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Abstract 
 
Motivation 
This study aims to develop an AI-driven framework that leverages large language models (LLMs) 
to simulate scientific reasoning and peer review to predict efficacious combinatorial therapy when 
data-driven prediction is infeasible. 
Results  
Our proposed framework achieved a significantly higher accuracy (0.74) than traditional 
knowledge-based prediction (0.52). An ablation study highlighted the importance of high quality 
few-shot examples, external knowledge integration, self-consistency, and review within the 
framework. The external validation with private experimental data yielded an accuracy of 0.82, 
further confirming the framework's ability to generate high-quality hypotheses in biological 
inference tasks. Our framework offers an automated knowledge-driven hypothesis generation 
approach when data-driven prediction is not a viable option. 
Availability and implementation 
Our source code and data are available at https://github.com/QidiXu96/Coated-LLM 
 
Introduction 
 
Recent advancements in large language models (LLMs) have demonstrated their disruptive 
potential in scientific discovery. These models have efficiently tackled combinatorial optimization 
problems, often surpassing traditional heuristics [1,2] . LLMs have also shown success in various 
chemistry and materials science tasks, such as predicting molecular properties and chemical 
reaction yields [3], and autonomously searching for chemicals [4,5]. Our research aligns with 
efforts to develop "autonomous scientists" but with a unique focus on mimicking human’s 
scientific reasoning. 
 
In scientific investigation, researchers ask questions to understand the underlying mechanisms of 
phenomena, applying deductive reasoning to derive specific predictions from general principles 
and inductive reasoning to form general conclusions based on specific observations [6]. 
Hypotheses generated through this reasoning are tested experimentally to confirm or refute them. 
However, traditional scientific reasoning is often limited by human bias and cognitive capacity 
[6]. Researchers may exhibit confirmation bias, favoring data that supports their preconceptions, 
and struggle to process the vast amount of existing literature, leading to incomplete reviews and 
overlooked insights. Additionally, managing multiple factors and identifying subtle patterns often 
exceeds human cognitive abilities. 
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An automated approach using artificial intelligence (AI), particularly LLMs, can mitigate these 
limitations by assisting human scientific reasoning, as evidenced in several prior studies [7–9]. 
This study systematically explores the potential of LLMs to automate hypothesis generation (i.e. 
prediction) via scientific reasoning. While data-driven machine learning models can be effective 
for this purpose when abundant data is available, our focus is on scenarios where such data is 
scarce, which is more common in the real world. We chose a specific application that necessitates 
a deep understanding of domain knowledge and capability for critical reasoning beyond mere 
memorization: identifying effective combinations of drugs for in vivo experiments in complex 
systemic diseases. We chose to focus on Alzheimer's disease (AD), a complex neurodegenerative 
condition where multiple disease etiologies entangle together, thus a comprehensive consideration 
of multiple underlying mechanisms is critical when developing therapeutics.  
 
Drug combination therapy is to use of two or more therapeutic agents to treat a single disease. This 
approach is particularly prevalent in the treatment of complex diseases such as diabetes and 
metabolic syndrome, cardiovascular disease, cancer, and others [10–17]. The goal of combination 
therapy is to achieve a more effective treatment outcome than what could be achieved with a single 
drug. Developing effective combinatorial therapies faces significant challenges, particularly in 
selecting the right therapeutic agents (drugs) and relevant in vivo models. Researchers make 
specific predictions about the potential efficacy of various combinations from general principles 
and known mechanisms of action (deductive reasoning). The complexity arises from the factorial 
growth in the number of possible combinations (therapeutic agent 1 * therapeutic agent 2 * in vivo 
model), making it impractical for human experts to manually evaluate all possibilities. Also, 
researchers form general conclusions about the effectiveness of these combinations based on 
observations of similar combinations. This inductive reasoning is particularly challenging due to 
the variability of therapeutic agents and in vivo models. For example, while some in vivo models 
are well-established (e.g., 3xTg-AD), many others are developed ad hoc (e.g., AlCl₃-fed rats, 
Hyperhomocysteinemia (HHcy)-induced AD rat model). Similarly, new therapeutic agents are 
continuously being developed, making it difficult for researchers to derive patterns to draw 
conclusions. 
  
Only a few studies have explored the use of LLMs for combinatorial search problems. A recent 
study [9] introduced CancerGPT, an LLM-based model designed for predicting drug pair synergy 
in rare tissues with limited data. It demonstrates the capability of LLMs to handle complex 
biological inference tasks. However, CancerGPT primarily focuses on finetuning LLMs using 
high-throughput in vitro experimental data. Such data is not available for most complex diseases 
in which no cell line models can represent the multiple systems that complex disease affects 
simultaneously. In contrast, our proposed framework, Combinatorial Alzheimer’s disease 
Therapeutic Efficacy Decision (Coated-LLM), avoids such resource-intensive finetuning by 
leveraging systematic in-context learning.  
 
In addition, combination therapy poses greater challenges for an LLM alone because the multiway 
interactions between therapeutics and in vivo models add layers of complexity to the reasoning 
process. By integrating multiple LLM agents simulating scientific peer review (Researcher, 
Reviewer, Moderator) and injecting external knowledge, our approach aims to mimic human 
scientific reasoning, which is more flexible and versatile than task-specific machine learning 
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models. Comprehensive computational evaluation demonstrates that our framework identifies 
potent combinations, thus assisting human scientists to scale up scientific reasoning.  
 
Results 
 

 

 
 
Model summary 
We create an AI model 𝑓 that automates scientific reasoning to generate hypotheses on efficacious 
combinatorial therapy for in vivo experiments (Algorithm 1, Fig 1). Mimicking the scientific 
discovery process of human researchers, our framework consists of multiple LLM agents playing 
different roles: Researcher, Reviewer, and Moderator. Researcher generates a series of reasoning 
steps to propose a prediction on the efficacy of combinatorial therapeutic agents. Multiple 
Reviewers review and criticize the quality of the prediction generated by the Researcher and offer 
feedback. Finally, Moderator integrates the Researcher’s proposed prediction and the Reviewers’ 
feedback to suggest a more valid prediction.  
 
Throughout all the communication among LLM agents, we prompt the LLM agents to utilize 
various in-context learning techniques such as integrating external biomedical knowledge, few-
shot learning [18], self-generated chain-of-thoughts (CoT) [19] and/or tree of thoughts (ToT) [20], 
and self-consistency [21]. See method details at Warmup, Inference, and Revision phases. 
 
