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Thymic epithelial cells (TECs) and hematopoietic antigen presenting cells (HAPCs) in the
thymus microenvironment provide essential signals to self-reactive thymocytes that
induce either negative selection or generation of regulatory T cells (Treg), both of which
are required to establish and maintain central tolerance throughout life. HAPCs and TECs
are comprised of multiple subsets that play distinct and overlapping roles in central
tolerance. Changes that occur in the composition and function of TEC and HAPC subsets
across the lifespan have potential consequences for central tolerance. In keeping with this
possibility, there are age-associated changes in the cellular composition and function of T
cells and Treg. This review summarizes changes in T cell and Treg function during the
perinatal to adult transition and in the course of normal aging, and relates these changes
to age-associated alterations in thymic HAPC and TEC subsets.
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INTRODUCTION

Throughout life, the immune system must balance the opposing goals of mounting protective
responses against diverse pathogens, while preventing a breakdown in self-tolerance. Maintaining
this tenuous balance is complicated by age-related changes in the number and composition of cells
that comprise the innate and adaptive immune systems, as well as by changes in hematopoiesis,
lymphoid and non-lymphoid tissue microenvironments, and an individual’s history of pathogen
exposure. Neonates encounter a barrage of new pathogens, requiring broad and rapid immune
protection, at a time when their immune system is skewed towards mounting tolerogenic
responses essential for tissue homeostasis (1). In contrast, following a lifetime of pathogen
encounters, the T-cell compartment in older individuals contains a higher frequency of memory
T cells, which can combat previously encountered pathogens, but often mounts poor responses to
newly encountered pathogens and vaccines (2). (Figure 1). Immune responses to self-antigens also
exhibit age-associated trends with the onset of many autoimmune disorders peaking in middle age
(3) (Figure 1). Notably, there are some similarities between manifestations of immune
dysregulation at both ends of the age spectrum, as neonates and elderly individuals have elevated
susceptibility to various pathogens relative to adults, but less susceptibility to new-onset
autoimmune disorders. For example, neonates are highly susceptible to respiratory syncytial
org April 2021 | Volume 12 | Article 6762361
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FIGURE 1 | Age-associated changes in T cell generation and function throughout the lifespan. The T cell landscape is in flux throughout life, shaped by age-
associated changes in T-cell subset composition and function, which are influenced by cell-intrinsic factors as well as microenvironmental cues that support T cell
development and differentiation. While the perinatal T cell pool is dominated by naive conventional T cells (Tconv) and recent thymic emigrants (RTEs), the aged T cell
pool contains a higher proportion of memory T cells. Perinatal and aged T cells share several striking similarities in phenotypes and functions. The perinatal and aged
CD8+ Tconv cells, including virtual memory T cells (Tvm), are shifted towards short-lived, innate-like, effector responses characterized by increased proliferative
potential and rapid cytokine production, at the expense of long-lasting memory generation. Naive CD4+ T cells also display age-associated changes at both ends of
the age spectrum, such as reduced T cell receptor (TCR) responsiveness and IL-2 production. In addition, T cells are more self-reactive both early and late in life,
which may reflect age-associated changes in thymic selection and/or peripheral maintenance. Regulatory T cells (Treg) generation in the thymus peaks in the
perinatal period, but Tregs at both ends of the age spectrum have superior suppressive capacity compared to adult Tregs. These age-associated changes implicate
the thymic microenvironment in selecting Tconv cells and Tregs that cater to rapidly changing immune challenges throughout life, while at the same time curbing the
risk of triggering autoimmunity. T cell output from the thymus is also lower in both fetal/neonatal periods as well as in the elderly. The uneven pattern of thymic output
depicted in the histogram reflects variability throughout life due to numerous extrinsic stressors, such as infections and pregnancy, that alter thymic cellularity and
output. In keeping with the above similarities between T cells in the perinatal and elderly stages, immune outcomes, such as overall responsiveness to vaccines and
pathogens, as well susceptibility to new onset autoimmunity change in similar directions at both extremes of the lifespan. Phenotypes with question marks are yet to
be defined clearly, and dotted lines indicate variable findings in the indicated attributes. All features have been reported in both humans and mice, except those
denoted with an asterisk that indicates findings currently reported only in mice in the perinatal to adult and/or adult to aged transitions.
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virus (RSV) (4), whereas elderly individuals often mount
inadequate immune responses to influenza and West Nile
viruses (5, 6). T cells play a central role in modulating the
outcome of immune responses by integrating initial signals from
the innate immune system with T cell receptor (TCR)-mediated
antigen recognition to shift the balance in favor of pathogen-
directed protective versus tolerogenic outcomes. Distinct T-cell
subset composition, phenotypes, and effector functions have
been identified in neonates and in aged individuals compared
to younger adults, but the underlying mechanisms responsible
for the distinctive age-associated features of T-cell immunity
have not been fully established.

T cells develop in the unique tissue microenvironment of the
thymus (Figure 2), in which thymic epithelial cells (TECs) and
hematopoietic antigen presenting cells (HAPCs) provide
indispensable signals for T-cell maturation and/or the
establishment of self-tolerance. Bone-marrow derived
hematopoietic progenitors are recruited from circulation into
the postnatal thymus. These CD4-CD8- “double negative” (DN)
precursors then undergo T-cell lineage specification and
differentiation in the thymic cortex. Following productive
rearrangement of TCRb gene segments, DN thymocytes
initiate expression of the TCR co-receptors CD4 and CD8 and
are referred to as “double positive” (DP) cells. DPs undergo
TCRa gene rearrangements resulting in expression of functional
abTCR heterodimers that scan self-peptide/MHC complexes
(pMHC) presented by cortical thymic epithelial cells (cTECs).
Only thymocytes that express a TCR of sufficient affinity for
either MHCI- or MHCII-peptide complexes are signaled to
survive and further differentiate to CD8+ or CD4+ single
positive (SP) lineages, respectively, through the process of
positive selection (7, 8). A range of TCR affinities is compatible
with positive selection, and the level of thymocyte self-reactivity
has been shown to affect the subsequent threshold of peripheral
T cell activation. Positively selected thymocytes migrate into the
medulla, a region specialized for the induction of central
tolerance. Within the medulla, TECs and HAPCs display a
diverse array of self-peptides. Thymocytes expressing TCRs of
relatively high affinity for self-pMHC are either triggered to
undergo apoptosis, through the process of negative selection, or
are diverted to a regulatory T cell (Treg) lineage to establish
central tolerance (9). The combined outcomes of positive
selection and central tolerance shape the specificity, diversity,
and self-reactivity of the TCR repertoire in the peripheral T
cell compartment.

Changes in thymus size and thymocyte cellularity are the
most apparent age-related changes in the thymus. In both
humans and mice, thymus size continues to increase in the
neonatal period, then transitions to a homeostatic phase during
early life, prior to the initiation of progressive age-associated
involution. While the age-associated decline in size and output of
T cells is conserved between mice and humans, one notable
difference is that only human thymuses accumulate high levels of
lipid laden adipocytes, which are interspersed with relatively
small functional regions of thymic tissue (Figure 3).
Accumulating evidence discussed below indicates that the
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cellularity and composition of TECs and thymic HAPCs
change with age. As TECs and thymic HAPCs play critical
roles in establishing central tolerance, age-related changes in
the thymic microenvironment likely impact thymocyte selection,
tolerance, and thus peripheral T cell responses throughout the
lifespan. In this review, we focus on age-associated changes in the
thymic microenvironment that can affect the diversity and self-
reactivity of T cells that emigrate into the periphery to participate
in immune responses. We first review the establishment of
central tolerance and the roles of TECs and HAPCs in this
process. We then discuss age-associated characteristics of
conventional and regulatory T cell responses and how they
may be linked to changes in thymic selection. Finally, we
explore age-associated changes in the composition of HAPC
and TEC subsets that may contribute to altered central tolerance
and T cell activity throughout life.
THE PLAYERS IN THYMIC
CENTRAL TOLERANCE

