
Draft Genome Sequence of Coniochaeta
ligniaria NRRL 30616, a Lignocellulolytic
Fungus for Bioabatement of Inhibitors in
Plant Biomass Hydrolysates

Diego Javier Jiménez,a Ronald E. Hector,b Robert Riley,c Anna Lipzen,c

Rita C. Kuo,c Mojgan Amirebrahimi,c Kerrie W. Barry,c Igor V. Grigoriev,c

Jan Dirk van Elsas,a Nancy N. Nicholsb

Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen,
Groningen, The Netherlandsa; Bioenergy Research Unit, National Center for Agricultural Utilization Research,
USDA-ARS, Peoria, Illinois, USAb; U.S. Department of Energy Joint Genome Institute, Walnut Creek, California,
USAc

ABSTRACT Here, we report the first draft genome sequence (42.38 Mb containing
13,657 genes) of Coniochaeta ligniaria NRRL 30616, an ascomycete with biotechno-
logical relevance in the bioenergy field given its high potential for bioabatement of
toxic furanic compounds in plant biomass hydrolysates and its capacity to degrade
lignocellulosic material.

Coniochaeta ligniaria is an ascomycete (order Coniochaetales), inhabiting decaying
wood, leaf litter, and soil (1). C. ligniaria NRRL 30616 was isolated from furfural-

contaminated soil based on its ability to metabolize furan-aldehyde mixtures (2). This
strain has the potential to remove a variety of inhibitory compounds (e.g.,
5-hydroxymethylfurfural) from plant biomass (e.g., wheat straw, switchgrass, corn
stover, alfalfa stems, and rice hulls) dilute-acid hydrolysates, facilitating subsequent
microbial fermentation of sugars (3–6). Moreover, C. ligniaria–like isolates have also
been recovered from torrefied grass (7) as well as from various soil-derived lignocel-
lulolytic microbial consortia (8, 9). Previous studies revealed that C. ligniaria contains
key enzymatic machinery that efficiently works in lignocellulose deconstruction (10, 11).
However, direct confirmation of the genomic potential has until now been missing.

To support information about the metabolism of furanic compounds and degrada-
tion of lignocellulosic biomass, we report here the draft genome sequence of C. ligniaria
NRRL 30616. The strain was cultivated in yeast extract-peptone-dextrose (YPD) broth
containing 50 �g/ml kanamycin. Total genomic DNA extraction was performed using
the OmniPrep kit for fungi (G-Biosciences, St. Louis, MO). The genome was sequenced
using the Illumina HiSeq 2000 platform at the Joint Genome Institute (JGI). The
obtained quality reads were assembled with AllPathsLG version R47710 (12). The size of
the assembled genome is 42.38 Mb (94.4� coverage), comprising 135 scaffolds (118
with more than 2 kb) and 230 contigs. The three largest scaffolds had 4.64, 4.17, and
3.94 Mb. Fungal genome annotation was performed using the JGI pipeline and is
available via the JGI-MycoCosm platform (13). A total of 13,657 genes were predicted.
Analysis of the genes with the CAZy database (14) identified 304 glycoside hydrolases,
100 glycosyl transferases, seven polysaccharide lyases, 45 carbohydrate esterases, 92
carbohydrate-binding modules, and 23 lytic polysaccharide monooxygenases (LPMOs)
(AA9 and AA11 families), a new type of copper-dependent metalloenzymes that
catalyze the oxidative cleavage of (1-4)-linked glycosidic bonds of plant polysaccharides
and chitin (15). Regarding genes that could be involved in furanic compound metab-
olism (16), the C. ligniaria NRRL 30616 genome was found to contain 1,070 oxidoreduc-
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tases, 926 dehydrogenases, and 227 decarboxylases. Based on gene ontology analysis,
23 genes are involved in the response to oxidative stress (GO:0006979).

The genomic information in this report will provide a better understanding of the
genetic mechanism involved in the bioabatement of inhibitory by-products on plant
biomass hydrolysates. In addition, the plethora of enzymes involved in lignocellulose
degradation could be a relevant source for the production of new proteins useful in
efficient saccharification of plant biomass. The availability of a genetic system for
modification of C. ligniaria NRRL 30616 could enable engineering of the strain for
conversion of biomass sugars to any number of value-added products.

Accession number(s). This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession no. MNPN00000000. The version described in
this paper is version MNPN01000000.
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