Data collection and augmentation 
Historical data on effective drug combinations for AD are very scarce. For the purpose of 
evaluation and providing a few learning examples, we collect the data via literature mining (see 
Supplementary B). This is to leverage in-context learning rather than finetuning an LLM or 

Figure 1. Study overview. Coated-LLM is a structured framework that mimics human scientific 
reasoning and peer review processes to generate hypotheses on efficacious combinatorial 
therapy. It consists of three stages: (i) Warm-up phase, where Researcher uses external 
biological knowledge to practice scientific inference and keep correct predictions as learning 
examples. (ii) Inference phase, where Researcher inferences the new combination using its top 
five similar questions from learning examples and gets the consistency prediction. (iii) Revision 
phase, where multiple Reviewers provide feedback and Moderator integrates consistency 
prediction from Researcher and feedback from Reviewer to generate the final consensus 
prediction. 
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building a supervised model. As a result, we identified a total of 242 articles reporting 250 drug 
combinations with positive efficacy and 30 with negative efficacy (Fig. 2a). Fig 2b summarizes 
the top five most frequently mentioned terms across therapeutic agents, animal models, and 
pathways.  
 
Given the fact that only a small portion of drug combinations show positive efficacy out of the 
majority of drug combinations by nature, our collection of prior literature has a reporting bias 
toward positive efficacy (Fig. 2a). Prior researchers were more incentivized to report positive 
outcomes, rather than negative outcomes. However, it is equally important for our model to detect 
combinations that may not have positive efficacy. Utilizing this biased data in our model 
development would result in biased prediction. Therefore, we augmented the data with unlabeled 
combinations and regarded the unlabeled data as noisy data with non-positive efficacy (see 
Supplementary C). After data augmentation, we have a total of 530 combinations (250 
combinations with positive efficacy; 30 combinations with negative efficacy, augmented 250 
combinations with noisy, non-positive efficacy).  
 
We then extracted pathway information for drugs after comparing different modalities (such as 
gene names, gene interaction information, and phenotypes) as a retrieval augmented generation 
(RAG) [22], see Retrieval augmented generation section. Of the total combinations, 129 had 
pathway information for both drugs available from CTDbase [23], and 235 had information for 
only one of the two drugs.   
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Coated-LLM achieved significant accuracy in cross validation 
We developed and evaluated Coated-LLM using the data collected and augmented from literature. 
In the Warmup phase, we first created learning examples for the Researcher to utilize during few-
shot learning of the next phase. We set aside 70% of the whole data, kept combinations that the 
Researcher can predict correctly, and used them as learning examples. Finally, 231 combinations 
were predicted correctly (134 combinations with positive efficacy; 97 combinations with non-
positive efficacy). We converted these combinations (i.e., Drug 1, Drug 2, animal model) into 
natural text questions (see Supplementary A, example at Supplementary F). The questions, 
generated CoT reasonings (See Warm-Up phase, Chain-of-thoughts section), and efficacy answers 
(positive or non-positive) were subsequently incorporated as learning examples for the Inference 
phase (see Warm-Up phase section, example at Supplementary G). 
 
In the Inference phase, we first identified most relevant examples for each combination of interest 
for few-shot learning. Each combination was converted into a corresponding question, similar to 
the Warm-Up phase.  For each question,  we identified the top five most similar questions from 
the learning examples. These selected questions, along with their corresponding generated CoT 
reasonings and efficacy answers, were then utilized for few-shot learning (see Inference phase, 
Dynamic Few-shot section). To demonstrate that the selected questions were more relevant to the 
test questions than other questions from the learning examples, we calculated the mean cosine 
distance between the test question embeddings and learning examples embeddings. The mean top 
five average cosine distance was 0.08 (variance: 0.0002), while the mean overall average cosine 
distance was 0.13 (variance: 0.0003). The results indicate that test questions are significantly 
relevant to specific questions in the learning examples than to the overall set of learning examples. 
Figure 2c provided a visual representation of similarities between the target combination and 
learning examples. Later, we replicated the few-shot learning process five times for each question 
to achieve a majority-vote efficacy answer and the most detailed generated CoT reasoning (see 
Inference phase, Self-consistency via ensemble section).  
 
In the Revision phase, previous phase generated reasonings were subsequently forwarded to the 
Reviewer for comprehensive feedback (see Revision phase, Evaluate section, example at 
Supplementary H). To obtain the final consensus efficacy answers for each combination of interest, 
we integrated the most detailed CoT reasonings from the Inference phase with feedback from the 

Figure 2. Distribution of drug combinations and efficacy in literature a. Data collection 
from literature. The process began with an initial pool of articles from the AlzPED, followed by 
additional searches conducted in PubMed. Articles were screened and excluded based on 
predefined criteria. The final selected literatures included articles that reported drug 
combinations with positive or negative efficacy. b. Top 5 frequent terms in therapeutic agents, 
animal models, and pathways. c. UMAP visualization of drug combinations and efficacy. Each 
drug combination is converted into a natural language question to generate embeddings with 
OpenAI’s text-embedding-ada-002 model.  The UMAP projection, derived from these 
embeddings, reveals that the combination (AMD3100, L-Lactate, 3xTg), for example, is similar 
to combinations which have same animal model (e.g., ABT-107, Donepezil, 3xTg).  
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Reviewer. This compiled data was processed through the Moderator LLM five times to get the 
final consensus efficacy answers (see Revision phase, Revise section, example at Supplementary 
I). Among the total 156 combinations of interest, 129 demonstrated more than 80% consistency 
across 5 rounds, with 83 of them achieving 100% consistency. 
 
The final prediction achieved an accuracy of 0.74, with a precision of 0.71, a recall of 0.79, and 
an F1-score of 0.75. Table 1 presents the contingency table for Coated-LLM’s predictions and 
examples of misclassifications. These results indicate that our model is effective in predicting the 
efficacy of drug combinations for Alzheimer's Disease, exhibiting a balanced performance with 
both high precision and recall. Compared to the traditional experimental screening approach, 
Coated-LLM enhances scientific reasoning capabilities and introduces a novel, time-efficient, and 
cost-effective approach for identifying potential therapeutic agent combinations.  
 
In comparison, the performance metrics for the baseline model (network-based approach, see 
Baselines) achieved an accuracy of 0.52, precision of 0.46, recall of 0.16, and an F1 score of 0.24 
(Table S1). The baseline model exhibits significant limitations, particularly it does not 
accommodate therapeutic agents that are not conventional drugs, such as membrane-free stem cell 
extracts, for which gene target data are typically unavailable.  
 
Interestingly, the augmented (non-positive) data that were predicted to be positive may suggest 
intriguing hypotheses. Specifically, the Coated-LLM generated 25 instances that were false 
positives. These instances included combinations that were predicted to have positive efficacy 
despite being labeled as non-positive in our augmented dataset. Although these combinations were 
marked as false positives, we hypothesize that they may, in fact, be efficacious combinations that 
have not yet been experimentally tested. One such combination is PNU-120596 and Fluoxetine in 
Scopolamine-treated Rats. This combination leverages the cognitive-enhancing effects of PNU-
120596, a positive allosteric modulator of α7-nAChR [24], with Fluoxetine, an SSRI known for 
its role in neurogenesis and synaptic plasticity [25]. The combination could theoretically improve 
memory function by potentially enhancing cholinergic and serotonergic neurotransmission. 
Moreover, Fluoxetine's inhibition of the cytochrome P450 enzyme CYP2D6 [26] may result in 
elevated plasma levels of PNU-120596, potentially amplifying its cognitive-enhancing effects. To 
further explore these possibilities, we are preparing in vivo experiments to evaluate the efficacy of 
these false positive combinations. These studies will provide crucial data to verify our model’s 
predictions. 
 