TCR gene rearrangements can generate >1015 distinct TCRs,
enabling recognition of an extensive array of diverse antigens
(10, 11). Given the random nature of the TCR gene
rearrangement process, it is inevitable that some TCRs will
recognize self-antigens. To achieve self-tolerance, thymocytes
must be screened for autoreactivity and either purged or directed
into the Treg lineage to prevent autoimmunity. Multiple factors
influence whether a self-reactive thymocyte will undergo
negative selection or Treg lineage diversion. One critical
determinant is the avidity of TCR binding to pMHC
complexes presented by thymic APCs, which is a combined
function of both individual TCR-pMHC binding affinities and
the abundance of pMHC on APC surfaces. High-avidity binding
results in thymocyte negative selection, eliminating autoreactive
clones from the TCR repertoire (7). Selection into the Treg
lineage is generally induced by somewhat lower avidity TCR-
pMHC interactions (9). However, the broad and partially
overlapping TCR repertoires of conventional T cells (Tconv)
and Tregs (12) demonstrate that this cell fate decision is not
dictated solely by TCR avidity. Another factor influencing fate
choice is intraclonal competition for limited Treg niches.
Thymocytes expressing a Treg-derived TCR transgene
efficiently divert to the Treg lineage only when present at low
clonal frequencies (9, 13, 14). Thus, the fate of a self-reactive
thymocyte is determined by cell-intrinsic and -extrinsic factors.
Cell-extrinsic factors include the abundance and local availability
of self-pMHC (15–17), CD80 and CD86 co-stimulatory
molecules (18, 19), and IL-2, with some contribution from IL-
15 and IL-7 (20, 21). Altogether, multiple factors in the thymic
environment shape the self-reactivity and diversity of emerging
T cells, regulating their responsiveness to self- and
foreign antigens.

A variety of thymic APC types present self-peptides to induce
central tolerance. The importance of the thymic medulla in
negative selection is well-established. Nevertheless, two studies
April 2021 | Volume 12 | Article 676236
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reported that most antigen-induced clonal deletion occurs in DP
thymocytes, suggesting that cortical APCs can induce negative
selection (22, 23). Although antigen presentation by cTECs is
required for positive selection, cTECs have not been associated
with negative selection (7). Instead, several studies indicate that
HAPCs, such as DCs, in the cortex and near the cortico-
medullary junction (CMJ) present ubiquitous self-antigens to
Frontiers in Immunology | www.frontiersin.org 4
induce cortical negative selection (24–26). Thymocytes clearly
undergo negative selection at the DP stage, but further studies are
needed to determine if DPs undergo negative selection in the
cortex or medulla. Prior research predominantly relied on CCR7
expression as a proxy for cortical versus medullary localization of
thymocytes undergoing negative section. However, live imaging
studies indicate that positively-selected DPs can enter the
FIGURE 2 | Thymic epithelial cells and hematopoietic antigen presenting cells provide essential signals to guide abT cell maturation and the induction of central
tolerance in the thymus. Cross-sectional view of a thymus lobe reveals cortical and medullary regions, through which thymocytes must travel in an orchestrated
manner to encounter heterogeneous stromal cell subsets. Progenitor cells from the bone marrow migrate through the vasculature to seed the thymus at the cortico-
medullary junction (CMJ). DN1-DN4 thymocytes require signals from cortical thymic epithelial cells (cTECs) to support their survival, proliferation, and T-lineage
commitment. During the DN2-DN3 stages, TCRb gene segments are recombined, and thymocytes that successfully express TCRb and signal through the pre-TCR
undergo proliferation and further differentiation through the process of b-selection. Subsequently, thymocytes upregulate CD4 and CD8 to become double-positive
cells (DPs), which initiate TCRa gene rearrangements. DPs that successfully express a TCRab heterodimer are tested for reactivity with self-peptide MHC complexes
presented by cTECs. Only those DPs that receive a TCR signal pass positive selection, enabling them to survive and further differentiate. Positively selected DPs
transit from the cortex into the medulla. Along the way, some clones may be deleted in an early wave of negative selection in the cortex, driven by strong TCR
reactivity to self-peptide MHC complexes displayed by dendritic cells (DCs). In the medulla, DPs downregulate either CD4 or CD8 to become single-positive
thymocytes (CD8SP or CD4SP) and interact with medullary APCs to establish central tolerance to a broad array of self-antigens. Strong TCR signals, induced by
self-antigens displayed by medullary thymic epithelial cells (mTECs), conventional DCs (cDCs), plasmacytoid DCs (pDCs), or B cells result in either negative selection
(apoptosis) or Treg diversion of the autoreactive T cell clones, enforcing central tolerance. SPs that survive these collective thymic selection processes emigrate from
the thymus to join the peripheral T cell pool.
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medulla before upregulating CCR7 (27, 28), raising the
possibility that medullary APCs may also contribute to this
early wave of DP negative selection.

Thymocytes are screened for reactivity against non-
ubiquitous self-antigens primarily in the medulla. The
requirement for medullary localization was demonstrated in
mice deficient for the chemokine receptor CCR7 for its ligand
CCL21, which together promote the medullary accumulation of
post-positive selection SP thymocytes (29–33). In the absence of
CCR7 signaling, thymocyte migration into the medulla is
compromised, resulting in diminished central tolerance and
subsequent autoimmune exocrinopathy (34). mTECs play a
key role in negative selection due to their unique ability to
collectively express >85% of the proteome, allowing them to
induce central tolerance against a wide array of self-antigens (35–
37). Importantly, mTECs express tissue-restricted antigens
(TRAs), encoded by 2,000-3,000 genes that are otherwise
expressed only in a small number of terminally-differentiated
tissues (38–40). TRA expression is largely under control of the
transcriptional regulator AIRE (35–37), which is expressed
predominantly by MHCIIhi CD80hi mature mTECs (41, 42).
AIRE deficiency impairs mTEC maturation and prevents
expression of Aire-dependent TRAs, resulting in failed central
tolerance and export of autoreactive T cells that induce multi-
Frontiers in Immunology | www.frontiersin.org 5
organ autoimmunity (43, 44). Analogous to Aire-deficient mice,
autoimmune polyendocrinopathy-candidiasis-ectodermal
dystrophy (APECED) patients have mutations in the AIRE
gene, resulting in autoimmunity affecting multiple endocrine
glands (45, 46). TCR repertoire analysis of Treg and Tconv cells
from Aire-deficient and -sufficient mice demonstrated that AIRE
is also required to select autoreactive clones into the Treg lineage
(47, 48).

In addition to expressing diverse self-antigens, mTECs play a
critical role in central tolerance by directly presenting self-
antigens to thymocytes. MHCIIhi mTECs express the
costimulatory molecules CD80 and CD86, which are required
for negative selection and Treg induction (49, 50). Reducing
MHCII expression selectively in mTECs revealed that efficient
negative selection requires antigen presentation by mTECs (51).
Moreover, tolerance to the Aire-dependent RIP-mOVA
neoantigen remained intact when MHC was expressed only by
TECs, and not by thymic HAPCs (52, 53). Furthermore, our
imaging studies using thymic slices from RIP-mOVA transgenic
mice, in which MHC is physiologically expressed by both mTECs
and HAPCs, revealed that AIRE+ mTECs contribute to roughly
half of the negatively-selecting interactions with both MHCI and
MHCII-restricted thymocytes (54). mTECs also have the
capacity to induce Tregs independently of HAPCs (55).
A

B

FIGURE 3 | Changes in thymic size, organization, and/or lipid content accompany age-associated thymic involution in humans and mice. (A) In humans, the
percentage of the thymus comprised of functional thymic tissue progressively declines with age, and is replaced by adipose tissue, as shown in these hematoxylin
and eosin-stained images. The percent of thymus area containing thymic epithelium, representing functional thymic tissue, was calculated via morphometric analysis
of cytokeratin immunohistochemical slides. The results for the subjects shown are 91% at 5 days (5d), 55% at 28 years (28y), and 0.5% at 78 years (78y). (B) The
mouse thymus grows substantially between postnatal day 1 (1d) (scale bar = 400 µm) and 4 weeks of age (4w) (scale bar = 2 mm), and then declines steadily and is
highly involuted by 12 months of age (12m). The small islands of medullary tissue seen at 1d expand and coalesce to form the larger, more organized medullary
regions characteristic of adult thymus (4w). Age-associated replacement by adipose tissue is not a prominent characteristic of involution in mice. The corresponding
weights (mean ± SD) of murine thymus at the ages shown are 5 ± 0.5 mg at 1d (n = 3), 57 ± 8 mg at 4w (n = 8), and 38 ± 2 mg at 12 m (n = 3).
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Interestingly, while AIRE+MHCIIhi mTECs clearly express and
present diverse TRAs that are essential for central tolerance,
recent findings demonstrate that MHCIIlo mTECs also
contribute to selection of the T cell repertoire (56). Thus,
mTECs play a pivotal role in central tolerance, not only as
sources of TRAs, but also as APCs that directly present self-
antigens to thymocytes to induce central tolerance.

