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Abstract

Autism spectrum disorder (ASD) is a heritable neurodevelopmental disorder affecting 1 in 59 

children. While noncoding genetic variation has been shown to play a major role in many complex 

disorders, the contribution of these regions to ASD susceptibility remains unclear. Genetic 

analyses of ASD typically use unaffected family members as controls; however, we hypothesize 

that this method does not effectively elevate variant signal in the noncoding region due to family 

members having subclinical phenotypes arising from common genetic mechanisms. In this study, 

we use a separate, unrelated outgroup of individuals with progressive supranuclear palsy (PSP), a 

neurodegenerative condition with no known etiological overlap with ASD, as a control population. 

We use whole genome sequencing data from a large cohort of 2182 children with ASD and 379 

controls with PSP, sequenced at the same facility with the same machines and variant calling 

pipeline, in order to investigate the role of noncoding variation in the ASD phenotype. We analyze 

seven major types of noncoding variants: microRNAs, human accelerated regions, hypersensitive 

sites, transcription factor binding sites, DNA repeat sequences, simple repeat sequences, and CpG 

islands. After identifying and removing batch effects between the two groups, we trained an ℓ1-

regularized logistic regression classifier to predict ASD status from each set of variants. The 

classifier trained on simple repeat sequences performed well on a held-out test set (AUC-ROC = 

0.960); this classifier was also able to differentiate ASD cases from controls when applied to a 

completely independent dataset (AUC-ROC = 0.960). This suggests that variation in simple repeat 

regions is predictive of the ASD phenotype and may contribute to ASD risk. Our results show the 

importance of the noncoding region and the utility of independent control groups in effectively 

linking genetic variation to disease phenotype for complex disorders.
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1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social 

impairments, communication difficulties, and restricted and repetitive patterns of behavior. 

ASD usually manifests in infants and children and presents a wide range of symptoms that 

vary from person to person. Currently, 1 in 59 children in the United States are affected, and 

prevalence rates are expected to increase drastically over the next decade.1 ASD is known to 

be highly genetic with a concordance rate between monozygotic twins of 77–99%.2,3 The 

genetic architecture of the disorder is known to be complex, with an estimated 1000 genes 

involved in disease susceptibility, spanning common, rare, and de novo variants.4,5

Models exploring the genetic basis of ASD typically focus on protein-coding genes; 

however, coding sequences account for only 1.5% of human DNA. The remaining segments 

of DNA are comprised of noncoding regions, which have been shown to play an important 

role in many genetic disorders. For example, recessive mutations in the PTF1A gene 

enhancer can cause pancreatic agenesis,6 a common mutation in the RET enhancer increases 

risk for Hirschprung disease,7 and mutations in topologically associating chromatin domains 

can cause limb malformation.8 Furthermore, a meta-analysis of over a thousand genetic 

association studies showed that most of the disease-associated single nucleotide variants 

identified by genome wide association studies (GWAS) lie in the noncoding region.9

However, the contribution of noncoding variants to ASD still remains unclear. A recent 

analysis of whole genome sequences of 516 children with ASD and their unaffected family 

members concluded that individuals with ASD tend to have significantly more de novo 

mutations in noncoding regions. The study evaluated two noncoding regions: untranslated 

regions (UTRs) of genes and conserved transcription factor binding sites that map to sites of 

DNase I hypersensitivity.10 However, a separate evaluation of the same dataset concluded 

that although individuals with ASD possessed a small excess of de novo mutations in 

noncoding regions, there were no significant results across over 50,000 regulatory classes 

after multiple testing correction.11

As shown by these studies, population genetic analyses typically classify unaffected family 

members as controls. However, we hypothesize that this assumption does not effectively 

elevate variant signal from the genome for ASD cohorts. For example, close relatives of 

individuals with ASD often exhibit autistic behaviors, such as social deficits and delayed 

speech.12,13 Thus, it is possible that family members possess a subclinical phenotype of 

ASD that may arise from genomic features shared with their affected children. Also, the 

diagnostic criteria for ASD were modified in 2013 with the release of the fifth edition of the 

Diagnostic and Statistical Manual of Mental Disorders. Most parents would have been 
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evaluated using an earlier version of diagnostic criteria, making it possible that some would 

qualify for an ASD diagnosis by modern clinical standards.

