blood pressure, gyroscope, light exposure, etc. Certain inputs 
may be more or less important based on the metric of  sleep 
that is being estimated. This algorithm may have utility for both 
research-grade and consumer-grade devices.

There are several limitations in this study. First, 
this study used wrist actigraphy as the criterion measure 
of  free-living sleep measures; PSG is considered the gold-
standard, but it was not feasible for this study. This study 
used a small, convenient sample of  participants enrolling in 
a follow-up study to a behavioral weight loss intervention. 

Although this subject population was diverse, it may not be 
representative of  all adult populations, as the subjects were 
primarily female with overweight or obesity. Importantly, the 
enrolled participants did not have diagnosed sleep problems, so 
this algorithm may not be accurate in populations with known 
sleep disorders. The algorithm used to analyze the SWA data 
utilized data inputs, which included factors related to time of  
day, posture, and a binary sleep/wake variable. Not all wearable 
devices provide such information; however, the algorithm can 
be modified to include a variety of  inputs and may be adapted 
to other wearable devices. Because the algorithm utilized time 
of  day to determine nighttime sleep, the current code cannot be 
used to discern daytime sleep and napping behavior. In addition, 
the SWA and current algorithm likely do not improve detection 
of  true wake, a common limitation of  wearable devices. Finally, 
we recognize that the SWA is no longer commercially available; 
however, this analysis may be useful for analyses of  existing 
datasets with 24h SWA data and inform clinical and research 
settings using the SWA. Additionally, the findings from this 
study may be useful for other studies investigating the utility 
of  wearable devices for measuring indices of  sleep under free-
living conditions.

In summary, the SWA algorithm produced weekly 
summary measures of  bedtime, sleep onset, sleep offset, 
waketime, midpoint of  sleep, TST, TIB, SOL, and WASO that 
were consistent with wrist actigraphy (AW2). While the ICCs 
calculated in the day-to-day comparisons showed that there is 
generally good absolute agreement and consistency between 
the devices, there was significant bias in SE, SOL, and SF. The 
differences in these measures are likely due to inconsistencies in 
minute-by-minute data due to differences in device sensors as well 
as varying levels of  sensitivity thresholds for sleep/wake. While we 
did not assess sleep using other wearable devices, it seems likely 
that SWA suffers many of  the same limitations when estimating 
sleep as compared to other consumer devices. Taken together, the 
SWA is suitable for measuring indices of  sleep quantity, timing, 
and quantity in adults without sleep disorders. Our open-source 
algorithm may be applied to previous studies that have collected 
24h SWA data and to other devices, both research and consumer 
grade, to calculate parameters of  sleep quantity and quality.

REFERENCES
1. Depner CM, Cheng PC, Devine JK, Khosla S, Zambotti M, Robillard R, et al. 

Wearable technologies for developing sleep and circadian biomarkers: a 
summary of  workshop discussions. Sleep. 2020 Feb;43(2):zsz254.

2. Iber CAIS, Chesson A, Quan SF. The AASM manual for the scoring of  
sleep and associated events: rules, terminology, and technical specifications. 
Westchester: Amercian Academy of  Sleep Medicine (AASM); 2007.

3. Martin JL, Hakim AD. Wrist actigraphy. Chest. 2011 Jun;139(6):1514-27.
4. Walia HK, Mehra R. Practical aspects of  actigraphy and approaches in 

clinical and research domains. Handb Clin Neurol. 2019;160:371-9.
5. Jean-Louis G, Kripke DF, Cole RJ, Assmus JD, Langer RD. Sleep detection 

with an accelerometer actigraph: comparisons with polysomnography. 
Physiol Behav. 2001 Jan;72(1-2):21-8.

6. Marino M, Li Y, Rueschman MN, Winkelman JW, Ellenbogen JM, Solet JM, 
et al. Measuring sleep: accuracy, sensitivity, and specificity of  wrist actigraphy 
compared to polysomnography. Sleep. 2013 Nov;36(11):1747-55.