The importance of HAPCs, in particular thymic dendritic
cells (DCs), in negative selection is well-established, as genetic
ablation of DCs leads to defective central tolerance and
autoimmunity (57). DCs efficiently mediate negative selection
and Treg induction in reaggregate thymic organ cultures
(RTOCs) (58). In vivo, DCs can acquire antigens in peripheral
tissues and traffic them into the thymus to induce tolerance (59),
and those positioned near thymus vasculature can acquire and
present blood-borne antigens (60, 61). Thymic DCs also acquire
and present mTEC-derived TRAs (53, 62, 63). Thymic DCs with
an activated signature, including elevated expression of MHCII
and CD86, function as highly efficient APCs (64). Thymocyte-
DC crosstalk is important for DC maturation and function.
CD40L on SP thymocytes induces CD40 signaling in DCs,
which is required for DCs to induce Tregs in vitro (65).
Interestingly, TCR repertoire sequencing demonstrated that
mTECs and DCs select distinct clones into the Tconv and Treg
repertoires (48, 66). Our imaging studies also indicated that DCs
present mTEC-derived TRAs to MHCI- and MHCII-restricted
thymocytes (54). For both monoclonal TCR transgenic and
polyclonal thymocytes, DCs were engaged in slightly more
than half of the interactions between thymocytes and APCs
that induced TCR signaling (54), further supporting the
fundamental contribution of DCs to central tolerance.
Collectively, these studies demonstrate that both mTECs and
DCs are required to establish self-tolerance.

DCs are a heterogenous group of HAPCs that include
conventional DCs (cDC) and plasmacytoid DCs (pDCs) (67).
The mouse cDC1 subset expresses CD8a and XCR1, and the
cDC2 subset expresses CD11b and Sirpa/CD172a (68). While
both cDC subsets contribute to tolerance induction, thymic
cDC2s have greater CD4+ T cell stimulatory capacity (69) and
are especially proficient at Treg induction (70, 71). The cDC1
subset plays a role in clonal deletion, but was reported to be
dispensable for Treg induction and to have a negligible impact on
the Treg TCR repertoire (72, 73). In contrast, other studies
concluded that cDC1s are essential for inducing Tregs in
response to mTEC-derived antigens (48, 66). Thus, further
studies are needed to resolve the contributions of distinct DC
subsets to central tolerance. When compared to cDCs, pDCs in
the thymus have a reduced capacity to stimulate T cells and to
acquire antigens from TECs (74). However, CCR9+ pDCs can
transport peripheral antigens to the thymus to induce negative
selection (75). In humans, comparable cDC1 and cDC2 subsets
have been identified and defined by expression of CD141 and
CD1c, respectively (68). It has been technically challenging to
dissect the roles of human thymic APC subsets in establishing
central tolerance, although in vitro studies have confirmed that
DCs have tolerogenic capacity (76), including the ability to
Frontiers in Immunology | www.frontiersin.org 6
induce Tregs (77). Human thymic cDCs are activated by
thymic stromal lymphopoietin (TSLP), which is expressed by
Hassall’s corpuscles that consist of terminally differentiated
mTECs, and the activated CD80hi CD86hi cDCs can induce
Tregs in vitro (78). Like cDCs, human thymic CD123+ pDCs
support Treg induction in vitro (79, 80). Thus, multiple thymic
DC subsets have been shown to promote central tolerance,
though the distinct contributions of DC subsets are not
entirely resolved.

B cells have also been shown to contribute to central
tolerance. Thymic B cells are localized in the medulla and
express high levels of MHCII, CD80, and CD86, distinguishing
them from splenic B cells (81, 82). Thymic B cells with specificity
for self-antigens can present self-peptides to CD4SPs, driving
activation-induced cytidine deaminase (AID)-dependent B cell
class switching. Class-switched thymic B cells promote negative
selection (81, 82). CD40 activation in thymic B cells, driven by
CD40L on SP thymocytes, is required to support B cell
proliferation, differentiation, and class switching, as well as
upregulation of Aire, and these licensed B cells present self-
antigens to induce negative selection (83, 84). Thus, B cells may
play a significant role in central tolerance, but whether licensed B
cells are autoreactive and the nature of the self-antigens they
present remain to be resolved. Collectively, these studies
demonstrate the cooperative roles of multiple TEC and HAPC
subsets in enforcing central tolerance against a broad range of
self-antigens.
CHANGES IN Tconv FUNCTION AND
THYMIC SELECTION THROUGHOUT
THE LIFESPAN

Function of Tconv Cells in the
Perinatal Period
Tconv cells generated during the perinatal period face the
daunting task of mounting a rapid, protective immune
response against a sudden surge of pathogen encounters, while
at the same time ensuring they do not trigger autoimmunity.
Neonatal T cells differ substantially from adult T cells in
composition and function, helping them to achieve this
balance (85). Generally, T cell responses in neonates are
diminished relative to those of adults. This may partly be
attributed to a shift in the ratio of naive to memory subsets, as
naive T cells are predominant in perinatal tissues, whereas
memory T cells become more abundant in adults (86).
In keeping with this concept, T cells from pediatric lymph
nodes (LNs) produce relatively lower levels of cytokines,
including IFN-g, IL-2, and IL-4 relative to adult T cells (86).
Moreover, in the context of infections such as malaria (87) and
congenital Cytomegalovirus (CMV) (88) human neonatal T cells
express lower levels of Th1 and Th2-associated cytokines
compared to adult T cells. Cell-intrinsic properties of perinatal
T cells such as high PD-1 expression (88), low NFAT expression
(89) and diminished Ca2+ influx after TCR stimulation (90) may
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contribute to the diminished responsiveness of neonatal T cells.
Overall, the relative paucity of memory T cells and reduced
functionality of T cells in the perinate are consistent with
increased susceptibility to infection in early life.

Multiple studies in mice and humans have demonstrated that
neonatal T cell responses are strongly skewed towards Th2 versus
Th1 differentiation (91–95). Mouse neonatal T cells and human
cord blood T cells readily produce the Th2 cytokines IL-4 and IL-
13 following in vitro stimulation (92, 94–96). Also, CD4+ T cells
isolated from neonatal mice immunized with bacille Calmette-
Guerin (BCG), Tetanus toxoid and other vaccines expressed
higher levels of IL-5 and lower IFN-g upon antigen re-
stimulation in vitro, compared to adults (97). The neonatal
Th2 bias is due at least in part to permissive epigenetic
regulation of Th2-associated cytokine genes (95, 98). Also, the
IFN-g promoter region is hypermethylated in cord blood CD4+
T cells consistent with their deficient production of IFN-g after
in vitro stimulation (99). Moreover, stimulated CD4+ cord blood
T cells express higher levels of GATA3, a key transcriptional
regulator of Th2 fate (94, 100). The strong Th2 bias could be
beneficial both in suppressing development of damaging
inflammatory Th1 responses, as well as in promoting tolerance
towards allogeneic maternal antigens in utero. Consistent with
the latter idea, cord blood from preterm infants contains higher
levels of proinflammatory cytokines and alloreactive Th1-like
central memory CD4+ T cells, which were absent in term infants,
suggesting their potential role in promoting premature uterine
contractions (101). However, Th2-skewing could leave the
newborn vulnerable to infections and unable to respond to
some vaccines, which require Th1 responses (102–104).