In order to address this issue and to exacerbate signal in the noncoding region, we introduce 

a separate outgroup of patients with progressive supranuclear palsy (PSP), a neurodegener 

ative condition that causes difficulty with movement and thought.14 We chose this group of 

control patients because there is no known etiological overlap or comorbidity between PSP 

and ASD, and PSP is generally not heritable. There are some familial cases caused by a 

mutation in at least one copy of the gene MAPT on chromosome 17, but this is the only gene 

currently known to be linked with PSP.15 No patients in the control group exhibit symptoms 

of ASD. In this work, we use whole genome sequencing data from 2182 children with ASD 

and 379 PSP controls to investigate the role of noncoding variants in ASD susceptibility.

This study focuses on seven major noncoding regions: tissue specific microRNAs, hu man 

accelerated regions, hypersensitive sites, transcription factor binding sites, DNA repeat 

sequences, simple repeat sequences, and CpG islands. Tissue-specific microRNAs play 

important roles in the regulation of mRNA expression and the development of neurons, and 

recent studies have implicated a total of 219 microRNAs in the development of ASD.16 

Human accelerated regions, which consist of only 49 highly-conserved segments in DNA, 

have been shown to regulate neural activity, with de novo copy number variations in these 

regions enriched in individuals with ASD.17 Hypersensitive sites are regulatory regions that 

are sensitive to cleavage by nucleases, and de novo mutations in these regions are 

significantly enriched in ASD probands.18 Transcription-factor binding sites are located in 

the noncoding regions of genes and assist in the regulation of transcription; variants in 

binding sites in MEGF10 and TCF4 have been associated with ASD and other intellectual 

disabilities.19,20 DNA Repeat sequences and simple repeat sequences are sequences of 

repeating base pairs, distinguished by the length of the repeating pattern, that have been 

linked to neuronal differentiation and brain development.21 Finally, CpG islands, which 

consist of regions with high frequencies of the cytosine and guanine base pairs, can have 

higher rates of methylation in individuals with ASD.22

2. Methods

2. 1. Data and Preprocessing

We analyzed 30x-coverage whole genome sequencing data from the Hartwell Foundation’s 

Autism Research and Technology Initiative (iHART); iHART has amassed data from 1006 

multiplex families, each with at least two ASD-affected children. We also analyzed 30x-

coverage whole genome sequencing data from 379 patients diagnosed with PSP. In order to 

limit batch effects due to inconsistencies in sequencing methodologies, we sequenced both 

populations at the New York Genome Center with Illumina HiSeq X instruments and 

utilized the same GATK variant calling pipeline; in addition, there is no sample overlap 

between the cohorts.

Chromosome coordinate lists for the seven noncoding regions were downloaded from the 

UCSC Genome Browser and the Regulatory Elements Database.23,24 Quality control was 

performed on the variant call format (VCF) files by removing all variants with high excess 
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heterozygosity scores, which typically indicate sequencing artifacts or consanguinity within 

the population. We then filtered the variant-call format files to extract all variants within 

these regions that were present in both the PSP and ASD populations. We also removed all 

variants with a large proportion (greater than 20%) of missing sites.

