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Abstract
RNA-binding proteins play a variety of roles in cellular physiology. Some
regulate mRNA processing, mRNA abundance, and translation efficiency.
Some fight off invader RNA through small RNA-driven silencing pathways.
Others sense foreign sequences in the form of double-stranded RNA and
activate the innate immune response. Yet others, for example cytoplasmic
aconitase, act as bi-functional proteins, processing metabolites in one
conformation and regulating metabolic gene expression in another. Not all are
involved in gene regulation. Some play structural roles, for example, connecting
the translational machinery to the endoplasmic reticulum outer membrane.
Despite their pervasive role and relative importance, it has remained difficult to
identify new RNA-binding proteins in a systematic, unbiased way. A recent
body of literature from several independent labs has defined robust, easily
adaptable protocols for mRNA interactome discovery. In this review, I
summarize the methods and review some of the intriguing findings from their
application to a wide variety of biological systems.
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Introduction
Eukaryotic messenger RNAs (mRNAs) must be produced in the 
nucleus and then transported to the cytoplasm in order to func-
tion as a template for protein synthesis. This process is assisted at 
numerous levels by RNA-binding proteins (RBPs), many of which 
modify the fate of the mRNA1. For example, alternative splic-
ing or polyadenylation factors regulate mRNA processing during 
synthesis2–5. Some RBPs govern nuclear export and/or subse-
quent localization in the cytoplasm or nucleus6,7. Others regulate 
translation efficiency or mRNA decay8–10. Some might bind RNA 
with no meaningful biological outcome11.

Despite RBPs’ regulatory potential, the identification of new ones 
remains a relatively slow process that typically requires focused, 
gene-specific studies. Few systematic approaches to identify 
new RBPs genome-wide are available. One approach relies on 
bioinformatics to search for hallmark domains and sequences that 
have been demonstrated to bind RNA in single gene studies12–15. 
Indeed, significant progress has been made using this approach 
to identify RBPs with important biological functions in a variety 
of experimental models. For example, the discovery that Pumilio 
binds to a critical sequence in the 3′ untranslated region (UTR) of 
hunchback mRNA in fly embryos16–19, together with the discov-
ery that FBF binds to a similar sequence in the 3′ UTR of fem-3 
mRNA in Caenorhabditis elegans20,21, defined a new RBP domain 
termed “Puf” (Pumilio-FBF). Homology searches subsequently led 
to the discovery of Puf-family RBPs in yeast, humans, worms, and 
several other species, many with important functions in trans-
lational control22–29. Such informatics-based approaches help to 
catalogue the RNA interactome but are necessarily limited by 
the requirement for prior knowledge that a given protein domain 
typically has RNA-binding activity.

Sometimes, such knowledge can be misleading. For example, the 
canonical RNA-recognition motif (RRM) does not always bind 
to RNA30. Mago nashi (Mago) is a core component of the exon-
junction complex deposited by the spliceosome upstream of splice 
junctions31,32. This protein contains an RRM and is present in a 
complex that binds to RNA. However, the RRM of Mago does not 
contact RNA directly. Instead, the crystal structure of Drosophila 
melanogaster Mago in complex with Y14 revealed that this 
protein makes use of the RRM domain to form an extended 
protein-protein interaction surface32,33. Several additional examples 
of protein-binding RRM domains have been identified since this 
surprising discovery30.

Other approaches to map the RBP interactome are designed to 
identify all of the mRNAs that can bind to a single protein34–39 or 
all of the proteins that can bind to a given RNA sequence40,41. While 
both strategies are incredibly useful, until recently, no approach 
had been developed to identify all of the RBPs that touch mRNA in 
a cell or animal. A technological breakthrough from two independ-
ent labs has filled this gap42,43. Application of this technology by 
several labs is beginning to provide the first comprehensive glance 
at the RBP atlas in several systems44–51.