Interestingly, studies have demonstrated that with
appropriate stimuli, such as exogenous IFN-g and IL-12 (105,
106), exposure to helminth and mycobacterial antigens (107),
low viral doses (108), various adjuvants (93), or DNA vaccines
(109), neonates can mount Th1-like responses in addition to Th2
responses (110–113). In contrast to findings in mice (97), BCG
vaccination of infants induces a strong Th1 response,
comparable to adults, supported by high IFN-g and low IL-4/
IL-5 expression after antigen re-stimulation in vitro (112, 113).
Moreover, Th1 responses are elicited by CMV in the fetus and B.
pertussis in infants (88, 114). The capacity of neonatal T cells to
mount a Th1 response under some conditions may reflect the
extent of DC maturation, as mycobacterial and pertussis toxin
antigens are particularly effective at activating DCs (115, 116).
Nonetheless, studies with neonatally immunized mice suggest
that while Th1 responses can be induced in adults following
antigen re-challenge, Th2 memory responses still predominated
(93, 117). In addition, while a balanced Th1 and Th2 primary
response could be induced in neonates early after exposure to a
foreign antigen, a Th2 secondary response was dominant in mice
re-challenged as adults (111).

Cell-intrinsic properties of neonatal T cells, as well as
extrinsic microenvironmental cues have been implicated in
driving the reduced responsiveness and Th2 bias of neonatal T
cell responses. Adoptive transfer experiments in mice revealed
that Th2 skewing was observed only when fetal, but not adult
Frontiers in Immunology | www.frontiersin.org 7
CD4+ T cells were primed regardless of whether the host
microenvironment was fetal or adult (110, 118, 119). These
results suggest a cell-intrinsic difference in the fate potential of
neonatal versus adult CD4+ T cells. Interestingly, when both Th1
and Th2 responses were elicited by primary antigen challenge in
neonates, Th1 cells upregulated IL-13Ra1 which associated with
IL-4Ra (119). Upon antigen re-challenge, the activated Th2 cells
secreted IL-4 which bound the IL-4Ra/IL-13Ra1 heterodimer,
triggering Th1 apoptosis, tipping the balance towards Th2-
mediated immunity. Moreover, upregulation of IL-13Ra
expression during initial activation of Th1 cells is
developmentally regulated; antigen exposure after postnatal
day 6 does not induce IL-13Ra expression. These results are
due to the delayed maturation of a subset of splenic CD8a+
cDC1s, which secrete IL-12 that inhibits IL-13Ra expression on
Th1 cells (120). These findings demonstrate that cell extrinsic
factors can regulate the Th2 bias in neonates.

Neonatal CD8+ T cell responses also differ from their adult
counterparts (reviewed in (85)). Co-transfer of neonatal and
adult CD8+ T cells into adult recipients revealed a cell-intrinsic
bias of neonatal cells towards a short-lived effector fate, whereas
adult T cells differentiated into both effector and memory subsets
(121). Thus, upon pathogen re-challenge, the immune response
was dominated by adult CD8+ T cells. Further studies
demonstrated that neonatal and adult CD8+ T cells are derived
from distinct hematopoietic progenitors (122). Notably,
neonatally-derived CD8+ T cells persist into adulthood, where
they continue to play an important role in responding to
pathogens due to their preferential differentiation into effectors
that proliferate rapidly and produce cytokines (123, 124). In
contrast, adult-derived CD8+ T cells in the same environment
have a greater propensity to generate memory T cells (124). In
uninfected mice, CD8+ T cells generated during the neonatal
period tend to differentiate into “virtual memory” T cells (Tvm),
expressing high levels of CD44, Eomes, and CD122, and they
proliferate more rapidly and differentiate into short-lived effector
cells following pathogen challenge, mirroring the neonatal CD8+
T cell pool (122, 124, 125). Consistent with findings in mice,
human cord blood CD8+ T cells are also highly proliferative
upon TCR stimulation (123), and undergo bystander activation,
producing IFN-g, TNFa, or IL-4, depending on the cytokine
receptor (126, 127). Collectively, these findings suggest that the
functional potential of neonatal naive CD8+ T cells is biased
towards an innate-like effector phenotype.

Thus, perinatal CD4+ and CD8+ Tconv cells have distinct
functional properties compared to their adult counterparts. Both
cell-intrinsic changes in differentiation potential and priming by
different microenvironmental cues result in CD4+ T cell
responses biased towards a Th2 or Treg (see below) fate, which
may protect the neonate from damaging inflammatory Th1
responses at a time when tissue homeostasis, including
responses to commensal colonization, is being established.
During this period, CD8+ T cells are biased to differentiate
into short-lived effector cells, which can rapidly combat
pa thogen ic threa t s a t the expense o f genera t ing
memory responses.
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Selection of Tconv Cells in the
Perinatal Period
Previous studies suggest that negative selection is impaired in the
perinatal compared to the adult thymus, resulting in decreased
deletion of self-reactive thymocytes (69, 128, 129). In mice,
susceptibility to experimental autoimmune encephalomyelitis
(EAE) decreases between the perinatal and adult period, which
correlates with increasing age-dependent negative selection of
MBP (myelin basic protein) specific T cells (129). Also, in mice
and humans, Tconv cells that mature in the perinatal thymus
express higher levels of CD5 and Nur77 compared to those
generated in adults (130, 131). CD5 and Nur77 levels correlate
with TCR affinity for peptide-MHC (132, 133), suggesting that
perinatal Tconv cells are more self-reactive compared to those
generated in the adult thymus. While heightened self-reactivity
could reflect impaired central tolerance, as discussed above, it is
also possible that the threshold for positive selection is higher in
the perinatal thymus, such that thymocytes with low-affinity
TCRs are not efficiently positively selected, resulting in elevated
CD5 levels on perinatal T cells (130). Regardless, higher TCR
self-reactivity could enable T cells to respond quickly and
effectively against multiple foreign antigens, despite the limited
perinatal TCR repertoire (131, 134). Studies in mice have
suggested another potential advantage of increased TCR self-
reactivity: neonatal recent thymic emigrants enter a lymphopenic
periphery, where CD5hi T cells outcompete their CD5lo

counterparts for CD28 co-stimulation due to their increased
affinity for self-pMHC. Their resultant increased sensitivity to
the homeostatic cytokines IL-7 and IL-15 promote lymphopenia-
induced proliferation to fill empty niches (135–139). Moreover,
CD5hi T cells have skewed effector potential in the periphery.
CD5hi CD4+ T cells are more prone to differentiate into Tregs
(140), while CD5hi CD8+ T cells express effector molecules such
as Eomes, T-bet and Helios that promote T cell differentiation to
an effector or virtual memory fate (134, 139). Thus, the increased
self-reactivity of T cells selected in a neonatal thymus likely
contributes to the characteristic rapid proliferation of neonatal
CD4+ and CD8+ T cells in response to cytokine or antigen
stimulation, as well as the altered differentiation potential biasing
neonatal CD8+ T cells to become short-lived effector cells or
Tvm, and CD4+ T cells to adopt a Treg fate. These studies
emphasize that the strength of TCR signaling during thymic
selection not only determines lineage fate decisions in the
thymus but also influences peripheral effector T cell function.

Declining Function of Tconv Cells
During Aging
It is well established that T cell function declines with age,
correlating with increased morbidity and mortality to
infectious diseases and reduced responses to vaccination (2,
141, 142). While following a general pattern of age-associated
decline, there is increased variability in immune responses
between individuals with age, due in part to their lifetime
histories of acute and persistent pathogen encounters (143,
144). As in the perinatal period, both cell-intrinsic and
microenvironmental changes contribute to the age-associated
Frontiers in Immunology | www.frontiersin.org 8
decline in T cell function; however, the complex mechanisms
that drive waning T cell immunity are not yet fully resolved (2).

