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Hi-C is a powerful technology for studying genome-wide chromatin interactions. However, current methods for assessing

Hi-C data reproducibility can produce misleading results because they ignore spatial features in Hi-C data, such as domain

structure and distance dependence. We present HiCRep, a framework for assessing the reproducibility of Hi-C data that

systematically accounts for these features. In particular, we introduce a novel similarity measure, the stratum adjusted cor-

relation coefficient (SCC), for quantifying the similarity between Hi-C interaction matrices. Not only does it provide a stat-

istically sound and reliable evaluation of reproducibility, SCC can also be used to quantify differences between Hi-C contact

matrices and to determine the optimal sequencing depth for a desired resolution. The measure consistently shows higher

accuracy than existing approaches in distinguishing subtle differences in reproducibility and depicting interrelationships of

cell lineages. The proposedmeasure is straightforward to interpret and easy to compute, making it well-suited for providing

standardized, interpretable, automatable, and scalable quality control. The freely available R package HiCRep implements

our approach.

[Supplemental material is available for this article.]

The three-dimensional (3D) genome organization across a wide
range of length scales is important for proper cellular functions
(Bickmore 2013; Dekker et al. 2013; Sexton and Cavalli 2015).
At large distances, nonrandom hierarchical territories of chromo-
somes inside the cell nucleus are tightly linked with gene regula-
tion (Misteli 2010). At a finer resolution, the interactions
between distal regulatory elements and their target genes are es-
sential for orchestrating correct gene expression across time and
space (e.g., different tissues). A progression of high-throughput
methods based on chromatin conformation capture (3C) (Dekker
2002) has emerged, including 4C (Simonis et al. 2006), 5C
(Dostie et al. 2006), Hi-C (Lieberman-Aiden et al. 2009), ChIA-
PET (Li et al. 2010), Capture Hi-C (Hughes et al. 2014; Mifsud
et al. 2015), andHiChIP (Mumbach et al. 2016). Thesemethods of-
fer an unprecedented opportunity to study higher-order chroma-
tin structure at various scales. Among them, the Hi-C technology
and its variants are of particular interest due to their relatively un-
biased genome-wide coverage and ability to measure chromatin
interaction intensities between any two given genomic loci.

However, the analysis and interpretation of Hi-C data are still
in their early stages. In particular, no sound statistical metric to
evaluate the quality of Hi-C data has been developed. When bio-
logical replicates are not available, investigators often rely on ei-
ther visual inspection of the Hi-C interaction heatmap or
examination of the ratio of long-range interaction read pairs over
the total sequenced reads (Dixon et al. 2012, 2015; Jin et al.

2013), but neither of these approaches is supported by robust sta-
tistics. When two or more biological replicates are available, it is a
commonpractice to use either Pearson or Spearman correlation co-
efficients between the two Hi-C data matrices as a metric for data
quality (Hu et al. 2012; Imakaev et al. 2012; Gorkin et al. 2014;
Rao et al. 2014; Ay and Noble 2015; Dixon et al. 2015; Servant
et al. 2015). However, Hi-C data have certain unique characteris-
tics, including domain structures (such as topological association
domain [TAD] and A/B compartments) and distance dependence,
which refers to the fact that the chromatin interaction frequencies
between two genomic loci, on average, decrease substantially as
their genomic distance increases. Standard correlation approaches
do not take into consideration these structures andmay lead to in-
correct conclusions. As wewill demonstrate, two unrelated biolog-
ical samples can have a high Pearson correlation coefficient, while
two visually similar replicates can have a low Spearman correlation
coefficient. It is also not uncommon to observe higher Pearson and
Spearman correlations between unrelated samples than those be-
tween real biological replicates.

In this work, we developed HiCRep, a novel framework for as-
sessing the reproducibility of Hi-C data that takes into account the
unique spatial features of the data. HiCRep first minimizes the ef-
fect of noise and biases by smoothing the Hi-C matrix, and then it
addresses the distance-dependence effect by stratifying Hi-C data
according to their genomic distance. In particular, we developed
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a stratum-adjusted correlation coeffi-
cient (SCC) as a similarity measure of
Hi-C interaction matrices. SCC shares
the similar range and interpretation as
the standard correlation coefficients,
making it easily interpretable. It can be
used to assess the reproducibility of repli-
cate samples or quantify the distance be-
tween Hi-C matrices from different cell
types. Our framework also estimates con-
fidence intervals for SCC, making it
possible to infer statistical significance
of the difference in reproducibility mea-
surements. We applied our method to
three different groups of publicly avail-
able Hi-C data sets to illustrate its power
in distinguishing subtle differences
between closely related cell lines and bio-
logical replicates and resolving interrela-
tionship between different cell lineages
or tissues.