7. Basner M, Dinges DF, Mollicone D, Ecker A, Jones CW, Hyder EC, et al. 
Mars 520-d mission simulation reveals protracted crew hypokinesis and 
alterations of  sleep duration and timing. Proc Natl Acad Sci U S A. 2013 
Feb;110(7):2635-40.



Sleep Sci. 2022;15(3):279-287

287 Indices of  sleep from a wearable armband

8. Souza L, Benedito-Silva AA, Pires ML, Poyares D, Tufik S, Calil HM. Further 
validation of  actigraphy for sleep studies. Sleep. 2003 Feb;26(1):81-5.

9. Zambotti M, Cellini N, Goldstone A, Colrain IM, Baker FC. Wearable 
sleep technology in clinical and research settings. Med Sci Sports Exerc. 
2019 Jul;51(7):1538-57.

10. Catenacci VA, Ostendorf  DM, Pan Z, Bing K, Wayland LT, Seyoum E, et 
al. The impact of  timing of  exercise initiation on weight loss: an 18-month 
randomized clinical trial. Obesity (Silver Spring). 2019 Nov;27(11):1828-38.

11. Chen X, Wang R, Zee P, Lutsey PL, Javaheri S, Alcántara C, et al. Racial/
ethnic differences in sleep disturbances: the multi-ethnic study of  
atherosclerosis (MESA). Sleep. 2015 Jun;38(6):877-88.

12. Pigeon WR, Taylor M, Bui A, Oleynk C, Walsh P, Bishop TM. Validation 
of  the sleep-wake scoring of  a new wrist-worn sleep monitoring device. 
J Clin Sleep Med. 2018 Jun;14(6):1057-62.

13. Chinoy ED, Cuellar JA, Huwa KE, Jameson JT, Watson CH, Bessman SC, 
et al. Performance of  seven consumer sleep-tracking devices compared 
with polysomnography. Sleep. 2021 May;44(5):zsaa291.

14. Kölling S, Endler S, Ferrauti A, Meyer T, Kellmann M. Comparing subjective 
with objective sleep parameters via multisensory actigraphy in german 
physical education students. Behav Sleep Med. 2016 Jul/Aug;14(4):389-405.

15. Grau L. Using an algorithm to identify indices of  sleep quantity and quality 
from a wearable armband [Internet]. San Francisco: Github, Inc.; 2021; 
[access in 2022 Jul 19]. Available from: https://github.com/graulaurak/sleep

16. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater 
reliability. Psychol Bull. 1979 Mar;86(2):420-8.

17. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The 
Pittsburgh sleep quality index: a new instrument for psychiatric 
practice and research. Psychiatry Res. 1989 May;28(2):193-213.

18. Mantua J, Gravel N, Spencer RM. Reliability of  sleep measures from 
four personal health monitoring devices compared to research-
based actigraphy and polysomnography. Sensors (Basel). 2016 
May;16(5):646.

19. Stone JD, Rentz LE, Forsey J, Ramadan J, Markwald RR, Finomore 
VS, et al. Evaluations of  commercial sleep technologies for objective 
monitoring during routine sleeping conditions. Nat Sci Sleep. 2020 
Sep;12:821-42.

20. Quante M, Kaplan ER, Cailler M, Rueschman M, Wang R, Weng J, 
et al. Actigraphy-based sleep estimation in adolescents and adults: a 
comparison with polysomnography using two scoring algorithms. Nat 
Sci Sleep. 2018 Jan;10:13-20.

21. Meltzer LJ, Walsh CM, Traylor J, Westin AML. Direct comparison of  
two new actigraphs and polysomnography in children and adolescents. 
Sleep. 2012 Jan;35(1):159-66.

22. Rentz LE, Ulman HK, Galster SM. Deconstructing commercial 
wearable technology: contributions toward accurate and free-living 
monitoring of  sleep. Sensors (Basel). 2021;21(15):5071.