CD4 T cells exhibit multiple functional changes with age.
Reduced expression and production of IL-2 has been
demonstrated following stimulation of mouse CD4+ T cells
(145, 146). There is evidence for reduced IL-2 production in
CD4+ T cells from elderly humans, but this decline has not been
universally observed (2). CD4+ T cells from old mice were found
to be functionally deficient in B cell activation, indicating reduced
T follicular helper cell (Tfh) activity with age (147). Consistent
with this notion, an age-associated decline in Tfh responses, along
with diminished class-switched antibody levels were reported
following viral infections in mice, non-human primates, and
humans (143, 148). In addition, aging is associated with reduced
IFN-g+ CD4 T cell responses to viral pathogens (143, 149). Age
associated defects in CD4 activity could result from impaired T cell
priming as aged CD4+ T cells exhibit cytoskeletal defects and poor
immunologic synapse formation (150), reduced calcium flux upon
TCR cross-linking (151), and defective metabolic reprogramming
upon activation (152). These findings suggest cell-intrinsic defects
impair CD4+ T cell responses in aged individuals. Cell-extrinsic
defects also contribute to the decline in CD4 T cell function with
age. For example, aged CD4+ T cells showed reduced homing to
LNs following viral infections, despite the finding that expression
levels of LN homing molecules (CCR7, CXCR4, PSGL1, and
LFA1) were not decreased (148). However, levels of CCL21,
which recruits naive T cells to LNs, were lower in draining LNs
from old mice early after infection (148). Further support for cell-
extrinsic defects was demonstrated by studies showing that the LN
microenvironment deteriorates with age due, in part, to reduced
IL-7 presentation and increased fibrosis (2, 153, 154),

Because T cells consist of multiple functionally distinct subsets,
the defects in T cell function with age described above could reflect a
change in subset composition and/or alterations in activity on a per-
cell basis. Indeed, phenotypic analyses revealed an age-associated
reduction in the proportion and numbers of naive T cells in
humans, non-human primates, and mice (154–158). Recent
comprehensive single-cell transcriptional profiling studies confirm
the shift towards a higher frequency of effector-memory T cell
subsets with age (159, 160). Notably, in mice, aging was associated
with a stark increase in representation of cytotoxic CD4+ T cells,
exhausted CD4+ T cells, and activated Treg (159). The shift to an
increased frequency of these CD4+ T cell subsets correlated with
elevated levels of cytokines associated with inflammaging, such as
IL-27, IFN-b, and IL-6. Thus, the altered distribution of CD4+ T cell
subsets likely has a profound impact on immune responses with age.
However, such alterations do not fully account for age-related
changes in T cell function. For example, antigen-inexperienced
CD4+ recent thymic emigrants (RTEs) from old mice produce less
IL-2 and proliferate poorly after in vitro stimulation compared to
young RTEs (161). In addition, naive CD4+ T cells from older mice
have a longer lifespan, reflecting increased Bim expression, but
proliferate poorly after in vitro and in vivo stimulation (162, 163).
Although profound functional deficiencies in naive human CD4+ T
cells have not been reported, naïve CD4+ T cells from elderly
humans exhibit reduced TCR signaling and expansion following in
April 2021 | Volume 12 | Article 676236

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Srinivasan et al. Changes in Central Tolerance With Age
vitro stimulation due, at least in part, to the age-associated decline in
miR-181a expression (164–166). Interestingly, naive polyclonal
CD4+ T cells in aged mice are more self-reactive, as indicated by
increased CD5 expression, display higher TCR affinity for foreign
antigens, and are more promiscuous in antigen recognition. The
increase in self-reactivity and promiscuity of the aged CD4+ T cell
compartment implicate altered thresholds of CD4+ T cell selection
in the thymus with age (155).

Defects in CD8+ T cell responses with age are well established.
Early studies reported defective CD8+ T cell responses following
primary and secondary influenza challenges (167). Additionally,
CD8+ T cells have an age-associated decrease in their capacity to
proliferate and produce effector molecules, such as IFN-g, following
in vitro stimulation or infection with viral or bacterial pathogens
(168–175). In humans, the frequency of activated CD8+ T cells
induced by yellow fever vaccination was significantly diminished
with age (176), underscoring the potential impact of a declining
CD8+ T cell compartment on vaccine-induced as well as on natural
protection against pathogens (143).

Similar to CD4+ T cells, the overall decline in CD8+ T cell
function with age could reflect changes in the proportions of
functionally distinct CD8+ T cell subsets. Indeed, one of the most
notable hallmarks of the aged immune system in humans and mice
is a substantial decline in both the number and frequency of naive
CD8+ T cells (143, 173, 177). At the same time, the CD8+ T cell
pool becomes progressively enriched in clonally expanded, antigen-
inexperienced CD8+ Tvm cells in mice and in humans (139, 174,
177–180). The homeostatic cytokine IL-15 is required for
differentiation and function of Tvm cells (139), which in turn
respond to IL-12 and IL-18 stimulation in a TCR-independent
manner, resulting in secretion of IFN-g (139, 174, 177–179).
Notably, Tvm can provide antigen-independent bystander
protection in bacterial infections, proliferating more rapidly than
naive T cells, but differentiating preferentially into short-lived
effector cells (181), strikingly reminiscent of perinatal Tconv cells.
While Tvm cells can provide effective protection against pathogens
in a bystander or TCR-dependent manner (139, 181), and increase
in frequency with age, there is a seemingly incongruous age-
associated decline in the overall response of CD8+ T cells to
pathogen challenge. Previous studies partially resolved this
conundrum by showing that aged Tvm in mice and humans have
a reduced capacity to proliferate in response to TCR stimulation
relative to young Tvm. The mouse Tvm response to homeostatic
cytokines is sustained with age, but whether human Tvm have a
similarly sustained response has not been tested (173, 174).
Regardless of age, Tvm mount a monofunctional cytokine
response to TCR stimulation, while naive CD8+ T cells produce
multiple cytokines in response to mouse influenza infection (173,
174). These studies indicate that with age Tvm cells accumulate in
the CD8+ compartment, respond poorly to TCR stimulation, and
produce a less diverse cytokine response. In contrast, while naive
CD8+ T cells retain a robust capacity to proliferate to TCR
stimulation with age, they do not survive or proliferate well in
response to the homeostatic cytokines IL-2 and IL-15, explaining
the decreased proportion of naive CD8+ T cells relative to Tvmwith
age (173, 174). Transcriptional profiling revealed that Tvm cells that
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accumulate with age have a senescent signature, consistent with the
lower frequency of cells that respond to TCR stimulation as well as
the reduced burst size of individual responding cells (173). Together,
these results partially explain why the composition and function of
the CD8+ T cell compartment changes with age. Additional insights
into the declining function of aged CD8+ T cells were revealed in a
recent single cell transcriptional profiling study that identified a
subset of CD8+ T cells that expresses and secretes granzyme K
(GZMK) and accumulates with age in mice and humans (160). In
contrast to Tvm, age-associated GZMK+ CD8+ T cells have a
transcriptional profile and surface marker phenotype (PD-1+ Tox+)
consistent with a state of terminal exhaustion (160). Strikingly, upon
TCR stimulation, these cells secrete GZMK, which alone or in
combination with IFN-g, induces fibroblasts to secrete pro-
inflammatory factors, such as IL-6 and CCL5. Thus, GZMK+
CD8 T cells may contribute to inflammaging. GZMK+ CD8+ T
cells also express the integrin CD49d, reminiscent of a previously
described clonally expanded CD49d+ CD8+ T cell subset in aged
mice (182). These cells home to multiple tissues and fail to secrete
granzyme B (GZMB) or IFN-g upon TCR stimulation, further
distinguishing them from Tvm (160). Notably, single-cell TCR
repertoire analysis of human PBMCs revealed that the well-
documented clonal restriction of the CD8+ T cell pool with age
(177, 183–185) was due in part to clonal expansion of this novel
GZMK+ CD8+ T cell subset, which was distinct from the clonally
expanded GZMB-producing cells that are enriched for recognition
of CMV or Epstein-Barr virus (EBV) (158, 186). Clonal expansion
of Tvm with age has also been reported (174, 177, 185). Collectively,
these studies reveal that aging is associated with a profound shift in
the composition of CD8+ T cell subsets, resulting in reduced
responses to newly encountered antigens and a shift towards a
pro-inflammatory phenotype.