The mRNA interactome in cultured mammalian cells
Two independent teams, led by 1) Krijgsveld and Hentze and  
2) Landthaler, simultaneously developed similar approaches for 
comprehensively mapping RBP–mRNA interactions in mammalian 

cell culture (Figure 1)42,43. In brief, building upon a robust strat-
egy first devised by Dreyfuss and colleagues in the 1980’s52,  
proteins are crosslinked to RNA using ultraviolet (UV) light. Total 
mRNA is recovered using oligonucleotide-deoxythymidine (dT)  

Figure 1. mRNA interactome capture. Schematic of mRNA 
interactome capture experiments. A. Samples are treated with 
ultraviolet (UV) light, either 254 nm to crosslink endogenous 
nucleotides to interacting proteins or 365 nm to crosslink exogenously 
added 4-thiouridine (4SU) to interacting proteins. B. Total mRNA is 
recovered from the sample using oligo-deoxythymidine (dT) resin, 
which base pairs with the polyadenosine (polyA) tail of mRNA.  
C. Following ribonuclease digestion, the proteins are separated 
and identified using quantitative liquid chromatography tandem 
mass spectrometry (LC-MS/MS). D. Summary of the outcomes. 
Some RNA-binding proteins (RBPs) are found in several samples, 
across diverse species. These proteins likely have housekeeping 
functions. Others are specific to unique cell types or are unique 
to a given species. Many well-studied RBPs are recovered by this 
approach, as well as many predicted RBPs with canonical domains 
such as RNA-recognition motif (RRM), KH, etc. New RBPs are also 
identified, which can be classified into groups that are entirely new 
or well-studied proteins where RBP-binding activity was unexpected  
(i.e. EnigmRBPs). Abbreviations: mEF, mouse embryonic fibroblast; 
mESC, mouse embryonic stem cells; RBD, RNA-binding domain.
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conjugated resin under stringent wash conditions, then eluted by 
ribonuclease digestion. Covalently associated proteins are identi-
fied by high-resolution liquid chromatography tandem mass spec-
trometry (LC-MS/MS). While there are numerous details that 
distinguish the two studies in terms of crosslinking strategy, pro-
teomics technique, and cell line investigated, both groups identified 
approximately 800 mRNA-interacting proteins, including many 
that were not previously known to bind RNA.

The study led by Krijgsveld and Hentze mapped the mRNA inter-
actome in cultured HeLa cells43. Two independent crosslinking 
strategies were used to diversify the type and number of crosslinks 
formed. In the first, short-wavelength (254 nm) UV light was used 
to crosslink endogenous nucleotides to their interacting proteins. In 
the second, a photoactivatable ribonucleoside (4-thiouridine, 4SU) 
was added to the culture media. When incorporated into RNA, this 
nucleotide analogue is capable of crosslinking to proteins with 
higher efficiency than endogenous nucleotides after activation by 
long-wavelength (365 nm) UV light53,54. The authors observed a 
remarkable 64% overlap in the protein content via both crosslink-
ing strategies, with 24% specific to short-wavelength crosslinking 
and 12% specific to 4SU crosslinking. To assess the enrichment of 
proteins relative to control samples, the authors employed 
quantitative spectral and ion counting, which identified a total of 
860 proteins at a false discovery rate (FDR) of 0.01. Shockingly, 
315 of these proteins had not been shown or even predicted to 
bind to RNA, suggesting that a large fraction of protein-RNA biol-
ogy remains unexplored. Many of the newly discovered RBPs 
contain serine/threonine kinase FAST and RAP domains, ZnF 
domains (which in fact have an extensive literature describing 
their RNA recognition properties55), peptidyl-proline cis trans 
isomerase domains (PPI), or low-complexity repetitive sequences 
enriched in glycine, arginine, lysine, and/or tyrosine. Seven-
teen intermediary metabolism enzymes were recovered as well,  

consistent with a growing body of literature that demonstrates 
numerous metabolic enzymes also have functions in RNA biology, 
for example cytoplasmic aconitase56–62. Several of these were vali-
dated by immunoprecipitation of an eGFP-tagged candidate RBP 
from transfected cultured cells, annealing of texas red conjugated 
oligo-dT to the recovered RBP-mRNA complexes, and meas-
uring the ratio of green and red fluorescence. One in ten of all 
enriched RBPs can be found in the online Mendelian inheritance 
in man (OMIM) database, a list of disease-related gene changes,  
suggesting many RBPs play critical roles in normal human  
physiology63,64.