Results

Spatial patterns in Hi-C data and their

influence on reproducibility assessment

Unlike many other genomic data types,
Hi-C data exhibit unique spatial pat-
terns. One prominent pattern is the
strong decay of interaction frequency as
genomic distance increases between in-
teraction loci, i.e., the distance depen-
dence. This pattern is generally thought
to result from nonspecific interactions,
which are more likely to occur between
loci at closer genomic distance than
those at a greater distance (Fudenberg
and Mirny 2012; Lajoie et al. 2015). It is
found consistently in every Hi-C matrix and is one of the most
dominant patterns in the matrix of interaction frequencies mea-
sured by Hi-C (Lajoie et al. 2015). This dependence on distance
generates strong but spurious association between Hi-C matrices
even when the samples are unrelated, as revealed by the high
Pearson correlation between any two Hi-C matrices. As an exam-
ple, we computed the Pearson correlations of Hi-C contact matri-
ces between two biological replicates and between two unrelated
cell lines, hESC and IMR90 (Dixon et al. 2012). Although samples
from the same cell line are expected to bemuchmore correlated to
each other than samples from unrelated cell lines, the Pearson cor-
relation shows little difference between samples fromdifferent cell
types (a hESC sample and an IMR90 sample, ρ = 0.92) and biolog-
ical replicates in hESC (ρ = 0.91) (Fig. 1A). Further investigation
shows that the dependence pattern between the contact intensity
and distance (Fig. 1B) is highly similar in hESC and IMR90, which
creates the high, spurious correlation between the Hi-C samples
from these two cell lines. Therefore, the Pearson correlation coeffi-
cient cannot distinguish real biological replicates from unrelated
samples.

Another important pattern of Hi-C data is the domain struc-
ture in contact maps. These structures represent contiguous re-
gions in which loci tend to interact more frequently with each

other than with outside regions. Although the interactions within
the structures can be highly variable between different cell types,
the domain structures, such as topologically associating domains
(TADs), are stable across cell types (Dixon et al. 2012; Rapkin
et al. 2012; Nagano et al. 2013). Therefore, we expect a higher re-
producibility at the domain level than at the individual contact
level. This difference should be reflected in the reproducibility as-
sessment. However, both Pearson and Spearman correlation coef-
ficients only consider point interactions and do not take domain
structures into account. A consequence of this is that Spearman
correlation can be driven to low values by the stochastic variation
in the point interactions and overlook the similarity in domain
structures. As a result, two biological replicates that have highly
similar domain structures may have a low Spearman correlation
coefficient; conversely, a sample may have a higher Spearman cor-
relation with an unrelated sample than with its biological repli-
cates when the stochastic variation is high. For instance, despite
the high similarity between the biological replicates in IMR90
and hESC, their Spearman correlations are only 0.47 and 0.37, re-
spectively. However, the Spearman correlation between an IMR90
sample and a hESC sample (0.44) is higher than the correlation be-
tween the two hESC replicates (0.37), although there aremany dif-
ferences in the domain structures of the two cell lines. Therefore,

Figure 1. An illustration example. (A) Hi-C contact maps of the biological replicates of hESC and
IMR90. (B) Relationship between genomic distance and the average contact frequency for the samples
in A. Data are from Chromosome 22: 32000000–40000000.

Yang et al.

1940 Genome Research
www.genome.org



we need a more sophisticated evaluation metric to incorporate
both structural aspects of variation for a better assessment of the
reproducibility of Hi-C data.

Overview of the HiCRep method

We developed a novel two-stage approach to evaluate the repro-
ducibility of Hi-C data (Fig. 2). The first stage is smoothing the
raw contact matrix in order to reduce local noise in the contact
map and to make domain structures more visible. The smoothing
is accomplished by applying a 2D mean filter, which replaces the
read count of each contact in the contact map with the average
counts of all contacts in its neighborhood. In the second stage,
we applied a stratification approach to account for the pronounced
distance dependence in the Hi-C data. This stage proceeded in two
steps. First, we stratified the smoothed chromatin interactions ac-
cording to their genomic distance, and then we applied a novel
stratum-adjusted correlation coefficient statistic (SCC) to assess
the reproducibility of the Hi-C matrices. The SCC statistic was cal-
culated by computing a Pearson correlation coefficient for each
stratum (Fig. 2) and then aggregating the stratum-specific correla-
tion coefficients using a weighted average, with the weights de-
rived from the generalized Cochran–Mantel–Haenszel (CMH)
statistic (Mantel 1963; Agresti 2012). The value of SCC ranges
from−1 to 1 and can be interpreted in away similar to the standard
correlation. A great advantage of our approach is that we can derive
the asymptotic variance of SCC anduse it to assess statistical signif-
icance when comparing reproducibility from different samples.
More detailed descriptions of theHiCRepmethod and the SCC sta-
tistic are presented in the Methods section.

Distinguishing pseudo, real, and nonreplicates

We first evaluated the performance of our method on samples
whose expected levels of reproducibility are known: pseudorepli-
cates (PR), biological replicates (BR), and nonreplicates (NR).
Biological replicates refer to two independent Hi-C experiments
performed on the same cell types. Nonreplicates refer to Hi-C ex-

periments performed on different cell types. Pseudoreplicates are
generated by pooling reads from biological replicates together
and randomly partitioning them into two equal portions. The dif-
ference between two pseudoreplicates only reflects sampling vari-
ation, without biological or technical variation. Therefore, we
expected the reproducibility of pseudoreplicates to be the highest,
followed by biological replicates and then nonreplicates.

For testing, we first generated PR, BR, and NR using Hi-C
data in the hESC and IMR90 cell lines (Methods; Dixon et al.
2012). We compared the performance of our method with
Pearson correlation and Spearman correlation and investigated
whether these metrics can distinguish PR, BR, and NR (Fig. 3A;
Supplemental Table S1). For the hESCdata set, ourmethod correct-
ly ranked the reproducibility of the three types of replicate pairs
(PR>BR>NR), whereas Pearson and Spearman correlations both in-
correctly ranked BR lower than one or more of the NRs. For the
IMR90 data set, although all three methods infer the correct order
of reproducibility, SCC separated BR from NR by a much larger
margin (SCC: 0.19) than the other metrics (Pearson: 0.02;
Spearman: 0.03).