Age-associated changes in the composition of the CD8+ T cell
compartment could reflect cell-intrinsic and/or extrinsic influences.
Several lines of evidence indicate that the aged environment is a
causative factor in the decline in CD8+ T cell functionality. When
young naive CD8+ T or Tvm cells are transferred into an aged host,
their proliferative potential declines (173). Similarly, an aged host
environment induces young CD8+ T cells to adopt an exhausted
phenotype, including upregulation of GZMK (160). Additionally, in
heterochronic parabiosis experiments fewer young CD8+ T cells
were recovered in old compared to young partners (187).
Conversely, in each of these studies, the young environment did
not restore function, cellularity or phenotype to old CD8+ T cells.
Strikingly, the number of T cells declined in the lymph node of a
young mouse when parabiosed to an old partner (187). Together,
these data indicate that the old environment contains soluble factors
that negatively impact CD8+ T cell cellularity and function.
Additional cell-extrinsic influences that can diminish CD8+ T cell
responses with age include ineffective antigen presentation by aged
DCs (188, 189) and disrupted architecture of secondary lymphoid
organs that could impair recruitment, maintenance or priming of
CD8+ T cells (153, 154, 190, 191). Despite clear evidence that cell-
extrinsic factors in the aged environment modulate CD8+ T cell
responses, there is evidence that age-associated cell-intrinsic
changes also contribute to diminished T cell responses with age.
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In addition to the declining responsiveness of aged Tvm to TCR
stimulation (173, 174), another characteristic of Tvm cells that
accumulate with age is their increased self-reactivity, as reflected by
elevated expression of CD5 (139, 185). Furthermore, there is an
apparent enrichment in naive T cells with higher CD5 levels in the
CD8+ T cell repertoire with age (177, 192), and naive CD8+ T cells
expressing higher levels of CD5 have an increased propensity to
differentiate into Tvm cells. Together, these data indicate that the
naive CD8+ T cell pool is more self-reactive with age. Further
studies are needed to determine whether the increased self-reactivity
of naive T cells is driven by age-associated cell-extrinsic changes in
the thymic microenvironment that affect selection thresholds,
peripheral maintenance of self-reactive T cells, and/or intrinsic
transcriptional profiles of T cells that alter their capacity to
respond to TCR signals.

Changes in Negative Selection of Tconv
Cells During Aging
Aging induces profound changes in the thymic microenvironment
(see section Changes In Thymic Apcs And Implications For Selection
Throughout The Lifespan), which could negatively affect central
tolerance. For example, TRA expression decreases with age (193,
194), reflecting both a decline in the frequency of Aire+ mTECs
and reduced Aire expression per mTEC (195, 196). Thus,
thymocytes may not encounter the full spectrum of self-antigens
responsible for central tolerance in an aged thymus, potentially
contributing to the increased incidence of autoimmunity with age.
Consistent with this possibility, Aire haploinsufficiency results in
decreased negative selection and an increased incidence of diabetes
(197). Also, in an inducible Foxn1-deletion model of accelerated
thymic atrophy, TRA expression was reported to decline, and
negative selection was impaired (198). In addition to age-associated
changes in TECs, changes in thymic B cells could impact central
tolerance during aging. The number and frequency of thymic B
cells increase in old mice; however, their expression of Aire and
TRAs diminishes with age (199–201). A decline in AIRE-
dependent TRA expression is also observed in human thymic B
cells (199). Despite the clear association between aging and thymic
involution, and recognition that the thymic microenvironment is
critical for establishing self-tolerance, surprisingly little is known
about the impact of aging on central tolerance. Further
investigations are needed to determine if central tolerance is
altered during aging, to elucidate the underlying mechanisms,
and to determine the impact on autoimmunity.
CHANGES IN Treg FUNCTION AND
THYMIC SELECTION THROUGHOUT
THE LIFESPAN

Function of Tregs in the Perinatal Period
The critical role of Tregs in suppressing damaging inflammatory
immune responses in a broad range of tissues has been well
documented [reviewed in (202)]. Immunodysregulation
polyendocrinopathy enteropathy X-linked (IPEX) patients, in
whom Treg lineage differentiation is impaired, develop severe
Frontiers in Immunology | www.frontiersin.org 10
gastrointestinal pathology, type-1 diabetes mellitus and severe
skin inflammation, in addition to other autoimmune
manifestations within the first few weeks to months after birth
(203–206). Studies in mice have demonstrated that organ-
specific Tregs play a crucial role in promoting peripheral
tolerance in both lymphoid and non-lymphoid organs (207–
209). Tregs control inflammatory T cell responses towards food
antigens (210) and commensal microbiota in the gut (211), and
intestinal Tregs have been shown to expand in response to
microbial cues (211–214). Tregs also migrate to the hair
follicles in the skin, where they are critical for tolerance to skin
commensals (215, 216). Retinal antigen-specific Tregs in the eye
control inflammation in experimental autoimmune uveitis and
help resolve disease pathology (217, 218). Other experimental
models of organ-specific diseases such as diabetes (219) and EAE
(220) have reinforced the crucial role played by Tregs in
suppressing autoimmune pathology.

Tregs control T cell responses through multiple mechanisms
(221, 222). For example, expression of CTLA-4 on Tregs reduces
the ability of DCs to stimulate T cell responses by masking the
costimulatory molecules CD80 and CD86 (223). Tregs also
express CD39 and CD73, which catalyze the release of
adenosine into the extracellular milieu, thus inhibiting effector
T cell proliferation (224). In addition, Tregs outcompete effector
T cells for IL-2, inhibiting their proliferation (225), and Tregs
produce suppressive cytokines like IL-10 and TGFb (226, 227).
Tregs can also suppress effector T-cell differentiation and induce
apoptosis of Tconv cells (228, 229).

The importance of intrathymic Treg generation in the
neonatal period is illustrated by an experiment performed
nearly 50 years ago in which neonatal thymectomy in mice
was shown to cause autoimmune pathology in the ovaries (230).
Later studies showed that transfer of adult T cells, in particular
CD25+ Tregs, prevented autoimmune destruction of ovaries in
these mice, implying that a defect in neonatal thymic Treg
generation failed to curb activation of autoreactive T cells (231,
232). Differentiation of Foxp3+ CD25+ Tregs in the mouse
thymus lags behind that of Tconv cell development (233). In
newborn mice, Tregs comprise only 0.09% of CD4SP thymocytes
and do not reach adult levels (~4% of CD4SP thymocytes) until
21 days after birth (233). In contrast, CD25+ Tregs constitute ~6-
8% of CD4SP thymocytes in humans by 14-17 gestational weeks
(GW), and this frequency remains relatively constant after birth
(234, 235). Perinatal expansion of the human Treg compartment
is observed in the periphery, with a striking surge in the
frequency and number of peripheral blood CD25+ Foxp3+
Tregs during the early neonatal period (7-8 days post birth)
compared to those in cord blood or present at a later neonatal
period (2-4 weeks after birth) (236). Additionally, compared to
adult tissues, a higher frequency of Foxp3+ CD25+ Tregs is
observed in human fetal as well as in several pediatric lymphoid
and mucosal tissues, indicating their importance in early life (86,
237). Tregs in neonatal circulation display an activated
phenotype, with a predominantly Foxp3hi CTLA-4hi CCR7lo

CD25+ phenotype (236). Similarly, an activated (CD69hi

GITRhi CCR7lo CTLA-4hi), memory (CD62Llo CD45RO+)
April 2021 | Volume 12 | Article 676236

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Srinivasan et al. Changes in Central Tolerance With Age
Treg phenotype was documented in fetal LN and cord blood
(235, 237).

The high frequency of Tregs in the fetal and perinatal periods
may be due to a higher propensity of fetal hematopoietic
progenitors to differentiate into the Treg lineage. HSCs
transplanted from human fetal liver or bone marrow into
humanized mice give rise to a higher frequency of CD25+
Foxp3+ Tregs compared to HSCs from adult bone marrow
(238). Additionally, studies in mice have demonstrated that
perinatal CD4SP thymocytes are more prone to differentiate
into Tregs upon TCR stimulation when compared to adult
CD4SP thymocytes, both in vitro and in vivo (239, 240). Gene
expression profiles of adult Tregs are more similar to fetal naive
CD4+ T cells than to adult naive CD4+ T cells, indicating that
fetal T-cells may be transcriptionally primed to be suppressive.
Consistent with this finding, naive CD4+ T cells from human
fetuses give rise to more Tregs than adult CD4+ T cells in vitro
(236, 238). The increased Treg induction efficiency of perinatal
progenitors could be a protective mechanism required to
establish initial immune tolerance in multiple peripheral
tissues, particularly in light of elevated Tconv self-reactivity in
the perinatal period (see above). Supporting this theory, Aire
expression in the perinatal period is necessary and sufficient to
prevent autoimmunity in mice (241), and Treg ablation in
perinates induces profound multiorgan autoimmunity
characteristic of Aire deficiency (242). Together, these findings
suggest that Aire expression in the perinatal thymus is essential
for selecting perinatal Tregs that suppress multiorgan
autoimmunity. Tregs are required for self-tolerance throughout
life, as demonstrated by the autoimmunity that ensues following
Foxp3 elimination in adult mice (207). Notably perinatally-
derived Tregs persist into adulthood, and relative to adult-
derived Tregs, are uniquely capable of protecting against
autoimmunity when transplanted into Aire-deficient mice.
Perinatally-derived Tregs also express an activated gene
signature and have an increased capacity to suppress Tconv
cell proliferation in vitro relative to adult-derived Tregs (242).
These mouse studies are consistent with human studies showing
distinct gene expression patterns in fetal versus adult Tregs (238),
as well as increased protein expression and suppressive activity of
pediatric compared to adult Tregs (86). Taken together, these
findings suggest that perinatally-derived Tregs persist into
adulthood, where they suppress damaging autoreactive T-cell
responses in multiple organs.