Table 1. Contingency table of prediction outcomes with examples using Coated-LLM. 
 

Drug A Drug B Animal model Predicted 
efficacy 

Actual efficacy 
(reference) 

True positive (n=61) 
Lycopene Vitamin E Tau P301L Positive Positive [27] 
Donepezil Fluoroethylnormemantine 5xFAD Positive Positive [28] 
False positive (n=25) 
Cholesterol Homocysteine Sprague Dawley 

rats 
Positive Non-positive [29] 

PNU-120596 Fluoxetine Scopolamine-
treated Rats 

Positive Non-positive 
(Augmented data) 

False negative (n=16) 
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Gallic Acid Sodium Arsenite Male rats Non-positive Positive [30] 
(m)RVD-hemopressin AM251 SH-SY5Y cells Non-positive Positive [31] 
True negative (n=54) 
Atorvastatin Farnesol C57BL/6 Non-positive Non-positive [32] 
Galantamine Mecamylamine ICR Non-positive Non-positive [33] 

 
 
Ablation Study 
Aiming to understand the contributions of each component within our model, we conducted an 
ablation study (Fig. 3). The ablation study begins with zero-shot learning, where GPT-4 leverages 
its pre-learned knowledge to make predictions. Introducing dynamic few-shots [1] results in a 
slight performance decrease, likely due to probable mislabeled augmented combinations used as 
few-shot examples. Subsequently, applying RAG , we integrated external biomedical knowledge 
on pathway, which led to significant improvements in accuracy (+17%), precision (+13%), recall 
(+40%), and F1-score (+23%). By implementing self-consistency via an ensemble strategy, we 
achieved consistent and reliable predictions and further increased the accuracy by 6%, precision 
by 4% , recall by 3%, and F1-score by 4%. Finally, incorporating feedback from other LLM agents 
such as Reviewer and Moderator further improved the model's performance, correcting potential 
errors to achieve the highest accuracy (+5%) and precision (+9%). However, we observed a 
decrease in recall due to Reviewer and Moderator, suggesting that the two LLM agents in Revision 
phase favor reducing false positive (the review process is more skeptical and stringent). Despite 
the decrease in the recall, we kept the Reviewer and Moderator because, in real in vivo 
experiments, our model is used to retrieve a ranked list of probable positive combinations, thus 
high precision is more important than high recall.  

 

 
 
Coated-LLM achieved significant accuracy in external validation 

Figure 3. Visual illustration of Coated-LLM components and additive contributions to the 
performance. Coated-LLM combines kNN-based five-shots dynamic learning example 
selection, external pathway knowledge, self-consistency (n=5), Reviewer, and Moderator.  
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We also utilized our private dataset to evaluate our model's capabilities. This evaluation is crucial 
as the external data remains private, eliminating any risk of data leakage through GPT-4. 
Additionally, the dataset is independent of the training and testing datasets, ensuring no overlap. 
The external data set included nine non-positive and two positive drug and cell line combinations. 
Unlike the 1:1 ratio of positive to non-positive samples in the cross-validation test set, the external 
validation set had a more challenging and realistic ratio of 1:4.5, with nine non-positive samples 
out of eleven (Supplementary D). This higher ratio reflects the rarity of efficacious and synergistic 
drug combinations in the real world, making accurate predictions more difficult compared to the 
cross-validation set. 
 
As a result, due to the distribution shift between (cross-validation) test set and the external set, the 
prediction task was indeed challenging. Our model demonstrated an accuracy of 0.82, with a 
precision of 0.50, a recall of 0.50, and an F1-score of 0.50 (Table 2). In comparison, the 
performance metrics for the baseline model (Table S2) achieved an accuracy of 0.27. 
 
Table 2. Contingency table of Coated-LLM’s prediction for the external data with examples.  
 

Drug A Drug B Model Predicted 
efficacy 

Actual efficacy  

True positive (n=1) 
Galantamine Caffeine HT22 Mouse Hippocampal 

Neuronal Cell Line 
Positive Positive 

False positive (n=1) 
Donepezil Salicylic HT22 Mouse Hippocampal 

Neuronal Cell Line 
Positive Non-positive 

False negative (n=1) 
Galantamine Mifepristone HT22 Mouse Hippocampal 

Neuronal Cell Line 
Non-positive Positive 

True negative (n=8) 
Galantamine Diclofenac HT22 Mouse Hippocampal 

Neuronal Cell Line 
Non-positive Non-positive 

Rivastigmine Lithium HT22 Mouse Hippocampal 
Neuronal Cell Line 

Non-positive Non-positive 

 
Discussion 
 
In this study, our framework leverages the strengths of prompt engineering to mimic human 
scientific reasoning processes. By incorporating multiple agents such as Researcher, Reviewer, 
and Moderator, our approach not only scales up the scientific reasonings but also realizes the 
hypotheses on efficacious combinatorial therapy in an automated way. The Coated-LLM achieved 
notable accuracy in both held-out test set and external set indicating its effectiveness in predicting 
the efficacy of drug combinations in the wild. The following lessons were derived from our study: 
 

• Interaction of Multi-Agent LLM: Coated-LLM introduces a tripartite agent system wherein 
the Researcher LLM employs structured prompt-driven CoT reasoning to generate 
hypotheses. The Reviewer LLM, utilizing the ToT strategy, provides essential feedback, 
enhancing the completeness of the generated hypotheses. Meanwhile, the Moderator LLM 
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plays a crucial role in refining these hypotheses in a skeptical and conservative way, 
ensuring reliability of hypotheses. The collective integration of multiple LLM agents 
introduces a robust system that enhances the quality and accuracy of hypotheses 
generation. 
 

• Implications of Dynamic Few-Shot Learning: Dynamic few-shot learning plays a crucial 
role in enhancing the predictive capabilities of LLM by leveraging examples that are most 
similar to the target data. Our findings reveal that the inclusion of high-quality real learning 
examples significantly enhances the accuracy of predictions compared to zero-shot 
strategy. In contrast, the use of augmented learning examples does not yield a similar 
increase in accuracy, showing an intriguing observation that real data examples are more 
beneficial than the augmented data for improving model performance in dynamic few-shot 
learning contexts. In addition, our study further underscores the importance of maintaining 
a balanced set of learning examples. A predominance of examples from a singular class 
within the dynamic few-shot learning examples may make biased predictions, highlighting 
the need for balance in learning examples. 