The study led by Landthaler also revealed many surprising 
findings42. As above, the authors made use of 4SU crosslinking to 
covalently conjugate proteins to mRNA and recovered interacting 
proteins using oligo-dT resin. In contrast, this study, which 
employed HEK 293T cells, used stable isotope labeling by amino 
acids in cell culture (SILAC) for quantitative mass spectrometry and 
also made use of high-throughput sequencing to map the mRNA 
interactome footprint65. Setting a threefold enrichment threshold 
in the SILAC data, the authors identified 505 unique proteins that 
showed enrichment in three replicates and a total of 797 that were 
enriched in at least one replicate. Of these, 245 were not previ-
ously annotated to be RBPs (~31%). The scope of RBP recovery 
is comfortingly congruent with the above study43. Similarly, FAST 
kinase domain-containing proteins are abundant in the novel RBP 
category. Interestingly, the “winged-helix” family of transcription 
factors were also enriched, suggesting a possible dual role for these 
factors in both DNA and mRNA regulation66. Perhaps most telling, 
there is significant overlap in identified RBPs in both studies, which 
identified 528 RBPs in common, despite being performed using 
different cell lines (Figure 2). This suggests a high degree of 
reproducibility across methods, laboratories, and even different 
cell types.

Figure 2. Comparison of multiple interactomes. Four tables are presented, comparing three human cell lines, three mouse cell lines, three 
yeast data sets, and two fly data sets, respectively. Below the tables is a key that identifies the source of the given interactome data set. The 
values in the tables represent the number of shared proteins in a pairwise comparison between the interactomes that intersect in the table. 
The diagonals (brown squares) show the total number of proteins collected in each given interactome. The orange squares show the number 
in common between two interactomes. The values in green to the left of each table are the number of proteins in common among the three 
interactomes compared, and the values in red are the number of proteins that are reported only in the specific interactome. Abbreviations: 
mEF, mouse embryonic fibroblast; mESC, mouse embryonic stem cell.
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To complement their proteomics studies, Landthaler and col-
leagues collected recovered mRNA and generated DNA libraries 
comparing crosslinked to non-crosslinked samples following pro-
teinase K treatment42. The libraries were sequenced and compared 
in order to identify thymidine to cytidine transitions that are char-
acteristic of the position of crosslinking35,67. As such, the authors 
could identify individual bases in the population of total mRNA 
that were enriched for crosslinking to protein. The results define the 
interactome footprint, which reveals interesting features of mRNA 
that directly associate with protein. The most useful information 
stems from the interaction sites in the 3′ UTR, as crosslinking 
to ribosomes can cloud the interpretation of sites in the 5′ UTR 
and the coding sequence. Approximately 30% of all uridines in 3′ 
UTRs are readily converted to cytidine in the crosslinking analysis, 
suggesting that proteins heavily occupy the 3′ UTR on average. 
Moreover, sequence analysis reveals that nucleotides that flank 
the point of transition are less likely to include single nucleotide 
polymorphisms than other nucleotides, suggesting many 
crosslinked sites may be subject to evolutionary pressure.

Together, these studies broke the barrier to global mapping of the 
mRNA interactome42,43. Both studies are technical masterpieces, 
making use of cutting edge proteomics, informatics, and statisti-
cal tools to provide an atlas of all mRNA-binding proteins in 
mammalian cell culture. Though a huge breakthrough, the methods 
used in the studies are not without limitations. Most notably, the 
recovery of RBPs requires the presence of a polyadenosine tail 
on the mRNA. As such, pre-mRNAs that have not yet been ade-
nylated, or stable deadenylated transcripts, will not be recovered 
by this approach. Proteins involved in pre-mRNA splicing or mod-
ification could be missed, as well as proteins that play a role in 
reversible translational silencing through deadenylation. Proteins 
that interact with RNA using interactions that are not compatible 
with short-wavelength crosslinking, or 4SU-mediated crosslink-
ing, will likewise be missed. Finally, in some cases, the use of 4SU 
may alter the interactions present in the cell, leading to false nega-
tives or false positives11. Nevertheless, the volume of new RBPs 
discovered through these studies is likely to keep protein-RNA 
scientists busy for years to come, and the value of these unbiased 
studies should not be underestimated.