The sequencing depths differ substantially for the hESC (rep-
licate 1: 60M; replicate 2: 271M) and IMR90 (replicate 1: 201M;
replicate 2: 153M) data sets. To ensure that these differences
were not confounding our evaluations, we subsampled all the rep-
licates to 60 million reads and repeated the same analysis. As
shown in Figure 3A (blue dots), even with the same number of
reads, Pearson and Spearman correlations still fail to distinguish
real replicates from all nonreplicates. On the contrary, ourmethod
consistently ordered the reproducibility of replicates correctly, in-
dicating that it can capture the intrinsic differences between the
samples, even those that differ in sequencing depth.

We expanded this analysis to a larger Hi-C data set recently re-
leased by The ENCODE Project Consortium (2012). This data set
consists of Hi-C data from eleven cancer cell lines, with two biolog-
ical replicates for each cell type (Methods). For each cell type, we
formed 20 nonreplicate pairs with the remaining 10 cell types
and computed SCC, Pearson, and Spearman correlations for BR

and all NRs. As shown in Figure 3B and
Supplemental Table S2, SCC clearly dis-
tinguishes BRs from NRs (a P-value =
1.665 × 10−15, one-sided Kolmogorov-
Smirnov [K-S] test), whereas the other
twomethods fail to do so (Pearson: P-val-
ue = 0.084; Spearman: P-value = 0.254,
K-S test). Because the sequencing depth
of the Hi-C data varies across cell types,
we also examined the separation between
BRs and NRs for each cell type. As shown
in Figure 3C, SCC separates the BRs and
NRs for all the cell types by a margin of
at least 0.1, whereas the other two meth-
ods fail to separate them in more than
half of the cell types (Supplemental Fig.
S1). Furthermore, SCC illustrates a desir-
able correspondence to the sequencing
depth. When the average sequencing
depth between the biological replicates
is relatively low (<30M), SCC monotoni-
cally increases with the sequencing
depth; this behavior likely reflects insuf-
ficient coverage at the lower sequencing
depths. In contrast, the value for SCCFigure 2. A schematic representation of our method. (A) Step 1: smoothing; (B) Step 2: stratification.

Robust reproducibility measure for Hi-C data
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remains high and stable for greater sequencing depths (Fig. 3C), re-
flecting saturation of reproducibility and likely sufficient coverage.
We investigate this property further in a subsequent section.

Evaluating biological relevance by constructing cell lineages

Next, we used HiCRep to infer the interrelationship between cell
types on a cell lineage. Because this assessment requires the repro-
ducibility measure to quantify the subtle differences between
closely related cells, it serves as a biologically relevant approach
to evaluating the accuracy of the reproducibility measure. More
importantly, it also evaluates the potential of ourmethod as amea-
sure for quantifying the similarities or differences of Hi-Cmatrices
in different cell or tissue types.

For this analysis, we used the Hi-C data in human embryonic
stem (ES) cells and in four cell lineages derived from them (Dixon
et al. 2015), namely, mesendoderm (ME), mesenchymal stem cells
(MS), neural progenitor cells (NP), and trophoblast-like cells (TB),
with two biological replicates for each cell type. Using the A/B
compartments in Hi-C data, Dixon et al. (2015) inferred the dis-
tance to the parental ES cell from the nearest to the farthest as

ME, NP, TB, and MS (Fig. 4A, left).
Importantly, the same relationships
were also supported by our analysis of
the previously published gene expres-
sion data (Xie et al. 2013) in the same
cell types (Fig. 4A, right).

We first calculated the pairwise sim-
ilarities between the 10 samples (two
replicates in each cell type) using SCC,
Pearson, and Spearman correlations
(Supplemental Table S3). As shown in
Supplemental Figure S2, SCC again pro-
vided the best separation between real
replicates and nonreplicates among all
three methods of comparison.

Next, we reconstructed the relation-
ships among the cell lineages by perform-
ing hierarchical clustering based on the
pairwise similarity scores. As shown in
Figure 4B, the dendrogram constructed
based on SCC precisely depicts the inter-
relationships: All the biological replicates
are grouped together as terminal clusters,
and the relationships between cell lines
exactly follow the tree structure based
on A/B compartments in Hi-C data
(Dixon et al. 2015) and RNA-seq data in
Xie et al. (2013) (Fig. 4A). The same re-
sults are obtained using the bias-correct-
ed interaction matrices (Supplemental
Fig. 3A). In contrast, the dendrograms
constructed based on Pearson (Fig. 4C)
and Spearman correlation coefficients
(Fig. 4D) group several nonreplicates to-
gether and infer different relationships
between some cell lines. For example,
when using Pearson correlation, two ME
replicates are not clustered together and
NP is unexpectedly placed as the least re-
lated cell type to ES cells. When using
Spearman correlation, an ES replicate is

clustered with an ME replicate, and again, NP is unexpectedly pre-
dicted as the least related cell type to ES cells.