 
• Enhancements Through Retrieval-Augmented Generation (RAG): The adoption of RAG, 

which integrates domain-specific knowledge is crucial. This strategic inclusion bridges the 
inherent knowledge gaps within the pre-trained GPT-4, resulting in significant 
enhancements in precision, recall, accuracy, and F1-score.  

 
• Stabilization via Ensemble Methods: Employing ensemble methods mitigates the risk 

associated with a single prediction, providing a more stable and consistent output. 
 
It is important to acknowledge that the external validation is limited by the small and private 
dataset. However, the inclusion of the cross-validation test set provides a complementary 
evaluation, supporting the generalizability of our findings. Given that the initial learning examples 
contain only 97 non-positive efficacy combinations out of 231 (41.9%), such bias presents a 
considerable challenge for our model in accurately predicting non-positive outcomes. Despite 
these challenges, our model achieved a significant accuracy rate, demonstrating its effectiveness 
in generating hypotheses for synergistic drug combinations with minimal historical data.  
 
While we have obtained promising results, our study has several limitations. One of the primary 
limitations is the underrepresentation of negative combinations within the dataset obtained through 
literature mining. This disproportion led to a predominance of positive combinations in the 
learning examples, subsequently introducing a bias during the model's Inference and Revision 
phase. Such a bias tends to skew predictions toward more frequently observed positive outcomes, 
potentially compromising the model’s accuracy in identifying truly efficacy combinations. To 
mitigate this issue, we implemented a strategy of data augmentation. While this approach helped 
balance the dataset and was designed to better reflect the real-world scenario, where negative 
combinations are more prevalent than positive ones, it is important to acknowledge that these 
augmented combinations could be false negatives. This mislabeling could lead to incorrect 
decisions about the efficacy of drug combinations. For comparison, we conducted the ablation 
study without negative data augmentation (Fig S1). In the absence of augmentation, we observed 
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a clear accuracy improvement thanks to the dynamic few-shot strategy. However, the models were 
overly optimistic and predicted results were biased toward positive efficacy. 
 
Another limitation is that Coated-LLM relies on existing knowledge of drugs. Many combination 
therapies may arise from unknown activities, such as off-target effects or complex interactions 
between drug metabolites, which are not captured by current datasets or domain knowledge. 
Therefore, our approach is limited in identifying combinations that drugs are uncovered or less 
explored.  
 
While Coated-LLM has been effective in identifying the efficacy of drug combinations for 
Alzheimer's disease, its applicability extends to other diseases as well. Exploring its use in other 
complex diseases could further enhance the application of the Coated-LLM. Additionally, 
incorporating feedback from real-world applications and clinical trials may provide valuable 
insights and guide further improvements. 
 
Methods 
 
Warm-Up phase 
Overview. In the warm-up phase, Researcher generates answers to training questions and 
compares them with ground truth answers. The correctly generated answers are used as learning 
examples in the next inference phase. For this purpose, we split the data into 70% training and 
30% test sets, which are used to derive learning examples in the warm-up phase and actual 
inference in the next phase, respectively. This training set is not for actual training nor fine-tuning 
the LLM but for learning examples. We set aside a higher proportion for training to ensure the 
Researcher can be exposed to diverse learning examples.  
 
Chain-of-thoughts (CoT). To improve the reasoning ability of the Researcher, we applied a 
chain-of-thought (CoT) prompting strategy by incorporating the instruction: "Take a deep breath 
and work on this problem step-by-step." [34]. This approach was designed to encourage the 
Researcher to decompose complex tasks related to the efficacy of drug combinations into a series 
of intermediate steps, such as identifying drug targets and mechanisms of action, analyzing 
biological pathways, evaluating multi-pathway targeting, before reaching a final conclusion. 
(Supplementary F). 
 
Retrieval augmented generation (RAG). To make the Researcher answers a question q in the 
training set more intelligently, Researcher is allowed to use external biomedical knowledge. 
Information on therapeutic agents is vast and continuously expanding. LLM generates responses 
based on patterns learned during training, which are inherently limited by the data they were 
trained on. The retrieval-augmented generation (RAG) complements the static parameters in 
LLMs with up-to-date and dynamic information [22]. We retrieve and provide specific external 
information 𝐵! on therapeutic agents 𝑡1, 𝑡2. We used the Comparative Toxicogenomics Database 
(CTDbase) [23], a knowledge database encompassing 88,144,004 relationships in chemicals, 
genes, pathways, and diseases. We particularly focused on the pathway information that the 
therapeutic agents target. Only pathways with a corrected p-value below 0.01 are incorporated as 
external knowledge, emphasizing their significant enrichment among the genes interacting with 
the drug. For example, for the therapeutic agent Galantamine, we provided molecular pathway 
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information such as  “Galantamine has several pathway information, such as cholinergic synapse, 
transmission across chemical synapses, highly calcium permeable postsynaptic nicotinic 
acetylcholine receptors, …, and peptide hormone metabolism.” Note that we also tried to 
incorporate a list of targeting genes as external knowledge, and it did not provide high-quality 
answers due to its high sparsity. Also note that the in vivo model information, such as one available 
in AlzForum [35], marginally increased the generation quality while consuming many tokens. 
 
Based on the targeting pathway information 𝐵!, we prompt Researcher LLM to generate a 
hypothesis. This hypothesis consists of a series of CoT reasoning (Cq) and a final binary answer 
Aq (Supplementary F). If the answer Aq is correct and the reasoning Cq is logical, we keep the 
question q, reasoning Cq, and answer Aq  in memory to serve as learning examples for the next 
inference phase. We only focused on the correct answers and filtered out Cq if the answer 𝐴! is 
different from the ground truth efficacy label 𝑦. This simple filtering has greatly decreased the 
low-quality chain-of-throughs examples [1]. We used GPT-4 for Researcher LLM. To encourage 
Researcher LLM to be skeptical, we added the statement 'It is rare for combinations of two drugs 
to be efficacious and synergistic in real world' into the prompt (Supplementary F). 
 
Inference phase 
Overview. Using the learning examples from the warm-up phase, Researcher generates 
hypotheses to the input questions in the test set. In the inference phase, Researcher leverages the 
learning examples (dynamic few-shot learning) in addition to external biomedical knowledge 
(RAG), following the same methodology as in the warm-up phase.  
 
Dynamic Few-shot. When human researchers are asked a scientific question, human researchers 
look for similar questions that were answered previously and perform inductive reasoning. So does 
Researcher by leveraging dynamic few-shot learning. Few-shot learning is one of the most 
effective in-context learning methods to guide LLM to learn the patterns from a few demonstration 
examples and to generate similar outcomes like the examples. Here, it is critical to provide 
examples that are relevant to the questions of interest [1]. However, in our application on AD 
combinatorial therapy discovery, the therapeutic and their associated biological mechanisms are 
very diverse; thus, randomly selected examples may fall short of providing relevant information 
for LLM to learn the patterns to generate response. For example, the question 𝑄 from 
(‘Galantamine,’ ‘Nicotine,’ ‘ICR mice’) is more similar to one from (‘Galantamine,’ Memantine,’ 
‘ICR mice’) than one from (‘Scyllo-inositol,’ ‘neotrofin,’ ‘TgCRND8’).  
 