The mRNA interactome in specialized cells
It is reasonable to expect that cells with different function and 
developmental potential will have inherently different mRNA inter-
actomes. Following the lead of initial studies in HeLa and HEK 
293T cells, recent work from several labs mapped the mRNA 
interactome in mouse embryonic stem cells (mESCs), mouse 
embryonic fibroblasts (MEFs), macrophages, and in the blood 
stages of the malarial parasite Plasmodium falciparum. These 
studies expand the mRNA interactome catalogue, enable the 
comparison of interactomes between multiple cell types, and have 
identified many additional RBPs.

In the first study, Kim and colleagues used short-wavelength UV 
crosslinking mRNA interactome capture in mESCs68. They identi-
fied 555 proteins at an FDR of 0.01 in at least two of three bio-
logical replicates. Of these, 326 have homologs in both the previous 
studies using HeLa and HEK 293T cells, suggesting that these 
proteins are “core” mammalian RBPs that interact with mRNA 

in a wide variety of cells. Interestingly, 122 proteins appear only 
in the mESC data, and about half of them are enriched in mESCs 
relative to differentiated cells in RNA-seq data. Among the 
interesting findings from this work, the authors identified several 
WD40 proteins in the interactome69, two well-studied ubiquitin 
ligases (Trim25 and Trim71)70, and a variety of low-complexity 
putatively disordered proteins, many of which have been impli-
cated in the formation of RNA granules as a result of phase 
separation71–75. Pathway analysis reveals many of the RBPs are 
downstream of c-myc, one of the Yamanaka factors that gov-
ern pluripotency76. Together, the results reveal the mESC mRNA 
interactome and identify several new RBPs that could contribute 
to the maintenance of pluripotency.

A second study, by Dietrich, Reinhardt, and co-workers, investi-
gated how the mRNA interactome of MEFs changes as a function 
of activating the DNA damage response with etoposide, a topoi-
somerase inhibitor46. The authors identified 335 RBPs in untreated 
cells, 287 of which had been previously identified as RBPs in 
other studies. Upon treatment with etoposide, 44 RBPs changed in 
abundance: 30 showed reduced recovery and 14 showed increased 
recovery. To test whether there is a corresponding change in mRNA 
content, the authors performed RNA-seq on treated and untreated 
samples, which revealed a general correlation between changes in 
transcript abundance and the number of expected target mRNAs 
recognized by a given protein. Interestingly, the authors showed 
that four known RBP targets of p38 change upon etoposide treat-
ment, including KHSRP, an RBP implicated in a variety of cell 
processes77. The results reveal a dynamic mRNA interactome 
and identify a potential candidate RBP that could play a role in 
regulating cell cycle progression in response to DNA damage.

A recent study looked at the mRNA interactome in the blood stage 
of P. falciparum infection48. Plasmodium is the causative agent of 
malaria, a prevalent insect-borne disease that affects 214 million 
people worldwide48. Le Roch and colleagues used both computa-
tional prediction and mRNA interactome capture to identify RBPs 
from the P. falciparum genome48. Their computational studies 
predicted approximately 1000 putative RBPs in the genome. Exper-
imentally, they recovered 199 RBPs in at least two replicates of 
cultured trophozoite and schizont stage infected human type O+ 
erythrocytes. The most abundant and enriched RBPs from the 
Plasmodium genome include homologs of critical translation 
regulators, such as Musashi (HoMu), PfCelf2 (Bruno), PfAlba1, 
CITH, as well as several unstudied proteins containing pre-
dicted RRM, RAP, and DEAD-box domains. This work identifies 
several proteins that could play a role in the life cycle of this pro-
tozoan parasite, which could lead to new targets for anti-malarial 
interventions.