Many studies of Treg-mediated protection in tissues have been
performed in adults, raising questions of whether neonatally derived
Tregs play a critical role in these processes, and if so, what
mechanisms underlie their suppressive activity. Some progress has
been made towards answering these questions. Tregs generated in
the neonatal thymus migrate to the skin in a CCR6-CCL20
dependent manner, where they are essential for establishing
tolerance to newly colonizing commensal bacteria (216). Recent
studies have also reported that a wave of neonatal thymus-derived
Tregs migrates to the liver (243, 244). Interestingly, perinatal liver-
resident Tregs are more suppressive than their splenic counterparts,
and they are activated in a TCR-dependent manner in the liver
Frontiers in Immunology | www.frontiersin.org 11
microenvironment (243). Ablating these perinatal Tregs resulted in
Th1-type inflammation and breakdown of lipid metabolism,
highlighting their role in establishing liver homeostasis (243).
Another study demonstrated that perinatal Tregs promote and
maintain anergy of self-reactive PD-1+ CD44+ Tconv cells in the
liver; notably development of these perinatal Tregs was Aire
independent (244). These results contrast with the Aire-
dependence of perinatal Tregs that confer protection against
autoimmune infiltrates in Aire-deficient mice (242). Thus, the
contribution of Aire to selection of perinatal thymic Tregs that
suppress tissue-specific autoreactivity requires further investigation.
Tolerance to commensals at mucosal barriers is established in the
neonatal period and is mediated by peripherally-induced Tregs. In
neonatal mice, the lungmicrobiota induce differentiation of a Helios
negative Treg subset that suppresses Th2-like hyper-responsiveness
to aeroallergens (245). Additionally, neonatal T cells encounter a
wide variety of antigens derived from gut microbiota which induce
Treg differentiation required for tolerance to gut commensals
throughout life (246). Thus, thymus-derived and peripherally-
induced Tregs are generated early in life and are critical for
tissue-specific immune homeostasis in multiple organs.

Selection of Tregs in the Perinatal Period
In mice and humans, Foxp3, the master transcriptional regulator
of Treg lineage commitment and maintenance, is predominantly
induced in self-reactive CD4SP thymocytes, although it can be
detected as early as the DP stage (233–235). Perinatal Tregs
express higher CD5 levels compared to adult Tregs, suggesting
increased self-reactivity (130).Two distinct Treg populations that
differ in their affinity towards self-antigens have been identified
in adults (247). Triplehi (PD-1hi GITRhi CD25hi) Tregs are more
self-reactive, as indicated by higher Nur77 and CD5 levels, and
are efficient at suppressing Tconv cell proliferation in lymphoid
organs. In contrast, Triplelo (PD-1lo GITRlo CD25lo) Tregs
express less Nur77 and CD5, indicative of lower self-reactivity,
and more effectively limit the induction of colitis by inducing
peripheral Tregs in the gut (247). However, both Triplehi and
Triplelo Tregs in the perinatal thymus express elevated CD5
levels relative to their adult counterparts (130). Taken together
with the evidence that Tregs selected in the perinatal thymus are
critical for suppressing autoimmunity at multiple tissue sites,
higher CD5 expression by thymic perinatal Tregs suggests that
the perinatal thymic environment may be specialized for
selecting tissue-protective Tregs.

Recent studies support the possibility that self-antigen
presentation differs in the perinatal versus adult thymus
microenvironment, resulting in efficient Treg selection. A self-
peptide derived from peptidyl arginine deaminase type IV
(Padi4) was found to efficiently induce selection Treg only in
the perinatal thymus (248). Interestingly, in adults, Padi4-
specific thymocytes were subject to negative selection as early
as the post-positive selection DP stage, whereas in perinates,
negative selection was delayed until the CD4SP stage. Thus, in
the adult thymus, Padi4-specific DP precursors were deleted
before they could give rise to CD4SP cells or Tregs, likely
underlying the switch from perinatal Treg induction to adult
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negative selection (248). The age-associated shift towards clonal
deletion could reflect cell-intrinsic changes in signaling
downstream of TCR stimulation in perinatal versus adult DP
thymocytes and/or changes in the perinatal versus adult thymic
microenvironment. In this regard, bone marrow chimera
experiments revealed that expression of Padi4 by HAPCs
induced negative selection in the adult thymus, but when
Padi4 expression was restricted to radioresistant thymic
stromal cells, Treg induction was restored in adults. These
findings suggest that antigen presentation by adult HAPCs
preferentially drives negative selection, as opposed to Treg
induction. Conversely, unique properties of the thymic APC
compartment in neonates may selectively promote thymic Treg
induction over negative selection. The concept that age-
associated changes in the thymic microenvironment play a role
in the outcome of self-antigen recognition is supported by the
lower expression of H2-DO relative to H2-DM in perinatal
versus adult mTECs, which would increase the diversity of
peptides presented in the perinatal thymus (242), thus altering
the TCR repertoire during thymic selection. Collectively, these
studies demonstrate that both negative selection and Treg
induction differ in the perinatal versus adult thymus, yielding
more autoreactive Treg and Tconv cells in the perinatal period.
However, the mechanisms driving these age-dependent changes
in selection thresholds and TCR specificities, including whether
these differences are due to cell-intrinsic changes in T cell
progenitors and/or cell-extrinsic factors in the thymic
microenvironment, remain to be resolved.

Changes in Treg Function During Aging
The prevalence of Tregs in the blood of adult mice and humans
ranges from 5-10% of the CD4+ T cell compartment (249). The
frequency of Tregs does not increase in mouse blood with age
(250). In contrast, elevated frequencies of circulating Tregs have
been reported in aging humans (251, 252). Furthermore, aging is
associated with an increase in both the frequency and number of
Tregs in mouse spleen and lymph nodes, but not in the lung, liver
or peritoneum (160, 250, 251, 253, 254) In fact, a recent single-
cell transcriptional profiling study confirmed that the frequency
of Tregs increases in aging mouse spleens, but revealed that this
increase was driven almost entirely by an emerging subset of
activated Tregs (159). Taken together, these studies indicate that
the abundance, distribution, and function of Tregs shift with age
towards increasing immunosuppression.

Two single-cell transcriptomics reports show that with age,
Tregs express elevated levels of genes associated with Treg
activation and suppressive activity, including Foxp3, S100a11,
IL1r2, Pdcd1, Tigit, Lag3, and Batf (159, 160). Moreover,
expression of proteins that promote Treg suppressive activity,
such as FOXP3, CD25, CTLA-4, and GITR, is maintained, and in
some cases increased in aged Tregs (251, 252, 254, 255). A recent
study reported that old activated Tregs are more suppressive
than young Tregs (159), consistent with previous findings
showing increased functional activity of Tregs with age (251).
In contrast, other studies report that the in vitro suppressive
capacity of Tregs does not differ between young and aged mice
(256, 257) or humans (255). Nevertheless, whether due to
Frontiers in Immunology | www.frontiersin.org 12
increased frequency or increased suppressive capacity, it is
likely that aged Tregs may impair T-cell mediated control of
infection with age, thus contributing to pathology. In keeping
with this concept, young mice are able to resolve primary
Leishmania major infection, whereas aged mice experience
increasing reactivation of lesions. However, Treg depletion in
the aged mice increased cytokine production by effector T cells
and decreased disease severity (251). In addition, CD4+ CD25hi