Thus we select the most similar question q in the learning examples and its associated reasoning 
Cq, and leverage them for inductive reasoning in the inference phase. We derive textual embedding 
𝐸" of the question 𝑄 of interest and 𝐸!of the question 𝑞 in the learning examples using OpenAI’s 
text-embedding-ada-002 [1]. We then calculated cosine similarity < 𝐸! , 𝐸" >/(||𝐸!|| 	 ⋅ 	 ||𝐸"||)	to 
identify the top five similar questions 𝑞 with the highest similarity along with its correctly 
generated hypothesis (𝐶!, 𝐴!). We appended similar learning examples to the prompt for 
Researcher. So the input for the Researcher consists of similar learning examples, question 𝑄, and 
external biomedical knowledge 𝐵".  Note that we guided LLM to have a series of CoT reasoning 
not only by simply encouraging LLM to “think step by step,” but by providing the exact CoT 
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demonstration 𝐶! in the learning example in the few-shot learning. See the full prompt and the 
response in Supplementary G. 
 
Self-consistency via ensemble. To increase the reliability of LLM’s prediction, we generate the 
response (𝐶" , 𝐴") multiple times. We aggregate them by obtaining consensus prediction 𝐴∗" via 
majority vote and selecting the most detailed (thus longest) chain of thought 𝐶∗" if its paired 
answer 𝐴!is the same as the majority. This ensemble technique can minimize the risk of incorrect 
prediction by cross-verifying multiple outputs [21]. 
 
Revision phase 
Evaluate. The theoretical inductive reasoning inevitably carries uncertainty. It is critical to 
independently evaluate the validity of hypotheses and revise accordingly. After we obtain the 
hypothesis on efficacy 𝐴∗" and reasoning 𝐶∗" in the inference phase, reviewers need to critically 
evaluate whether the hypothesis is logical and reasonable. This review process should be 
independent, thus we used another LLM with comparable performance to Researcher (GPT-4), 
Claude-3-opus, to enhance the independence of the reviewing process.  
 
Tree-of-thoughts (ToT). Reviewers should have diverse perspectives than researchers to 
critically evaluate the researcher's hypothesis and identify potential pitfalls that the researchers 
could not spot. Thus we encourage Reviewer to have multiple perspectives and discuss different 
branches of thoughts via tree-of-thoughts reasoning. ToT reasoning is to generate multiple 
potential branches of reasoning for a given problem [20]. This approach explores different 
possibilities and then converges on the most optimal solution. We prompted the Reviewer by 
instructing, “Imagine three different experts who are in therapy development for Alzheimer's 
disease, are tasked with critically reviewing the reasoning…” (Supplementary H) and provide 
specific tasks by prompting as “Please evaluate the response. Explore the potential for drug 
interactions that could limit or enhance effectiveness.”  
 
Revise. Once reviewers finish the discussion and provide feedback 𝐹", the moderator aggregates 
the reviewer’s feedback and researcher’s hypothesis to obtain the final decision. Moderator takes 
input of 𝑄, 𝐶∗", 𝐴∗" 𝐹" and deduce the final revised reasoning  𝐶∗" and answer 𝐴∗" . See the full 
prompt and the response in Supplementary I. 

Algorithm 1 Framework for Drug Combination Identification in Alzheimer's Disease 
 

Input: Dataset D = {(t1, t2, m)}, external knowledge 
Output: Predictions A_Q for test set 
 
Split D into training set D_train and test set D_test 
 
# Phase I - Warm Up: 
   learning_examples=[] 
   for each (t1, t2, m) in D_train 
       q = transform(t1, t2, m) 
       B_q = search_external_knowledge(t1, t2) 
       E_q = generate_embedding(q) 
       (C_q, A_q) = LLM_researcher(instruction, q, B_q) 
       if validate(C_q, A_q) then 
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           learning_examples.append((q, E_q, C_q, A_q)) 
 
# Phase II - Inference: 
   for each (t1, t2, m) in D_test 
       Q = transform(t1, t2, m) 
       B_Q = search_external_knowledge(t1, t2) 
       E_Q = generate_embedding(Q) 
       top_k_examples = select_top_k_similar(E_Q, learning_example_set, k=5) 
       input = concatenate(top_k_examples, Q, B_Q) 
       hypotheses = [] 
       Repeat 5 times do 
           (C_Q, A_Q) = LLM_researcher(instruction, input) 
           hypotheses.append((C_Q, A_Q)) 
       A_Q*= majority_vote([A_Q for _, A_Q in hypotheses]) 
       C_Q*=select_longest([C_Q for C_Q, A_Q in hypotheses if A_Q==A_Q*]) 
        
# Phase III - Revision 
   for each (t1, t2, m) in D_test 

 Q = transform(t1, t2, m)  
 F_Q = LLM_reviewer(instruction, C_Q*, A_Q*) 
 hypotheses = [] 
 Repeat 5 times 
    (C_Q, A_Q) = LLM_moderator(instruction, Q, F_Q, C_Q*, A_Q*) 
    hypotheses.append((C_Q, A_Q)) 
 A_Q* = majority_vote([A_Q for _, A_Q in hypotheses])) 

       Return A_Q* 

 
 
Baselines. Due to the lack of sufficient data, data-driven models are not appropriate. Instead, we 
developed a rule-based baseline model to predict the efficacy of drug combinations. We utilize 
complementary exposure patterns [36], stating that drug combination is therapeutically effective 
if the targets of the drugs hit the disease module without overlap (Algorithm 2) . The target genes 
of the drugs were collated from multiple sources, including Drug Target Commons, PubChem, 
and CTDbase [23,37,38], whereas AD-related genes were derived from Agora’s nominated gene 
list [39]. Within the test set, target gene information was unobtainable for 76 drugs (34.3%). 
Additionally, 76 drug combinations (48.72%), can not be evaluated using the baseline model due 
to the absence of necessary target gene information. 