Most recently, Ostareck and Ostareck-Lederer used mRNA interac-
tome capture to identify RBPs in murine RAW 274.7 macrophages 
that had been stimulated with lipopolysaccharide (LPS) compared 
to untreated controls49. The innate immune system is tightly regu-
lated at the post-transcriptional level and the stability of cytokine 
transcripts is regulated through RBP–mRNA interactions with 
destabilization sites in the 3′ UTR. Consistent with this, the authors 
identified 945 mRNA-interacting proteins in at least one of two 
replicates, 402 of which pass the statistical criteria used by the 
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authors for inclusion in the interactome. These include 32 that 
appear to be unique to macrophages. Nineteen harbor no obvious 
RNA-binding motifs, including the HSP90 co-chaperone P23 
and the hematopoietic-specific LYN 1 substrate adaptor pro-
tein HCLS1, which the authors subsequently demonstrated had 
RNA-binding activity using recombinant protein. The results also 
identify proteins that may be LPS-induction specific and as such 
may provide insights into post-transcriptional regulation of the 
innate immune response.

Taken in sum, we learn that many RBPs interact with mRNA in 
multiple cell types, suggesting that there are important “housekeep-
ing” RBP–mRNA interactions that are fundamental to the physiol-
ogy of all cells (Figure 2). Nevertheless, specific differences are 
observed between different cell types, both in control conditions 
and when treated with agents that alter physiology, suggesting 
that RBP-mediated post-transcriptional regulation plays an impor-
tant role in cell-type-specific responses. More work is needed to 
define the magnitude of their contribution and determine how they 
function at the mechanistic level.

The mRNA interactome in model organisms
Model organisms are a valuable resource for understanding cell 
physiology, function, and differentiation across broad evolutionary 
diversity. Facile genetics coupled to a significant literature 
history enables the comparison of mRNA interactome data to 
extensive information derived from gene-specific studies. Following 
the publication of mRNA interactome capture technology42,43, there 
was naturally significant interest in applying the method to com-
mon model organisms. Now, several data sets for Saccharomyces 
cerevisiae, C. elegans, and D. melanogaster have emerged44,45,47,50,51, 
enabling comparisons to the data sets collected using mammalian 
tissue culture and to each other.

One of the first efforts sought to identify the RBP content of 
haploid yeast grown under glucose deprivation to induce the 
stress response44. Parker and colleagues used short-wavelength 
UV crosslinking followed by LC-MS/MS to identify 120 RBPs  
significantly enriched across two biological and five technical 
replicates. It is not immediately clear whether the difference in 
the overall number of RBPs compared to previous studies with  
mammalian cells is due to real biological differences between 
starved yeast and vertebrate cells or if variability in assay  
sensitivity and/or statistical criteria can account for the differ-
ences. As with studies in mammalian cells, many proteins recov-
ered are well-characterized RBPs. Some of these are proteins that 
are known to bind to RNA but had not previously been implicated 
in mRNA binding. These include tRNA synthetases and tRNA-
modifying enzymes, as well as ribosomal-processing proteins. It 
will be interesting to see if these proteins play dual roles in the 
cell, both in assembling the translational apparatus and in regulat-
ing gene expression. Such a role would not be unprecedented, as 
some ribosomal proteins have been shown to act as mRNA-specific 
translation regulators in several systems. As with previous studies, 
several “new” RBPs were identified, including a vacuolar ATPase 
subunit, several metabolic enzymes, low-complexity proteins, and 
protein kinases. In addition to this work, traditional crosslinking 
and immunoprecipitation (CLIP) studies37 were performed on  

several RNA granule proteins identified in the interactome, defining 
sites of recognition in mRNAs.

A more recent study by Gerber and colleagues re-measured 
the yeast mRNA interactome and compared it to the C. elegans 
interactome defined under both normal and proapoptotic 
conditions47. Using rich media cultures grown to mid-log phase, the 
authors identified 765 proteins in at least two of three independ-
ent replicates at an FDR of 0.01. About 70% of the yeast RBPs 
previously identified were confirmed in the new data set44. Of the 
set of 561 predicted RBPs in the yeast genome, 205 were recov-
ered in the mRNA interactome. Most of the proteins in the mRNA 
interactome (73%) were not predicted to bind RNA. Strikingly, 
325 proteins encode metabolic enzymes, some of which have been 
implicated in RNA binding through previous gene-specific and 
interactome capture studies43,56,57,78,79. It remains unclear whether 
the disparity between this study and the previous study of Parker 
and colleagues is due to different growth conditions or different 
assay sensitivity.