To further delineate how data smoothing contributes to
HiCRep’s performance, we also computed SCC on unsmoothed
Hi-C matrices and Pearson and Spearman correlation coefficients
on the smoothedHi-Cmatrices obtained from our smoothing pro-
cedure. As shown in Supplemental Figure S3B, we observed that
the SCC analysis on unsmoothed data no longer recapitulates
the expected relationships among cell lineages, indicating that
the smoothing stage is an indispensable component of HiCRep.
Furthermore, we observed that our smoothing procedure improves
the performance of Pearson- and Spearman-based approaches
(Supplemental Fig. S3C,D), confirming its effectiveness. However,
the improvement on Pearson- and Spearman-based approaches is
not to the level achieved by SCC (Supplemental Fig. S3C,D). For
example, the tree based on Pearson incorrectly groups the ES cell
andME cell replicates together, and the tree based on Spearman in-
correctly places the NP cell closest to ES cell. In addition, the Pear-
son correlation based on the smoothed matrices shows very little
difference (range = [0.96, 1]) across cell lines, making it hard to
distinguish closely related samples. Together, this indicates that

Figure 3. Discrimination of pseudoreplicates (PR), biological replicates (BR), and nonreplicates (NR).
(A) Reproducibility scores for the illustration example (hESC and IMR90 cell lines) in Figure 1. Red dots
are the results in the original samples, and blue dots are the results after equalizing the sequencing depth
in all samples. (B,C ) Reproducibility scores for the BR and NR in the ENCODE 11 cancer cell lines. The tri-
angle represents the score for a BR, and the box plot represents the distribution of the scores for NRs. (B)
Reproducibility scores for BRs andNRs in all cell types. (C ) SCC for BRs and the correspondingNRs in each
cell type. From left to right, the cell lines are ordered according to the average sequencing depths of the
biological replicates.
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neither SCC nor smoothing by itself can satisfactorily address the
reproducibility issue, and both components are necessary for
HiCRep to quantify biologically relevant differences between Hi-
C contact maps.

We further expanded this analysis using the recently pub-
lished Hi-C data in 14 human primary tissues and two cell lines
(Supplemental Table S4; Schmitt et al. 2016). Because biological
replicates are not available for all the samples, our analysis fo-
cused on quantifying the relationships between tissues or cells.
Again, the lineage constructed based on SCC reasonably depict-
ed the tissue and germ layer origins of the samples (Fig. 5A):
hippocampus and cortex were grouped together; right ventricle
and left ventricle were grouped together; and endodermal tissues
such as pancreas, lung, and small bowel were placed in the same
lineage. Neither Pearson nor Spearman correlation performed as
well as SCC. For example, right and left ventricles were not
grouped together by Spearman correlation (Fig. 5C). These re-
sults confirm the potential of our method as a measure for

quantifying the difference in Hi-C data between cell or tissue
types.

HiCRep is robust to different choices of resolution

Depending on the sequencing depth, Hi-C data analysis may be
performed at different resolutions. A good reproducibility measure
should perform well despite the choice of resolution. To evaluate
the robustness of our method, we repeated the clustering analysis
for the human ES and ES-derived cell lineages using data processed
at several different resolutions (i.e., 10, 25, 40, 100, 500 kb, and 1
Mb). Again, as shown in Figure 6 and Supplemental Table S5, SCC
accurately inferred the expected relationships between ES and its
derived cell lines at all resolutions considered, whereas Pearson
and Spearman correlations inferred the expected relationships
only at 500 kb and 1 Mb. Furthermore, unlike Pearson and
Spearman correlations, whose values drastically change at differ-
ent resolutions, the values of SCC remain in a consistent range

Figure 4. Estimating interrelationship between the 10 samples in the human H1 ESC lineage. (A) The heatmap and lineage relationship between the ES
cell and its five derived cells based on A/B compartments in Hi-C data (Dixon et al. 2015) and RNA-seq data in (Xie et al. 2013). (B–D) Estimated interre-
lationship based on the pairwise similarity score calculated using SCC (B), Pearson correlation (C), and Spearman correlation (D). Heatmaps show the sim-
ilarity scores. Dendrograms resulted from a hierarchical clustering analysis based on the similarity scores. For easy visualization, the cell lines in the heatmaps
are ordered according to their known distances to ES cells in A. A decreasing trend of scores is expected from left to right (from bottom to top, respectively) if
the estimated interrelationship agrees with the known lineage.

Robust reproducibility measure for Hi-C data
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across all resolutions. The complete trees inferred by SCC at differ-
ent resolutions (Supplemental Fig. S4) all agree with the expected
relationship. These results confirm the robustness of our method
to the choice of resolution.

Detecting differences in reproducibility due to sequencing depth

Sequencing depth is known to affect the signal-to-noise ratio and
the reproducibility of Hi-C data (Lajoie et al. 2015). Insufficient
coverage can reduce the reproducibility of a Hi-C experiment. As
a quality control tool, a reproducibility measure is expected to be
able to detect the differences in reproducibility due to sequencing
depth. To evaluate the sensitivity of our method to sequencing
depth, we downsampled all the samples in the H1 ES cell lineage
(Dixon et al. 2015) to create a series of subsamples with different
sequencing depths (25%, 50%, and 75% of the original sequenc-
ing depth). We then computed SCC for all subsamples. As shown
in Figure 7A and Supplemental Table S6, SCC monotonically de-
creases with sequencing depth in all data sets. This confirms that
our method can reflect the change of re-
producibility between replicate experi-
ments due to sequencing depth.

Furthermore, we investigate wheth-
er the reproducibility between Hi-C ex-
periments inferred by SCC reflects the
reproducibility at the level of significant
contacts. To proceed, we identified sig-
nificant contacts in these subsamples us-
ing Fit-Hi-C (Q-value cutoff = 0.05) (Ay
et al. 2014). For each subsample, we com-
puted the reproducibility at the level of
significant contacts using the Jaccard in-
dex, i.e., the ratio of the number of
shared significant contacts over the
number of significant contacts identified
in either replicate. As shown in Figure 7B
and Supplemental Table S6, the Jaccard
index monotonically increases with the
SCC score in each cell line. In addition,
the cell line (NP), which has a signifi-
cantly lower SCC score than other cell
lines, also shows a significantly lower lev-

el of shared significant contacts. This confirms that our method
can also reflect the change of reproducibility due to sequencing
depth at the level of significant contacts.