Algorithm 2 Framework for Baseline Model  
 

Input: Drug combination D = {(t1, t2)}, AD target genes AD_genes = {A}: Set of 
Alzheimer's disease hits genes 
Output: Predicted Efficacy E for the drug combination 
 
# Step 1. Retrieve target genes for each drug 
     t1_genes = search_target_genes(t1)  # Find genes targeted by drug t1 
     t2_genes = search_target_genes(t2)  # Find genes targeted by drug t2 
 
# Step 2. Identify overlapping genes with AD targets 
    t1_hits_AD_genes = overlap(t1_genes, AD_genes)  # Genes targeted by t1 that 
hit AD genes 
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    t2_hits_AD_genes = overlap(t2_genes, AD_genes)  # Genes targeted by t2 that 
hit AD genes 
 
# Step 3. complementary exposure patterns 
    If intersection(t1_hits_AD_genes, t2_hits_AD_genes) is NULL (no shared hits 
between t1 and t2)AND t1_hits_AD_genes is not NULL (t1 hits at least one AD 
gene)AND t2_hits_AD_genes is not NULL (t2 hits at least one AD gene) 
      THEN E = 'Positive'       
      ElSE: E = 'Non-Positive' 

 
 
Supplementary Section  
 
A. Problem formulation 
Our objective is to predict whether a combination of therapeutic agents	𝑡$	and 𝑡%	 have a positive 
efficacy 𝑦 when tested in an in vivo model 𝑚	. That is, we aim to develop a model 𝑓 such that 𝑦 =
𝑓(𝑥), where 𝑥 is a triplet of (𝑡$, 𝑡%, 𝑚).  Here, 𝑡$, 𝑡%, and 𝑚 are not only drawn from a finite set, 
but can be a new or investigational therapeutic agent (e.g. Membrane-free stem cell extract) or in 
vivo model (e.g. “Rats induced with AD using aluminum chloride,”  “Mice induced with cerebral 
malaria”), which are not registered with a formal identifier, thus best described as a natural text. 
We convert the structured input (𝑡$, 𝑡%, 𝑚) into a natural text question 𝑄, following [9]. For 
example, we convert the combination (‘Galantamine,’ ‘Nicotine,’ ‘ICR mice’) into ‘Decide if the 
combination of Galantamine and Nicotine is effective or not to treat ICR mice model in theory.’ 
 
In some previous studies [9], the effectiveness of combinations of therapeutic agents was measured 
as synergy. However, the synergy requires dose-dependent inhibition, which is not available in an 
in vivo model. As most in vivo experiments only report efficacy (without formal calculation of 
synergistic effect), our focus is also on efficacy (rather than synergy). Rather than a specific 
efficacy measurement, we focused on a broad sentiment as an efficacy measurement (positive 
efficacy or not) because this is more transferable to different studies.  
 
B. Data collection 
We collect scientific articles that report the efficacy of therapeutic agent combinations on AD in 
vivo models. We first utilized the Alzheimer’s Disease Preclinical Efficacy Database [40], a data 
resource dedicated to the preclinical efficacy studies of candidate therapeutics for Alzheimer's 
Disease. Among the 1,463 articles in AlzPED, we manually reviewed and selected 39 articles that 
experimented on more than two therapeutic agents. 
 
We further searched for more related articles based on the 39 selected articles. We crafted a series 
of PubMed search queries for AD and one of its mechanisms (e.g., ‘amyloid beta,’ ‘tau,’ 
‘inflammation,’ ‘cognitive dysfunction,’ ‘oxidative stress’), and combination (e.g., ‘co-
administration’), and in vivo models (e.g., ‘mouse,’ ‘rat’). Specific search queries are available in 
Supplementary E.  We extracted 376 additional articles meeting the query from PubMed. 10 out 
of 39 (25.64%) AlzPED articles were searchable from the query. 
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We then extracted therapeutic agents, in vivo models, and their efficacy from the abstract of the 
selected articles. We excluded articles in which drugs were used to induce AD or suppress 
mechanisms for mechanistic study. Among the 376 articles, 206 articles reported positive efficacy, 
and 3 reported mixed or partial effects, 16 reported negative efficacy.  All others are not relevant.  
 
C. Data augmentation 
There was an imbalance in the number of samples reporting positive and negative efficacy. 
Researchers, of course, tend to publish positive efficacy more, thus the collected data is inevitably 
biased toward combinations reporting positive efficacy. In addition to combinations reporting non-
positive efficacy in the literature, we create plausible samples with unknown efficacy (unlabeled 
data). We use these unlabeled samples as non-positive samples with noise and use them in both 
the Warm-up phase and Inference phase. The non-positive samples were created by randomly 
replacing either one of the drugs or an in vivo model from the positive efficacy combinations. For 
example, given an efficacious combination (Acamprosate, Baclofen, mThy1-hAPP751 (TASD41)), 
we created a non-positive combination by replacing Baclofen. As a result, we have (Acamprosate, 
Melatonin, mThy1-hAPP751 (TASD41)). 
 
D. Evaluation 
We evaluate whether the prediction of Coated-LLM is accurate by comparing the binary prediction 
(i.e., positive v.s. non-positive) with the ground-truth label. We reported accuracy rate,  precision, 
and recall. We first evaluated the accuracy via cross-validation using the test set and via external 
validation using in-house private data. The external dataset has 11 drug combinations, of which 9 
is labeled as non-positive efficacy. Furthermore, during the evaluation of the external data,  we 
augmented the initial learning examples from the Warm-up phase by incorporating combinations 
that were correctly predicted during the Revision phase. After augmenting the learning examples, 
we had 346 combinations (195 combinations with positive efficacy; 151 showing non-positive 
efficacy) serving as learning examples for predicting efficacy on our private data. 
 
We conducted an ablation study to understand the relative contributions of each component in our 
model. We iteratively introduced each component and measured the performance differences. 
Since these components are not statistically independent [1,2], we should consider the performance 
differences as the components' relative contributions. 
 
E. PubMed search query to extract relevant scientific literature  
("Alzheimer") AND ("Aβ" OR Abeta OR "Amyloid-β peptide" OR "Beta-amyloid" OR 
"Amyloid" OR "Aβ" OR "Amyloidogenic" OR "Cerebral amyloidosis" OR "antioxidant" OR "tau" 
OR "inflammation" OR "cognitive" OR "synaptic") AND ("combination therapy" OR 
"combination treatment" OR "co-administration" OR "co-treatment" OR "dual therapy" OR 
"multi-therapy" OR "adjunct therapy" OR "combined treatment" OR "therapy plus") AND (mice 
OR mouse OR rat OR "Morris water maze" OR animal)  NOT (review[Publication Type] OR 
"review" OR "perspective" OR "clinical trial" OR "Randomized controlled trial")' 
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F. Prompt and generated response in the Warmup phase 

System: You are an expert in therapy development for Alzheimer's disease and you are trying 
to decide if the combination of two drugs is effective or not to treat or slow the progression of 
Alzheimer's disease in theory. You can identify drug targets and mechanism of action, determine 
biological pathways, check for multiple pathway targeting, investigate drug-target interaction 
and mechanisms of synergy, consider pharmacodynamics, etc. Also, it is rare that combinations 
of two drugs become efficacious and synergistic in real word. As a proficient neurobiologist, use 
your own knowledge and search for external information if necessary. 
 