In the same study, the authors used interactome capture to 
identify 594 C. elegans mRNA-binding proteins47. Proteins were 
considered significant if they appeared in at least two out of nine 
samples, using an FDR of 0.05. The first set of three samples 
comprised mixed-stage animals, which included all larval stages, 
adults, oocytes, and embryos. The second set was strictly L4 
larval-stage animals, which produce sperm but have not yet begun 
to produce oocytes or embryos. The final set was L4 larval-stage 
animals treated with ethylnitrosourea (ENU), which induces 
apoptosis. Mixed-stage animals had 555 putative RBPs, while 
39 proteins appeared exclusively in the L4 samples. The  
L4-enriched proteins include proteins required for spermatogene-
sis, including FBF-2 and ALG-421,80. Fifty-five proteins were shown 
to be enriched in ENU-treated samples and correspond to stress 
response proteins including EEF-1B.1 and EEF-1B.2, as well as 
translation initiation factors EGL-45, EIF-3, EIF-6, and IFE-2, and 
CLU-1. As with yeast, about 40% of the total mRNA interactome 
consists of proteins annotated as metabolic enzymes. Similar to 
other studies, low-complexity domains were also enriched. Com-
parison of the new yeast mRNA interactome with the C. elegans 
interactome revealed more than half of the C. elegans RBPs had a 
corresponding homolog in the yeast data set. This suggests exten-
sive conservation of RBP function throughout evolution.

A third study, from Krisjgsveld, Hentze, and colleagues, measured 
the yeast mRNA interactome a third time and compared it to the 
RBP content of human hepatocytic HuH-7 cells45. In this study, 
yeast RBPs were captured using 4SU crosslinking, while HuH-7 
cells were analyzed through both conventional crosslinking and 
4SU crosslinking, to facilitate comparisons to RBPs identified in 
their original study using HeLa cells. Under stringent selection 
criteria across three biological replicates, the authors identified 
678 yeast mRNA-interacting proteins and 729 HuH-7 mRNA- 
interacting proteins at an FDR of 0.01. Of the 120 RBPs identi-
fied by Parker and co-workers, 108 are confirmed in this study44. A 
direct comparison between this data set and that of Gerber and 
colleagues was not made47, as the two studies were published  
within two weeks of each other. However, the scope of the recovered 
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RBPs was similar in magnitude (678 vs. 765, respectively), as well 
as the fact that many recovered RBPs are not annotated as RNA 
binding but have well-studied function in metabolism or other cell 
processes. The authors of the current study define such proteins as 
“EnigmRBPs”.

The HuH-7 data identified 109 RBPs that were not present in 
previously published data sets using HeLa and HEK 293T cells, 
suggesting that these proteins are specific to hepatocytes or interact 
with RNA differentially between cell types and/or culture 
conditions. Consistent with previous findings, most of the proteins 
are recovered from all three cell types, suggesting a possi-
ble “housekeeping” function for many RBPs. To investigate an 
EnigmRNP in more detail, the authors evaluated the RNA- 
recognition properties of the mitochondrial hydroxysteroid 
dehydrogenase (HSD17B10). This enzyme is a polyfunctional pro-
tein that has been reported to play an important role in metabo-
lizing steroids, in isoleucine catabolism, and, to a lesser extent,  
acting as an alcohol dehydrogenase81,82. Surprisingly, it also  
appears to be a subunit of a multi-protein complex with RNAse 
P activity, trimming 5′-leader sequences from precursor tRNA in 
the mitochondria83. Consistent with this role, iCLIP experiments84 
demonstrated that HSD17B10 indeed binds preferentially to the 
5′-leader sequence of some but not all mitochondrial tRNAs and 
that a disease-causing mutant variant of the protein reduces its 
ability to bind to RNA. These results suggest that the tRNA-bind-
ing activity of HSD17B10 is important and that disruption of this  
activity, rather than its metabolic activities, might be at the heart of 
its dysfunction in human cardiomyopathy. It is not yet clear how 
this enzyme, which appears to be primarily involved in mitochon-
drial tRNA processing, also interacts with polyadenylated mRNA.