2. 2. Accounting for Batch Effects

Batch effects present a major challenge when combining whole genome sequencing data 

across cohorts, resulting in many false positive associations.25 Batch effects can result from 

almost any step in the whole genome sequencing procedure, including library preparation, 

sequencing machine or center, sequencing depth, and variant calling pipelines.26 Several 

methods have been developed to mitigate these effects, but these procedures focus on 

reducing batch effects for datasets collected and analyzed independently.27,28 In our case, 

care was taken to sequence our ASD case and PSP control samples at the same center with 

the same platform and to analyze them using identical variant calling pipelines. In order to 

detect the more subtle batch effects that may remain, we expand on the method used by the 

UK10K project, detecting batch effects using a genome-wide association test with batch 

(ASD and PSP) as the phenotype.29 To do this, we performed a chi-squared test for each 

variant, comparing the number of individuals with homozygous reference, heterozygous, 

homozygous alternate, and missing genotypes between the two datasets. Any variants with a 

batch association p-value below 0.05 after applying a Bonferroni multiple testing correction 

were discarded, resulting in the removal of approximately 5% of variants. Figure 1 shows 

the number of variants within each region that passed our preprocessing and batch effect 

filters.

2. 3. Feature Representation and Logistic Regression Classifier

We designed a machine learning approach to determine if variation within noncoding 

regions could be utilized to predict ASD. In order to capture variant information from both 

the ASD and PSP populations, we constructed binary feature matrices for each of the seven 

noncoding regions. Each matrix includes 2561 rows corresponding to the 379 PSP control 

patients and 2182 ASD case patients; the columns represent the variants (shown in Fig. 1) 

associated with the region. We set each cell of the matrix as 1 if the individual expressed an 

alteration at the variant site (either heterozygous or homozygous alternate) and as 0 if the 

variant matched the reference sequence. Since several of these feature matrices included 

over one billion elements, all matrices were encoded in a customized sparse representation 

to ensure that machine learning would remain computationally tractable.

We created a logistic regression classifier with ℓ1 regularization in order to encourage the use 

of the smallest possible number of relevant features. 80% of the individuals in the dataset 

were randomly selected for inclusion in the training set, and the remaining 20% were added 

to the held-out test set; train and test sets were divided by family, so there is no familial 

overlap between sets. In order to address class imbalance between the case and control 

populations, we adjusted classifier weights such that they are inversely proportional to class 

sizes. We ran 5-fold cross validation in order to tune the level of regularization (represented 

by λ). Then, we evaluated performance on the held-out test set by measuring F1 scores, 

precision, recall, and AUC-ROC.
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We extracted the top-ranked variants from each of the seven noncoding regions for further 

analysis by selecting the five variants from each classifier with the highest positive 

regression coefficient values as well as the five variants with the lowest negative coefficient 

values. We also confirmed that these variants were highly-ranked across multiple folds in 

our cross-validation tests.

2. 4. Validation

We validated the performance of our classifier using a held-out test set composed of 20% of 

the individuals from both cohorts. To demonstrate that our classifier can generalize, we also 

measured performance of our trained models on a completely independent cohort consisting 

of 517 ASD patients from the Simons Simplex Collection30 and 2054 control individuals 

from the 1000 Genomes Project.31 These cohorts were sequenced at different depths on 

different machines; however, the same GATK variant calling pipeline was utilized. We use 

this cohort to show that our classifier can effectively generalize to new populations and that 

we have adequately addressed batch effects in our training data.

Next, we devised a bootstrap test in order to determine if the seven groups of features used 

in this analysis were relevant predictors of ASD status when compared to random variants. 

To do so, we randomly sampled from the set of variants called in both the PSP and ASD 

cohorts. Feature matrices were designed according to the same procedures outlined in 

sections 2.1 and 2.2, and classifiers were trained on the random variants using the procedure 

outlined in section 2.3. This process was repeated between 20 and 100 times to obtain 95% 

confidence intervals. We ran separate bootstrap tests using different numbers of variants in 

order to account for the wide range in sizes of our variant sets; bootstrap test sizes range 

from 102 to 106 variants.