Guiding the selection of the optimal sequencing depth

Having established that SCC can reflect the change of reproduc-
ibility due to the change of sequencing depth, we propose to use
the saturation of SCC as a criterion to determine the most cost-ef-
fective sequencing depth that achieves a reasonable reproducibili-
ty. To illustrate how to use our method to determine the optimal
sequencing depth, we created subsamples at a series of reduced se-
quencing depths from the Hi-C data in the H1 ES cell in Dixon
et al. (2015) (original depth = 500M) by downsampling. As shown
in Figure 7C and Supplemental Table S7, SCC initially increases
rapidly with the increase of sequencing depth when the number
of total reads is less than 200 million (slope of line from 10% to
40% depth is 0.0591 per 100 M). It continues to increase at a re-
duced rate (slope of line from 40% to 70% depth is 0.01 per 100

Figure 5. Estimated interrelationship for 14 human primary tissues and two cell lines in Schmitt et al. (2016). The dendrograms result from a hierarchical
clustering analysis based on the pairwise similarity calculated using SCC (A), Pearson correlation (B), and Spearman correlation (C).

Figure 6. Estimated similarity between the human H1 ES cell and its derived cells at different resolu-
tions. (A) SCC; (B) Pearson correlation coefficient; and (C ) Spearman correlation coefficient.
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M) and eventually reaches a plateau (slope of line from 70% to
100%depth is 0.002 per 100M). To determine the lowest sequenc-
ing level that achieves similar reproducibility as the original data,
we computed the 99% confidence intervals of SCC at each se-
quencing depths. Starting at 350 M (70% of the original depth),
the confidence intervals of SCC between two adjacent depth levels
overlapwith each other, and the difference of SCC from that of the
original depth is less than 0.004. This indicates that the reduced
samples can achieve a similar level of reproducibility as the original
one by using ∼70% of the original depth for this data set. Further
increase of sequencing depth beyond this point does not signifi-
cantly improve reproducibility.

As a comparison, we performed a similar analysis using a data
set with relatively low sequencing depth (30MHi-C reads from the
A549 cell line). We observe that all the reduced samples have a sig-
nificantly lower reproducibility than the original sample at the
99% significance level and show a steep increase of SCC through-
out all downsample levels (Fig. 7C; Supplemental Table S7). From
the 90% depth to the original depth, there is still an increase of
SCC of 0.01, compared with 0.0015 for the hESC data set, suggest-
ing that this data set may not reach saturation in reproducibility at
its original sequencing depth. For this data set, further increase of
sequencing depth may improve reproducibility.

Discussion

Although there has been a dramatic in-
crease in the scope and complexity of
Hi-C experiments, analytical tools for
data quality control have been lacking.
Current approaches for assessing Hi-C
data reproducibilitymay lead to incorrect
conclusions because they fail to take into
consideration the unique spatial charac-
teristics of Hi-C data. In this work, we de-
veloped a new method, HiCRep, for
assessing the reproducibility of Hi-C con-
tact frequency maps. By effectively tak-
ing account of the spatial features of Hi-
C data, our reproducibility measure over-
comes the limitations of Pearson and
Spearman correlations and can differen-
tiate the reproducibility of samples at a
fine level. The empirical evaluation
showed that our method distinguished
subtle differences between closely related
cell lines, biological replicates and pseu-
doreplicates, and it produced robust re-
sults at different resolutions.

The SCC statistic has several
properties that make it well-suited as a re-
producibilitymeasure for providing stan-
dardized, interpretable, automatable,
and scalable quality control. First, this
statistic has a fixed scale of [−1, 1], which
makes it easy to standardize the quality-
control process and compare repro-
ducibility across samples. Second, it is in-
tuitive and easy to interpret. It can be
interpreted as a weighted average corre-
lation coefficient over different interac-
tion distances. This straightforward
interpretation makes it accessible to

experimentalists. Third, our statistic is fast to compute and is
directly applicable to the raw contact matrix. It is easily scalable
for monitoring data quality for a large number of experiments.
Furthermore, we also provide an estimator for the variance of this
statistic, such that the statistical significance of the difference in
reproducibility canbe inferred.Using this estimator,weestablished
a procedure to determine the sufficiency of sequencing depth.

In summary, we developed a novelmethod to accurately eval-
uate the reproducibility of Hi-C experiments. The presentedmeth-
od is a first step toward ensuring high reproducibility of Hi-C data.
We also showed that this method can be used as a similarity mea-
sure for quantifying the differences in Hi-C data between different
cell and tissue types. Thus, HiCRep is a valuable tool for the study
of 3D genome organization.

Methods

Data sets

The data sets analyzed in this study were obtained from the public
domain, as described below. Hi-C data sets used in this project can
be visualized in the 3D genome browser (http://3dgenome.org).