The final two mRNA interactome studies sought to define how 
the interactome changes during the maternal-to-zygotic transition 
(MZT) of Drosophila embryos50,51. In flies, and most metazoans, 
maternally supplied mRNAs and proteins are crucial for early 
patterning events85. At the MZT, maternal mRNAs are replaced 
with transcripts encoded by the embryonic genome in a process 
that likely requires coordinated turnover of maternal RNAs and a 
mechanism to distinguish newly synthesized mRNAs from those 
stored in the oocyte cytoplasm86. RBPs are critical for controlling 
maternal mRNA expression, so there is great interest in understand-
ing how the mRNA interactome changes during the MZT86.

In the study by Ohler, Landthaler, and colleagues, 476 “high 
confidence” RBPs were identified in both conventional and  
4SU-mediated crosslinked samples in mRNA interactome  
capture experiments using Drosophila embryos 0–2 hours post- 
fertilization51. As with previous studies of yeast and C. elegans, 
many of the recovered proteins (164) have clear homologs in 
the mammalian interactome capture experiments. The rest are  
either fly specific (47) or are preferentially expressed in oocytes/
embryos. Of these proteins, 57% harbor a canonical RNA- 
binding domain, while the rest are similar to the new RNA-binding 
domain classes identified in previous studies42,43, including WD40 
repeats and protein kinases. Interestingly, mRNAs that encode  
RBPs identified through interactome capture tend to be found in 
earlier embryos, while mRNAs that encode transcription factors  
are more abundant in later embryos. This is consistent with the 
hypothesis that RBPs in early embryos are enriched in factors that 

control the timing and expression of maternal RNAs (i.e. post-
transcriptional regulators), and their influence is less substantial 
compared to transcription factors in older embryos, following the 
MZT.

In a competing study by Ephrussi and colleagues, the mRNA 
interactome was determined using conventional crosslinking from 
0–1 hour post-fertilization embryos as a pre-MZT sample, and 
4.5–5.5 hours post-fertilization embryos as a post-MZT sample50. 
In total, 523 proteins were identified between the two samples at 
an FDR of 0.01. Of these, 236 have not been shown or predicted 
to bind to RNA previously, although some of these have homologs 
that were identified in previous mRNA interactome capture 
studies from other species. Of the fly embryo mRNA interactome 
set, 236 RBP-encoding genes give lethal or sterile phenotypes upon 
mutation, many of which are also annotated as having embryonic 
development phenotypes. Fifteen of these did not have a previously 
assigned molecular function, demonstrating the value of unbiased 
mRNA capture in the identification of new RBPs with important 
biological phenotypes in model. In an interesting finding, several 
cytoskeletal regulators were identified as RNA binding, includ-
ing CycB and EB1, proteins critical to mitotic division87,88. The 
developmentally staged interactome data also revealed surprises 
about the dynamics of mRNA binding. Only 12 are identified as 
being enriched in one sample relative to the other at an FDR of 
0.01. This expands to 116 proteins at a more lenient FDR of 0.1. 
Of these, 27 show significant protein abundance changes as a 
function of developmental stage. The only enriched gene ontol-
ogy (GO) term for these 27 is “mRNA splicing”, suggesting that 
developmentally timed splicing isoform ratio changes might be 
important to the MZT, although more work is needed to flesh out 
exactly how these proteins contribute to splicing regulation and 
how important they are to the MZT. Nevertheless, it is clear that 
much can be learned from mRNA interactome capture experiments, 
including similarities across species, responses to stress or growth 
conditions, developmentally programmed changes, and more.