User: Background: <Background> {Pathway Information} </Background>. Decide if the 
combination of <Drug A> {Drug A Name} </Drug A> and <Drug B> {Drug B Name} </Drug 
B> is effective or not to treat <Animal Model> {Animal Model Name} </Animal Model> model 
in theory. Take a breath and work on this problem step by step. And conclude using the format: 
“Effective in theory: <Positive or Non-positive>”. 

List 2.1. Prompt for Researcher LLM in the Warm-up phase.  

 

First, let's understand the individual drugs and their action mechanisms.  
(-)-Epigallocatechin-3-gallate (EGCG) is the main polyphenolic compound present in green tea, 
and it has been shown to have various health benefits, including neuroprotective effects. EGCG 
aids in reducing beta-amyloid production and aggregation, a key pathological marker of 
Alzheimer's disease. It does this by modulating the activity of gamma-secretase, an enzyme 
involved in beta-amyloid production. It also has anti-inflammatory and antioxidant properties 
which can protect neurons from damage. 
Ferulic Acid (FA), on the other hand, is a phenolic compound found in the cell walls of plants. 
It has antioxidant properties and has been shown to protect against beta-amyloid-induced 
neurotoxicity. FA has been found to inhibit tau protein hyperphosphorylation, another hallmark 
of Alzheimer's disease. It also has anti-inflammatory effects. 
Looking at the APPswe/PSEN1dE9 mouse model of Alzheimer's, it overproduces beta-amyloid 
due to mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes. 
Therefore, a treatment that can reduce beta-amyloid production and aggregation as well as tau 
hyperphosphorylation could potentially be beneficial. 
Combining EGCG and FA could potentially target multiple pathways involved in Alzheimer's 
pathogenesis. EGCG could reduce beta-amyloid production and aggregation, while FA could 
inhibit tau hyperphosphorylation. Both have anti-inflammatory and antioxidant effects that 
could protect neurons from damage. This multiple pathway targeting could potentially lead to a 
synergistic effect, although this would need to be confirmed experimentally, as drug interactions 
can be complex and unpredictable. 
In terms of pharmacodynamics, both EGCG and FA are well-absorbed and can cross the blood-
brain barrier, which is crucial for any drug designed to treat a neurological disorder like 
Alzheimer's. 
Therefore, in theory, the combination of EGCG and FA could potentially be effective in treating 
the APPswe/PSEN1dE9 mouse model of Alzheimer's disease. However, it's important to note 
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that this is theoretical, and further research, including pre-clinical and clinical trials, would be 
necessary to confirm this. 
Effective in theory: Positive. 

List 2.2. Example of generated response from Researcher LLM in the Warm-up phase.  

G. Prompt and generated response in the Inference phase 

System: You are an expert in therapy development for Alzheimer's disease and you are trying 
to decide if the combination of two drugs is effective or not to treat or slow the progression of 
Alzheimer's disease in theory. Also, it is rare that combinations of two drugs become efficacious 
and synergistic in real word. As a proficient neurobiologist, use your own knowledge and search 
for external information if necessary. 
 
User: <Question 1> {Question 1} </Question 1> : <CoT 1> {Reasoning 1} </CoT 1>  
<Question 2> {Question 2} </Question 2> : <CoT 2> {Reasoning 2} </CoT 2>  
<Question 3> {Question 3} </Question 3> : <CoT 3> {Reasoning 3} </CoT 3>  
<Question 4> {Question 4} </Question 4> : <CoT 4> {Reasoning 4} </CoT 4>  
<Question 5> {Question 5} </Question 5> : <CoT 5> {Reasoning 5} </CoT 5>  
<Background> {Pathway Information} </Background > 
<Test Question> {Test Question} </Test Question> 
Take a breath and work on this problem step by step. And conclude using the format 'Effective 
in theory: <Positive or Non-positive>.' 

List 3.1. Prompt for Researcher LLM in the Inference phase.  

 

Reasons: Galantamine is already known for its use in Alzheimer's disease treatment. It works by 
inhibiting acetylcholinesterase, an enzyme that breaks down acetylcholine in the brain. By 
inhibiting this enzyme, Galantamine increases the concentration of acetylcholine, which can 
improve cognitive function. 
Mecamylamine is a nonselective and noncompetitive antagonist of the nicotinic acetylcholine 
receptors that has been used as a ganglionic blocker in hypertension. However, in the context of 
Alzheimer's disease, there is not much evidence to support its use. Its mechanism of blocking 
nicotinic acetylcholine receptors could counteract the positive effects of Galantamine, which is 
aiming to increase acetylcholine activity.  
In the ICR (beta Amyloid 25-35 Peptide Injection Model) mouse model, the combination of 
these two drugs might not be effective. Since Mecamylamine is a nonselective antagonist, it 
could block the effects of increased acetylcholine caused by Galantamine. This could lead to a 
reduction in the overall effectiveness of the therapy.  
In terms of pharmacodynamics, the two drugs could potentially interact in a way that would 
reduce their overall effectiveness. Additionally, the side-effect profiles of these two drugs could 
potentially overlap, leading to an increase in adverse effects. 
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Considering the above information, the combination of Galantamine and Mecamylamine is 
likely not effective in treating or slowing the progression of Alzheimer's disease, especially in 
an ICR (beta Amyloid 25-35 Peptide Injection Model) mouse model. 
Effective in theory: Non-positive. 

List 3.2. Example of generated response from Researcher LLM in the inference phase.  

H. Prompt and generated response in the Revision (evaluate) phase  

System: Imagine three different experts who are in therapy development for Alzheimer's disease, 
are tasked with critically reviewing the reasoning and conclusions regarding the effectiveness of 
a combination of two drugs on an Alzheimer's disease animal model from a theoretical 
perspective. All experts will write down 1 step of their thinking, then share it with the group. 
Then all experts will go on to the next step, etc. If any expert realizes they're wrong at any point 
then they leave. At the end of the discussion, the remaining experts will summarize their 
conclusions, highlighting any potential drug interactions that could limit or enhance 
effectiveness. 
 
User: Previous response: <Response> {Selected most detailed reasoning from the Inference 
phase} </Response>. Please evaluate the response. Explore the potential for drug interactions 
that could limit or enhance effectiveness. 

List 4.1. Prompt for Reviewer LLM in the Revision (evaluate) phase. 