We obtained the Hi-C data of human embryonic stem cells
(hESCs) and human IMR90 fibroblasts from Dixon et al. (2012)

Figure 7. Detecting the change of reproducibility due to sequencing depth using SCC. (A) SCC of
downsampled biological replicates (25%, 50%, 75%, and 100% of the original sequencing depth) for
the five cell lines on the H1 ES cell lineage. (B) Relationship between SCC and Jaccard index, which mea-
sures the proportion of shared significant contacts identified by Fit-Hi-C between replicates for samples in
A. (C) Saturation curves of SCC for data sets with different coverages. The SCC is plotted at different sub-
samples (10%–90%) of the original samples with 90% confidence intervals. The blue dots represent H1
human ESC data (original sequencing depth = 500 M). The red dots represent the A549 data (original
sequencing depth = 30 M).
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(GEO accession number: GSE35156). Each cell type has two bio-
logical replicates.

We obtained the Hi-C data of human embryonic stem (ES)
cells and four human ES-cell-derived lineages, mesendoderm
(ME), mesenchymal stem (MS) cells, neural progenitor (NP) cells
and trophoblast-like (TB) cells fromDixon et al. (2015) (GEOacces-
sion number: GSE52457). Each cell type has two biological
replicates.

We obtained theHi-C data of 11 human cancer cell lines from
the ENCODE data portal (Sloan et al. 2016) (https://www.
encodeproject.org/matrix/?type=Experiment&status=released&
assay_slims=3D+chromatin+structure&award.project=ENCODE&
assay_title=Hi-C). This data set was produced by the Dekker
laboratory. It includes cell lines of G401, A549, CAKi2, PANC1,
RPMI7951, T47D, NCIH460, SKMEL5, LNCaP, SKNMC, and
SKNDZ. Each cell line has two biological replicates. The sequenc-
ing depths of the data sets can be found in Supplemental Table S8.

We obtained the Hi-C data of 14 human primary tissues from
Schmitt et al. (2016) and Leung et al. (2015). The tissues include
adrenal gland (GSM2322539), bladder (GSM2322540, GSM232
2541), dorsolateral prefrontal cortex (GSM2322542), hippocam-
pus (GSM2322543), lung (GSM2322544), ovary (GSM2322546),
pancreas (GSM2322547), psoas muscle (GSM2322551), right ven-
tricle (GSM2322554), small bowel (GSM2322555), spleen (GSM
2322556), liver (GSM1419084), left ventricle (GSM1419085),
and aorta (GSM1419086). The tissues were collected from four do-
nors, each of which provides a subset of tissues. To minimize var-
iation due to individual difference, we used the samples from the
two donors with the largest number of tissues. If one tissue sample
consists of multiple replicates from a single donor, the replicates
were merged into a single data set. We obtained the GM12878
cell data from Selvaraj et al. (2013) (GSM1181867, GSM1181867)
and the IMR90 cell data from Dixon et al. (2012) (GSM862724,
GSM892307).

Data preprocessing

We generated the Hi-C contact matrices using the pipeline from
Dixon et al. (2015). Briefly, the paired-end reads were first aligned
to the hg19 reference genome assembly using BWA (Li andDurbin
2009). The unmapped readswere filtered, and potential PCR dupli-
cates were removed using Picardtools (https://broadinstitute.
github.io/picard/). We analyzed Hi-C reads mapped to human
genome assembly hg19, because many of the published data sets
were mapped to this assembly and this assembly has the deepest
annotation of candidate functional noncoding sequences.
Although the human genome assembly GRCh38 has improved
contiguity in local regions, both assemblies are of high quality.
Thus genome-wide analyses, such as our assessments of reproduc-
ibility, are not expected to differ significantly when the Hi-C reads
are aligned to different assemblies. Importantly, our evaluation of
reproducibility is not dependent on the exact locations to which
readsmap, but rather it uses the distances between two interacting
sequences. Thus our metrics should be stable across similar
assemblies.

Formost analysis, we used 40-kb bins. To obtain contactmaps
at this resolution, we divided the genome into 40-kb bins as in
Dixon et al. (2015) and obtained the interaction frequency by
counting the number of reads falling into each pair of bins.

Our analysis only considered the intra-chromosomal interac-
tions and only used the contacts within the range of 0–5Mb in the
reproducibility assessment. This range was chosen based on the
observation that most of the A/B compartments have an interac-
tion size of about 5 Mb, and interactions >5 Mb in distance are
rare (<5% of reads) and highly stochastic. To evaluate the effect

of this parameter, we constructed the ES and its derived cell lineag-
es using interactions in several ranges, including 0–4, 0–5, 0–6, 0–
8, and 0–10 Mb (Fig. 4B, 0–5 Mb; Supplemental Fig. S5, others).
The ranges of 0–4, 0–5, and 0–6 Mb gave the best results, confirm-
ing that 0–5 Mb is a reasonable choice. Only the bins with at least
one count in at least one of the samples are kept for computing
Pearson and Spearman correlations. All the data sets were prepro-
cessed using the same procedure.

Our method is applicable to both raw and bias corrected data.
However, to ensure the reproducibility assessment is free of as-
sumptions made in the bias correction procedures (Cournac
et al. 2012; Hu et al. 2012; Imakaev et al. 2012) and faithfully re-
flects the nature of the raw data, we chose to apply our method
directly to raw data without bias correction. For the ES and its de-
rived cell lines, we also applied our method to the bias-corrected
matrices, in addition to the raw data, as a comparison. The bias
correction was performed using the Iterative Correction and
Eigenvector decomposition procedure (ICE) (Imakaev et al. 2012).

2D mean filter smoothing

Because the space of interactions surveyed by Hi-C experiments is
very large, achieving sufficient coverage is still challenging. When
samples are not sufficiently sequenced, the local variation intro-
duced by under-sampling can make it difficult to capture large
domain structures.