We also ran several tests to ensure that our logistic regression classifier was not biased by 

population stratification. Ethnicity is responsible for much of the variation in human 

genomes, so to ensure that population substructure was not confounding our results, we 

examined performance separately for Europeans and non-Europeans in our test set. Autism 

is also sex-biased, with males about 4 times more likely to be affected than females; in order 

to verify that our results are robust to differences in the sex chromosomes, we also examined 

test performance on males and females separately.

Finally, we evaluated the biological functions of top-ranked variants in order to determine 

potential correlation with the ASD phenotype.

3. Results

3. 1. Classifier Performance

Results from the logistic regression classifier as well as top-ranked variants are summarized 

in Figure 3. The classifier was evaluated on a held-out test set and was able to differentiate 

between ASD and PSP with high accuracy, with AUC-ROC values ranging from 0.600 to 

0.960. The logistic regression classifier trained on variants located in simple repeat 

sequences showed the best performance out of all seven variant sets.
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3. 2. Bootstrap Test

To determine whether the seven types of noncoding regions we tested are more predictive of 

ASD status than random sets of variants, we performed a bootstrap test. Figure 4 shows the 

95% confidence interval for AUC-ROC performance of random variant sets of various sizes 

on the held-out test set. As the number of variants used for prediction increases, the AUC 

values achieved by the classifier also increase. This is expected because as we incorporate 

more variants into our classifier, we become increasingly likely to by chance include ASD-

associated variants or variants in linkage-disequilibrium with autism-associated variants. 

Furthermore, as the number of variants included in the classifier increases, any subtle batch 

effects missed by our filtering procedure will begin to influence results.

We see that after accounting for variant set size, the microRNA, human accelerated region, 

and CpG island variant sets perform within the bootstrapped 95% confidence interval. 

Hypersensitive sites, transcription factor binding sites, and DNA repeat sequences all 

perform worse than random variant sets. These noncoding regions may not be associated 

with ASD, or our batch effect correction procedure may have been too stringent and 

removed important autism-associated signal. The classifier trained on simple repeat 

sequences is the only variant set that significantly outperforms the random bootstrap with a 

Bonferonni corrected p-value (accounting for the 7 tests performed) of 0.0287. This suggests 

that genetic variation within simple repeats may be associated with ASD risk.

3. 3. Performance on an Independent Test Set

In order to measure generalization ability, all seven classifiers were evaluated on an 

independent test set consisting of ASD patients from the Simons Simplex Collection and 

control individuals from the 1000 Genomes Project. AUC-ROC values ranged from 0.361 to 

0.960, with most of the models suffering from a degradation in performance. However, the 

model trained on simple repeat sequences maintained a large AUC-ROC, consistent with the 

hypothesis that this region contains relevant signal for differentiating ASD and neurotypical 

individuals. These results are in agreement with our bootstrap analysis.

3. 4. Accounting for Population Substructure and Sex Differences

To show that our classifier trained on simple repeat sequences is robust to population 

substructure, we analyzed the population composition of our case and control groups. Figure 

6 shows our case and control populations superimposed on ethnicity profiles from the 1000 

Genomes Project. Our PSP population is predominantly of European descent, while the 

iHART population is more diverse.

In order to ensure that this classifier is not biased by ethnicity, we evaluated its test 

performance on individuals of European and non-European descent separately. Figure 7 

shows that it performs equally well on individuals of European or non-European ancestry, 

increasing our confidence that our results are not confounded by population substructure. We 

also evaluated differences in classification performance between males and females, also 

shown in Figure 7.
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Our classifier is better able to predict ASD affected status in males than in females. This is 

interesting because ASD has a strong male bias with male children being four times more 

likely to develop autism than female children.32

3. 5. Biological Functions

We evaluated the biological functions of all 70 top-ranked variants in order to identify 

potential correlations with the ASD phenotype. Since each variant either occurs in the 

intronic region of a gene or in an intergenic region between two genes, we generated a 

comprehensive list of genes associated with top-ranked variants. This resulted in a set of 98 