In an effort to facilitate such comparisons, I have prepared tables 
that identify the overlap between RBPs recovered in various 
interactome measurements (Figure 2). This analysis shows 428 
RBPs found in common among human-derived HeLa, HEK 
293T, and HuH-7 cells42,43,45; 45 RBPs in common among mESCs, 
MEFs, and murine RAW 264.7 macrophage cells46,49,68; 40 RBPs in 
common among the three sets of data covering yeast44,45,47; and 
118 RBPs in common between the two fly data sets50,51. Compar-
ing the yeast data, nearly all of the RBPs identified in the original 
study by Mitchell et al. have been confirmed by at least one other 
study, with only eight RBPs identified uniquely by the Mitchell  
et al. study44. This suggests that these RBPs are very high confi-
dence, consistent with the stringent requirements used in their iden-
tification. One surprising result from this comparison is that mESCs 
appear to have more RBPs in common with RAW 264.7 cells (194 
RBPs) than with MEFs (112 RBPs). This result may be an artefact 
of non-saturation of the MEF mRNA interactome, which is smaller 
than the other two (MEFs = 335, mESCs = 555, RAW 264.7 = 945 
RBPs), or overinterpretation of the RAW 264.7 interactome, which 
was not filtered for specificity, LPS responsiveness, or statisti-
cal significance in my comparisons for the sake of convenience. 
Overall, a general note of caution is warranted in the direct com-
parison of interactome lists, as differences in mass spectrometry 
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quantitation methods, crosslinking approach, and statistical thresh-
olding may present the appearance of “uniqueness” in a given data 
set, when in fact a deeper dive into the data or higher throughput 
may reveal an increasing number of similarities. Ultimately, com-
parison of the data reveals several RBPs that are shared across 
numerous cell types, but, as always, it is not safe to assume that the 
absence of an RBP from a given data set is proof that it is not active 
in that cell type.

Next steps
Now that mRNA interactome capture has been adopted by several 
groups and applied to several types of samples, it has emerged as 
a powerful approach to identify novel RBPs in a wide range of 
situations. The method is already being used to investigate impor-
tant biological issues, such as embryonic patterning50,51, DNA 
damage response46,47, and starvation44. In essence, any system 
where post-transcriptional regulation is biologically important is a 
likely source for new studies using the approach. For example, in 
the brain, post-transcriptional regulation is required for localizing 
mRNAs to synapses, for localized translation, and for the regula-
tion of alternative splicing89,90. It will be interesting to see how the 
mRNA interactome changes in neurons and other cells of the brain 
in response to insults such as oxidative stress, neurodegenerative 
disease, in response to learned behaviors, et cetera. It would also be 
interesting to see how the mRNA interactome changes in inherited 
disease states, as RBPs are being linked to an increasing number 
of genetically transmitted maladies43. Ultimately, through such 
studies, I expect the pace of new RBP discovery to remain high for 
several years.

The next obvious goal following mRNA interactome capture 
is to pair each RBP with the suite of mRNAs that it recognizes, 
as was recently done with the EnigmRNP HSD17B1045. While 
interactome capture can identify new RBPs, it falls short of map-
ping pairwise interactions between all RBPs and their mRNA 
targets. Ultimately, this information will be necessary to complete 
the wiring diagram and develop hypotheses for how each RBP 
functions in the cell. This will require the development of new 
technology, or the application of existing single gene methods 
such as CLIP and PAR-CLIP at much higher throughput35,36,84,91, 
which will require a dramatic increase in resources and effort. It 
is not clear to me that such approaches will have the necessary 

throughput to complete the RBP-mRNA wiring diagram on a 
protein-by-protein basis. A new study, published while this article 
was in review, presents a mass spectrometry-driven approach to 
identify RBP-binding sites within mRNAs in higher throughput 
and may provide the necessary tools to begin making such 
connections on a grander scale92.

Finally, it will be necessary to develop tools to connect mRNA 
interactome measurements with functional assays to determine 
how important each interaction is to the physiology of the cell 
or animal. Lessons from the gene regulatory network literature 
suggest that binding is not always a good proxy for function93–97. 
While there is no clear high-throughput approach to accomplish 
this goal at this time, it is certain that numerous labs are interested 
in finding a solution to this particular problem, and as such there is 
hope that a full wiring diagram of post-transcriptional regulation 
will be completed in our lifetimes.
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