To handle this issue, we first smoothed the contact map be-
fore assessing reproducibility. Although smoothing will reduce
the individual spatial resolution, it can improve the contiguity of
the regions with elevated interaction, consequently enhancing
the domain structures. It has been effective in commonly used
Hi-C normalization methods (Yaffe and Tanay 2011; Imakaev
et al. 2012).

We use a 2Dmean filter to smooth the contactmap. The filter
replaces the read count of each contact in the contactmapwith the
mean counts of all contacts in its genomic neighborhood. This fil-
ter is fast to compute and is effective for smoothing rectangular
shapes (Davies 2012) like domain structures in Hi-C data.
Specifically, let Cn×n denote a n × n contact map and cij denote
the counts of the interaction between loci i and j. Given a span
size h > 0, the smoothed contact map after passing an hth 2D
mean filter is defined as follows:

xij(h) =
∑min(i+h,n)

m=max(1,i−h)
∑min( j+h,n)

l=max(1,j−h) Cml

(1+ 2h)2 .

Avisualization of the smoothing effectwith differentwindow sizes
is shown in Supplemental Figure S6.

Selection of smoothing parameter

The span size h is a tuning parameter controlling the smoothing
level. A very small hmight not reduce enough local variation to en-
hance the boundaries of domain structures, whereas a large h will
make the boundaries of domain structures blurry and limit the spa-
tial resolution. Therefore, the optimal h should be adaptively cho-
sen from the data.

To select h objectively, we developed a heuristic procedure
to search for the optimal choice. Our procedure is designed
based on the observation that the correlation between contact
maps of replicate samples first increases with the level of
smoothness and then plateaus when sufficient smoothness is
reached. To proceed, we used a pair of reasonably deeply se-
quenced interaction maps as the training data. We randomly
sampled 10% of the data 10 times. For each subsample, we com-
puted the stratum-adjusted correlation coefficient (SCC,
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described subsequently) at a series of hs in the ascending order
and recorded the smallest h at which the increment of SCC
was less than 0.01. The mode of h among the 10 subsamples
was selected as the final span size. The detailed steps are shown
in Algorithm 1 (Supplemental File S1).

Because the level of local variation in a contact map depends
on the resolution used to process the data, the span size required to
achieve sufficient smoothness varies according to resolution.
Hence, a proper h for each resolution needs to be trained sepa-
rately. However, at a given resolution, it is desirable to use the
same h for all data sets, so that the downstream reproducibility as-
sessment can be compared on the samebasis. To reduce the chance
of oversmoothing due to sparseness caused by insufficient cover-
age when training h, we used a deeply sequenced data set as train-
ing data.

Here, we obtained h in our analysis from the Human H1 ESC
data set (Dixon et al. 2015). This data set was deeply sequenced
(330 and 740 M reads for its two replicates) and had a reasonable
quality (Dixon et al. 2015), making it suitable as training data.
We processed the data using a series of resolutions (10, 25, 40,
100, 500 kb, and 1Mb), and then we selected h for each resolution
using the procedure described above. We obtained h = 20, 11, 5, 3,
1, and 0 for the resolution of 10, 25, 40, 100, 500 kb, and 1Mb, re-
spectively. These values were used throughout our study for all
data sets at the corresponding resolutions. The robustness of our
procedure was assessed using the Human H1 ESC data set and
four derived cell lines (Results).

Stratification by distance

To take proper account of the distance effect in reproducibility as-
sessment, we stratify the contacts by the genomic distance be-
tween their interaction loci. Specifically, let Xn×n be an n×n
smoothed contact map at a resolution of bin size b. We compute
the interaction distance for each contact xij as dij = |j− i| × b and
then stratify the contacts by dij into K strata, Xk = {xij: (k− 1)b < dij-
≤ kb}, k = 1, …, K. Here, we consider the interaction distance of 0–
5 Mb. This leads to K = 125 for the bin size b = 40 kb. If xij is 0 in
both samples, then it is excluded from the reproducibility
assessment.

Stratum-adjusted correlation coefficient (SCC)

Our reproducibility statistic is motivated from the generalized
Cochran–Mantel–Haenszel (CMH) statistic M2. The CMH statistic
is a stratum-adjusted summary statistic for testing if two variables
are associated while being stratified by the third variable (Agresti
2012), for example, the association between treatment and re-
sponse stratified by age. Although originally developed for cate-
gorical data, it is also applicable to continuous data (Mantel
1963) and can detect consistent linear association across strata.
However, the magnitude of M2 depends on the sample size;
therefore, it cannot be used directly as a measure of the strength
of the association. When there is no stratification, the CMH sta-
tistic is related to the Pearson correlation coefficient ρ as M2 =
ρ2(N− 1), where N is the number of observations (Agresti 2012).
This relationship allows the strength of association summarized
by M2 to be represented using a measure that has a fixed
scale and is comparable across different samples. However, ρ
does not involve stratification. This motivates us to derive a stra-
tum-adjusted correlation coefficient (SCC) to summarize the
strength of association from the CMH statistic when there is
stratification.