genes, which we utilized to evaluate biological evidence. In the tissue-specific microRNA 

regions, a variant at position 200,938,662 in chromosome 1 is located in the intronic region 

of KIF21B, a gene that regulates synapse function and morphology of neurons; this gene is 

also known to play a role in learning and memory.33 A variant at position 124,950,150 in 

chromosome 3 is located in ZNF148, which has been linked with developmental delays.34 A 

top-ranked variant in chromosome 12 is located in the intronic region of CD4, a gene 

expressed in regions of the brain that is known to be a mediator of neuronal damage.35 In 

noncoding regions containing DNA repeat sequences, gene GFOD1 contains a variant at 

location 13,509,234 on chromosome 6 and has been linked with Attention Deficit-

Hyperactivity Disorder, a common comorbid condition of ASD.36 Similarly, a top-ranked 

variant in a simple repeat sequence in chromosome 7 is located within the intronic region of 

gene DGKI; this gene has been linked with dyslexia, which is also a comorbid condition of 

ASD.37 In addition, a variant at chromosome 17 in a simple repeat region is located within 

gene SHISA6, a regulator of synaptic transmission.38

In order to analyze the relationship between the 98 identified genes and a set of 109 genes 

known to confer elevated ASD risk, we constructed a protein-protein interaction network in 

STRING, as shown in Figure 8.39 Edges are derived from text-mining, experiments, 

databases, co-expression, neighborhood, gene fusion, and co-occurrence. The network 

showed that twenty newly-identified genes are closely connected to known ASD-linked 

genes.

4. Discussion

By utilizing outgroup machine learning to investigate the noncoding space, we were able to 

identify single nucleotide variants potentially associated with ASD. Biological validation of 

genes associated with top-ranked variants revealed a highly interconnected gene network, 

suggesting that identified genes interact closely with ASD-linked genes and may contribute 

to the ASD phenotype. Out of the seven regions analyzed in this work, the classifier trained 

on simple repeat regions demonstrated the strongest performance. Simple repeat sequences, 

also known as microsatellites, consist of repetitive sequences of one to ten base pairs; these 

regions are known to be extremely susceptible to mutations.40 More than twenty 

neurodevelopmental and neurodegenerative conditions, many of which are comorbid with 

ASD, have been linked to unstable expansion of repeat sequences and consequent loss of 

protein function.41 In addition, variation in promoter microsatellites of the gene AVPR1A 

has been implicated in increased susceptibility to ASD in an Irish population.42 In this work, 
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the classifier trained on simple repeat sequences significantly outperformed the random 

bootstrap test, indicating a potential correlation between variants in this region and the ASD 

phenotype; this was further supported by a biological analysis of top-ranked variants in 

simple repeat regions that revealed two genes associated with neural function.

Thus, our outgroup machine learning approach to elevate hidden signal in ASD genomes can 

effectively evaluate feature representations of the noncoding space; however, this method 

has potential limitations, including batch effect correction and population stratification.

Current methods for addressing batch effects in whole genome sequencing data are meant to 

capture major differences in sequencing pipelines and are therefore quite stringent; the Type 

2 Diabetes Consortium uses a series of quality control filters to identify batch effects 

resulting in a loss of 9.9% of called SNPs.43 Our method for batch effect correction, adapted 

from the algorithm used by the UK10K Project,29 is less conservative, discarding just under 

5% of called SNPs. We believe this is appropriate since the batch effects in our dataset are 

much more subtle than those encountered by large consortia. Since our samples were 

sequenced at the same sequencing center with the same protocols and variant calling 

pipeline, we were able to control for many of the variables that could introduce batch effects. 

However, differences between populations in both cell type and the joint variant calling 

process could still create batch effect biases. The ASD samples were sequenced from 

lymphoblastoid cell lines while the PSP samples were sequenced from whole blood. 