 

Expert 1: The reasoning about the mechanism of action of Galantamine and Mecamylamine is 
correct. Galantamine increases acetylcholine levels by inhibiting its breakdown, while 
Mecamylamine blocks nicotinic acetylcholine receptors. This could lead to counteracting 
effects. 
Expert 2: I agree with Expert 1. Additionally, we should consider the potential for 
pharmacokinetic interactions. Both drugs are metabolized by the liver, which could lead to 
changes in their metabolism and elimination when administered together. This could affect their 
effectiveness or increase the risk of side effects. 
Expert 3: The point about Mecamylamine's anticholinergic side effects potentially exacerbating 
symptoms in Alzheimer's patients is valid. However, we should also consider the potential for 
beneficial interactions. Some studies have suggested that nicotinic acetylcholine receptor 
antagonists like Mecamylamine could have neuroprotective effects by reducing inflammation 
and oxidative stress in the brain. 
Expert 2: While that's an interesting point, the evidence for neuroprotective effects of 
Mecamylamine in Alzheimer's disease is limited. The potential for it to counteract the benefits 
of Galantamine by blocking acetylcholine receptors likely outweighs any potential 
neuroprotective effects. 
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Expert 1: I agree. The conclusion that the combination of Galantamine and Mecamylamine is 
likely not effective in treating Alzheimer's disease in the ICR mouse model seems reasonable 
based on the available evidence. 
Expert 3: I concur with the conclusion. The potential for Mecamylamine to negate the benefits 
of Galantamine by blocking acetylcholine receptors, along with the increased risk of side effects 
due to pharmacokinetic interactions, suggests that this combination is not likely to be effective. 
Summary: Based on the mechanism of action of Galantamine and Mecamylamine, their potential 
to counteract each other's effects, and the increased risk of side effects due to pharmacokinetic 
interactions, the combination of these drugs is likely not effective in treating Alzheimer's disease 
in the ICR mouse model. While there is some evidence for potential neuroprotective effects of 
nicotinic acetylcholine receptor antagonists like Mecamylamine, this is outweighed by the 
potential for it to negate the benefits of Galantamine by blocking acetylcholine receptors. 

List 4.2. Example of generated response from Reviewer LLM in the Revision (evaluate) phase.  

I. Prompt and generated response in the Revision (revise) phase 

System: You are an expert in therapy development for Alzheimer's disease and you are trying 
to decide if the combination of two drugs is effective or not to treat or slow the progression of 
Alzheimer's disease in theory. Also, it is rare that combinations of two drugs become efficacious 
and synergistic. As a proficient neurobiologist, use your own knowledge and search for external 
information if necessary. 
 
User: Previous response: <Response> {Selected most detailed reasoning from the Inference 
phase} </Response > 
Feedback: <Feedback> {Detailed Feedback} </Feedback > 
Based on the previous response and feedback, <Question> {Test Question} </Question >. Take 
a breath and work on this problem step by step. And conclude using the format 'Effective in 
theory: <Positive or Non-positive>.' 

List 5.1. Prompt for Moderator LLM in the Revision (revise) phase 

 

Okay, let's break this down step by step: 
1. Galantamine is an acetylcholinesterase inhibitor, which increases acetylcholine levels in the 
brain by preventing its breakdown. This can potentially improve cognitive function in 
Alzheimer's patients. 
2. Mecamylamine is a non-selective, non-competitive antagonist of nicotinic acetylcholine 
receptors. It blocks the action of acetylcholine on these receptors. 
3. When used together, Mecamylamine could potentially counteract the beneficial effects of 
Galantamine by blocking the acetylcholine receptors that Galantamine is trying to stimulate by 
increasing acetylcholine levels. 
4. Mecamylamine also has anticholinergic side effects, which could exacerbate symptoms in 
Alzheimer's patients. 
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5. Both drugs are metabolized by the liver, which could lead to pharmacokinetic interactions and 
affect their effectiveness or increase the risk of side effects when used together. 
6. While there is some evidence for potential neuroprotective effects of nicotinic acetylcholine 
receptor antagonists like Mecamylamine, this is likely outweighed by its potential to negate the 
benefits of Galantamine. 
7. The ICR (beta Amyloid 25-35 Peptide Injection Model) mouse model is used to study 
Alzheimer's disease. The effectiveness of the combination therapy in this model would depend 
on how well it addresses the pathological changes induced by the beta-amyloid peptide injection. 
8. Given that Mecamylamine could counteract the effects of Galantamine, increase the risk of 
side effects, and potentially exacerbate Alzheimer's symptoms, it is unlikely that the combination 
would be effective in treating the ICR mouse model of Alzheimer's disease. 
Therefore, based on the available evidence and considering the potential interactions between 
Galantamine and Mecamylamine, their mechanisms of action, and the pathology of the ICR 
mouse model, the combination of these drugs is likely not effective in treating Alzheimer's 
disease in this model. 
Effective in theory: Non-positive.  

List 5.2. Example of generated response from Moderator LLM in the Revision (revise) phase.  

J. Ablation study only using data from literature mining 

The ablation study which we only used data from literature mining in both the Warm-up and the 
Inference and Revision phases illustrated similar trends. 

 
Figure S1. Visual illustration of Coated-LLM components and additive contributions to the 
performance (only use literature mining data). Coated-LLM combines kNN-based five-shots 
dynamic learning example selection, external pathway knowledge, self-consistency (n=5), 
Reviewer, and Moderator. 
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Table S1. Contingency table of prediction outcomes with examples using the baseline model. 
 

Drug A Drug B Animal model Predicted 
efficacy 

Actual efficacy 
(reference) 

True positive (n=6) 
Pyrroloquinoline 
Quinone 

NT-020 5xFAD Positive Positive [41] 

Donepezil Pentoxifylline CuSO4 intake in 
experimental rats 

Positive Positive [42] 

False positive (n=7) 
Levetiracetam Donepezil Aged C57/Bl6J Positive Non-positive 

(Augmented data) 
Boron Ferulic Acid Wistar Albino Male Rats 

injected stereotaxically 
with STZ 

Positive Non-positive 
(Augmented data) 

False negative (n=31) 
CCMI Donepezil scopolamine-treated rats Non-positive Positive [43] 

Rosiglitazone Vorinostat Intracerebroventricular 
streptozotocin induced 
model of AD in mice 

Non-positive Positive [44] 

True negative (n=36) 
Cholesterol Homocysteine Sprague Dawley rats Non-positive Non-positive [29] 

Dexamethasone Tofacitinib 5xFAD Non-positive Non-positive [45] 

 
Table S2. Contingency table of prediction outcomes with examples using the baseline model for 
the external data. 
 

Drug A Drug B Model Predicted 
efficacy 

Actual efficacy  

True positive (n=0) 
False positive (n=6) 
Rivastigmine Vitamin E HT22 Mouse Hippocampal 

Neuronal Cell Line 
Positive Non-positive 

Memantine Tolcapone HT22 Mouse Hippocampal 
Neuronal Cell Line 

Positive Non-positive 

False negative (n=2) 
Galantamine Mifepristone HT22 Mouse Hippocampal 

Neuronal Cell Line 
Non-positive Positive 

Galantamine Caffeine HT22 Mouse Hippocampal 
Neuronal Cell Line 

Non-positive Positive 

True negative (n=3) 
Galantamine Diclofenac HT22 Mouse Hippocampal 

Neuronal Cell Line 
Non-positive Non-positive 
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Donepezil Octyl-
methoxycinnamate 

HT22 Mouse Hippocampal 
Neuronal Cell Line 

Non-positive Non-positive 
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