Derivation of stratum-adjusted correlation coefficient (SCC)

Let (X, Y) denote a pair of samples with N observations. The obser-
vations are stratified into K strata, and each stratum has Nk obser-
vations such that

∑K
k=1 Nk = N. Denote the observations in

stratum k as (x1k , y1k ), . . . , (xNk , yNk ) and the corresponding random
variables as (Xk, Yk), respectively. In our context, (xik , yik ) are the
smoothed counts of the ith contact on the kth stratum in the
two contact maps X and Y. Let Tk =

∑Nk
i=1 xik yik , the CMH statistics

is defined as

M2 =

∑
k
[Tk − E(Tk)]

[ ]2
∑
k
var(Tk) , (1)

where E(Tk)and var(Tk) are the mean and variance of Tk under the
hypothesis thatXk andYk are conditionally independent given the
stratum,

E(Tk) =
∑Nk

i=1 xik
∑Nk

j=1 y jk

Nk
, (2)

and

var(Tk) = 1
Nk − 1

∑Nk

i=1
x2ik −

∑Nk
i=1 xik

( )2
Nk

⎡
⎢⎣

⎤
⎥⎦

×
∑Nk

j=1
y2jk −

∑Nk
j=1 y jk

( )2
Nk

⎡
⎢⎣

⎤
⎥⎦. (3)

To derive the stratum-adjusted correlation coefficient from
the CMH statistic, write the Pearson correlation coefficient ρk for
the kth stratum as ρk = r1k/r2k, where

r1k = E(XkYk) − E(Xk)E(Yk) =
∑Nk

i=1 xik yik
Nk

−
∑Nk

i=1 xik
∑Nk

j=1 y jk

N2
k

(4)
r2k =

������������������
var(Xk)var(Yk)

√

=

��������������������������������������������������������������∑Nk
i=1 x

2
ik

Nk
−

∑Nk
i=1 xik
Nk

( )2
⎡
⎣

⎤
⎦ ∑Nk

i=1 y
2
ik

Nk
−

∑Nk
i=1 yik
Nk

( )2
⎡
⎣

⎤
⎦

√√√√√ . (5)

It is easy to see that r1k = (Tk− ETk)/Nk and
r2k =

�������������������(Nk − 1)var(Tk)
√

/Nk. Then we can represent M2 using ρk,

M2 =
∑K

k=1 Nkr2krk
( )2

∑K
k=1 Nkr2k( )2/ Nk − 1( ) . (6)

Define

rs =
∑K

k=1 Nkr2krk∑K
k=1 Nkr2k

=
∑K
k=1

Nkr2k∑K
k=1 Nkr2k

( )
rk, (7)

then

M2 = r2s
1∑K

k=1 Nkr2k
( )2 ∑K

k=1
Nkr2k( )2/ Nk − 1( )

. (8)

Equation 8 shows that r2s reflects the strength of association inM2.
This strength relates to M2 in a similar way as the Pearson correla-
tion toM2 in the case without stratification. As shown in Equation
7, ρs is a weighted average of the stratum-specific correlation coef-
ficients, withweightswk = Nkr2k/

∑K
k=1 Nkr2k assigned according to

the variance and sample size of a stratum. We call ρs the stratum-
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adjusted correlation coefficient (SCC). Similar to standard correla-
tion coefficients, it satisfies − 1≤ ρs≤ 1. A value of ρs = 1 corre-
sponds to a perfect positive correlation, a value of ρs = 1
corresponds to a perfect negative correlation, and a value of ρs =
0 corresponds to no correlation.

The variance of ρs can be computed as

var rs
( ) = ∑K

k=1 Nkr2k( )2var rk
( )[ ]

∑K
k=1 Nkr2k

( )2 , (9)

where var(rk) is the asymptotic variance for the Pearson correlation
coefficient in a single stratum and can be computed using Fisher
transformation (Fisher 1921) as follows: Let rk be the sample ver-
sion of ρk and Zk be the Fisher transformation of rk, i.e., Zk = (1/2)
ln[(1 + rk)/(1− rk)], then Zk is approximately normally distributed
with mean (1/2)ln[(1 + ρk)/(1− ρk)] and variance 1/(Nk − 3)
(Fisher 1921). By the Delta method (Casella and Berger 2002), rk
is asymptotically normally distributed with mean ρk and the as-
ymptotic variance as var(rk) = (1− r2k )2/(Nk − 3).

The idea of obtaining an average correlation coefficient based
on the CMH statistic has been explored in Rubenstein and Davis
(1999) in the context of contingency tables with ordered catego-
ries. However, its derivation has several errors, which lead to a dif-
ferent statistic that ignores the sample size differences in different
strata.

Variance stabilized weights

The downside for Equation 7 is that it is based on the implicit as-
sumption in the CMH statistic that the dynamic ranges of X and
Y are constant across strata. However, in Hi-C data, the read counts
for contacts with short interaction distances have a much larger
dynamic range than those with long interaction distances. As a re-
sult, the weights for the strata with large dynamic ranges will dom-
inate Equation 7 owing to the large values of their r2k. To normalize
the dynamic range, we ranked the contact counts in each stratum
separately and then normalized the ranks by the total number of
observations Nk in each stratum, such that all strata shared a sim-
ilar dynamic range. We then computed r2k in the weights in
Equations 7 and 9 using the normalized ranks, instead of the actual
counts, i.e.,

r2k =
�����������������������������������
var

Rank(Xk)
Nk

[ ]
var

Rank(Yk)
Nk

[ ]√
(10)

The stratum-specific correlation ρk is still computed using actual
values rather than ranks, as actual values have better sensitivity
than ranks when there are a large number of low counts.

Software availability

We have implemented our method as an R package (R Core Team
2016). It is publicly available as the HiCRep package on GitHub
(https://github.com/qunhualilab/hicrep) and in the Supplemental
Materials.
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