Furthermore, while the same variant calling pipeline was used on both samples, GATK 

performs joint genotyping, a procedure that uses other samples in the cohort to resolve 

sequencing errors; since the two cohorts were run through the variant calling pipeline 

separately, subtle batch effects could have been introduced.

Regardless of batch effects, there remains the fundamental issue of population stratification 

in the merged dataset, especially since the initial cohorts were not drawn from the same 

ancestral or ethnic group. In order to establish a control for stratification, we created a null 

distribution by performing a bootstrap on successively larger variant sets, as reflected in 

Figure 4. High-performing null models likely do not reflect any neurological phenotype; 

rather, they represent the effect of divergent ancestry between the ASD and PSP cohorts. 

Interestingly, only the classifier trained on simple repeat sequences exceeded the null 

distribution for models of its size, suggesting a potential link with ASD.

Further analysis is needed to understand the biological consequences of these results. 40% 

of the top-ranked variants discovered in this analysis lie in intergenic regions; these may be 

enhancers to nearby genes, and we intend to explore associations between these variants and 

specific genes in a followup study. In addition, variants within simple repeat regions are 

challenging to call at low depth; in our current analysis, the top ten variants in simple repeat 

regions have an average read depth of 30.23 across the SSC dataset and an average read 

depth of 6.21 across the 1000 Genomes control dataset. In the future, we will validate our 

classifier using an independent test set sequenced at a higher depth of coverage.
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Fig. 1. 
Number of noncoding variants of each type after applying preprocessing filters and 

removing variants affected by batch effects.

Varma et al. Page 11

Pac Symp Biocomput. Author manuscript; available in PMC 2019 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Machine learning pipeline.
Variants were called separately for cases and controls. The variant calls were then merged 

and a batch-effect filter was applied. Feature matrices were created for each of the seven 

noncoding regions and served as input to A1-regularized logistic regression classifiers. 

Finally, the top-ranked features were extracted from each classifier.
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Fig. 3. Machine learning results.
We performed ℓ1-regularized logistic regression for each noncoding region. AUC-ROC, 

precision, recall, and F1 score show performance evaluated on the held-out test set. λ values 

for each noncoding region, as well as the number of remaining variants with nonzero 

coefficients remaining after feature selection, are listed. The 10 top-ranked variants for each 

classifier are listed in GRCh37 coordinates; the presence of variants with positive coefficient 

scores and the absence of variants with negative coefficient scores are likely to suggest the 

ASD phenotype.
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Fig. 4. Evaluating prediction performance of noncoding regions.
The blue shaded region shows the 95% confidence interval for AUC-ROC performance of 

randomly selected sets of variants. As the number of variants provided to the model 

increases, performance increases as well. Six of the non-coding regions we studied 

performed at or below the bootstrapped models. However, the simple repeat sequences 

variants significantly outperformed the bootstrap, suggesting that these noncoding variants 

may be associated with ASD.
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Fig. 5. Performance on an independent test set.
This figure includes AUC-ROC values from validation on an independent cohort consisting 

of individuals from the Simon’s Simplex Collection and the 1000 Genomes Project. Only 

the classifier trained on simple repeat sequences is able to generalize.
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Fig. 6. Population compositions of PSP and ASD cohorts
These plots map the PSP and ASD populations to a principal components plot of the 1000 

Genomes population in order to identify the ethnicity of individuals in our datasets.
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Fig. 7. ROC curves for the classifier trained on simple repeat sequences across four splits of the 
held-out test set
The plots show that the classifier yields similar results on the European and non-European 

population. However, classifier performance is higher across males than females.

Varma et al. Page 17

Pac Symp Biocomput. Author manuscript; available in PMC 2019 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. Gene interaction network
Interactions between genes previously linked with autism (in blue) and genes associated 

with the noncoding variants identified in this analysis (in pink) are shown in the figure. 20 

identified genes interact closely with known ASD-risk genes. Notably, the gene CCNA1 is 

known to interact with 5 known ASD-linked genes.
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