Tregs recovered from Alzheimer’s disease and Parkinson’s
disease patients displayed increased suppressive activity in vitro
when compared to young and control elderly donors, suggesting
that Treg suppressive capacity is also associated with age-related
neurodegeneration (252). Increasing Treg activity may also
contribute to diminished anti-tumor responses with age.
Whereas young mice were able to reject transplanted BM-185
tumor cells, aged mice succumbed, and their ability to reject
tumors was restored by Treg depletion (254). Because there are
multiple subsets of functionally distinct Tregs (258), some of the
discrepancies above regarding alterations of Treg functionality
with age may reflect changes in the composition of Treg subsets,
which could be impacted by organ sites and the assays chosen to
measure Treg suppressive activity. Consistent with this
possibility, Tregs were found to be more abundant in the oral
mucosa of aged mice and humans, although, counterintuitively,
inflammation associated with Candida albicans infection was
exacerbated despite pathogen control (259). Notably, an age-
related shift in favor of IFN-g-producing relative to IL-17-
producing Tregs and Tconv cells was associated with decreased
IL-1b and increased IL-6 levels in the mucosa. IL-1R1 deficiency
decreased induction of IL-17-producing Tregs after Candida
albicans infection, whereas there was a relative increase in
IFN-g-producing Tregs, which required IL-6 for their
expansion (259). In a mouse model of autoimmune colitis,
aged Tregs could suppress IFN-g+ Th1 cells, but not IL-17+
Th17 cells (260). Restraint of Th17 cells requires STAT3
activation in Tregs (261), and aged Tregs do not activate
STAT3 in response to inflammatory IL-6 to the same extent as
young Tregs (260). Collectively, these studies demonstrate that
age-associated changes in the relative abundance of different
cytokines, as well as the responsiveness of aged Tregs to cytokine
stimulation, can alter Treg subset differentiation and thus, the
ability to suppress inflammatory T cell responses to self-antigens,
pathogens, and commensals in a tissue-specific manner. While
changes in cytokine levels would contribute to extrinsic
alterations in Treg differentiation and function with age,
changes in the ability of aged Treg to respond to cytokines
suggest that age-associated cell-intrinsic changes affect
Treg function.

Selection of Treg With Age
The absolute number of Tregs in the thymus decreases with age,
reflecting the reduction in cellularity that accompanies age-
associated thymic involution (250, 253). Although the
frequency of FOXP3+ cells does not change with age (250,
253), initial studies did not distinguish between thymic Tregs
generated in the aged thymus versus those that had recirculated
into the thymus from the periphery. Subsequent studies using
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RAG2p-GFP mice revealed that the frequency of newly
generated Tregs declines rapidly with age, while the proportion
of recirculating Tregs increases (262, 263). Moreover, mature
Tregs inhibit de novo generation of Tregs in fetal thymic organ
cultures, suggesting that recirculating Tregs reduce selection of
new Tregs in the aged thymus, perhaps by sequestering IL-2, a
limiting cytokine required for Treg induction (264). In this
regard, Treg generation was increased in the presence of
exogenously administered IL-2 (262). These studies suggest
that thymic Treg induction is reduced with age. In contrast,
Treg selection was favored over clonal deletion in an inducible
Foxn1-deletion model of accelerated thymic involution, in which
TECs are precipitously depleted (198). Thus, it remains to be
resolved whether Treg generation is generally reduced in an aged
thymus, or is actually increased under some conditions, such as
limited self-antigen availability.

Given that the number of Tregs in the periphery does not
decline with age, and in fact increases in some organs (see above),
the decline in thymic output of newly generated Tregs during
age-associated thymic involution must be compensated for in the
periphery either by increased proliferation/survival of extant
Tregs or increased Treg induction. Naïve CD4+ T cells from
old mice have a diminished ability to differentiate into Tregs in
vitro and in vivo (188, 265). However, aged Tregs have a survival
advantage relative to young Tregs due to lower expression of the
pro-apoptotic factor Bim (253, 266). It is important to note that
there are multiple subsets of peripheral Tregs (267–271), such
that age-associated increased Treg survival could reflect an
increased proportion of a long-lived subset. In keeping with
this possibility, CD25lo Tregs accumulate with age in the
periphery (256, 266). CD25lo Tregs express lower levels of Bim
than CD25hi Tregs, even though Bim levels decline in CD25hi

Treg with age (266). Notably, IL-2 is critical for homeostasis of
CD25hi Tregs and IL-2 levels decline with age, whereas the
CD25lo subset requires IL-15 for survival (266). Thus, altered
access to homeostatic cytokines could impact the relative
proportions of different Treg subsets with age, which would be
in keeping with both the observed decline in circulating IL-2 and
the age-associated deterioration of a supportive T-cell
microenvironment in secondary lymphoid organs (2),
especially given that autoreactive CD4+ T cells in secondary
lymphoid organs are an important source of IL-2 for Tregs (272).
Thus, there are age-related consequences for Treg selection,
induction, and maintenance in the thymus and in the periphery.
CHANGES IN THYMIC APCs AND
IMPLICATIONS FOR SELECTION
THROUGHOUT THE LIFESPAN

Changes in TECs Across the Lifespan
The composition and function of TEC subsets undergo major
changes throughout the lifespan, and there is mounting evidence
that the dynamic nature of the TEC compartment is a critical
determinant of age-associated alterations in the immune
Frontiers in Immunology | www.frontiersin.org 13
response. As previously discussed, mTECs play a critical role
in establishing and maintaining central tolerance. Not only are
mTECs uniquely capable of expressing and presenting Aire-
dependent and Aire-independent TRAs (38, 43), but they also
transfer TRAs to DCs for subsequent cross-presentation to
thymocytes (53, 62, 63). In addition, mTECs produce
chemokines such as XCL1, CCL19, and CCL21 that promote
DC medullary recruitment and localization (70, 273, 274).
Moreover, in response to Toll-like receptor (TLR) signaling,
mTECs secrete chemokines that recruit CD14+ monocyte-
derived DCs into the medulla to promote Treg generation
(275). Thus, mTECs play multifunctional and essential roles in
negative selection and Treg generation.

The mTEC compartment in both humans and mice is
phenotypically and functionally heterogeneous. Initially,
mTECs were classified into two major subsets, namely an
immature MHCIIlo CD80lo AIRE- subset (mTEClo) and a
functionally mature MHCIIhi CD80hi AIRE+ subset (mTEChi).
There is long-standing evidence that the mTEClo compartment
contains progenitor cells that generate mTEChi progeny (276–
278). However, it is now evident that the mTEClo population is
highly diverse and contains multiple functionally and
developmentally distinct subsets that have been identified in
investigations using flow cytometric as well as lineage tracing and
transcriptomic analyses of mouse and human mTECs. For
example, a subset of mTEClo cells expresses CCL21, indicating
their functional importance in recruiting positively selected
thymocytes into the medulla (279–283). Interestingly, despite
the initial association of an mTEClo phenotype with an immature
stage of differentiation, the mTEClo subset also contains mature
cells that have downregulated Aire and MHCII expression (44,
279, 280, 282). Studies employing single-cell RNA sequencing
(scRNAseq) analyses have shown that post-Aire mTECs include
a unique population of thymic tuft cells, which are sensory
epithelial cells similar to those present in the intestine and
other mucosal sites (279, 280, 282). It has been suggested that
tuft cells play a role in central tolerance, as the abundance of
Foxp3lo Treg precursors decreases in tuft cell-deficient mice
(284). Hassall’s corpuscles (HCs) are another cell type in the
heterogeneous post-Aire mTEClo subset. HCs form distinctive
concentric structures of flattened epithelial cells that are
prominent in the human thymus medulla, and small clusters
of TECs that may be analogous are found in mouse medullary
regions. Transcriptional profiling studies have identified genes
that are highly expressed by both HCs and terminally
differentiated keratinocytes (279, 282). Moreover, HCs
resemble keratinocytes in that both cell types produce proteins
found in terminally differentiated epithelial cells such as keratin
10, involucrin, filaggrin and TSLP (44, 285–287). It has been
suggested that HCs play a role in regulating central tolerance as
TSLP produced by human HCs activates DCs to express co-
stimulatory molecules that enhance Treg induction (78). A
recent study in which scRNAseq analysis was performed on
index-sorted TECs identified a novel TEC subtype, referred to as
intertypical, which has both mTEC and cTEC characteristics
(193). Thus, studies to date have shown that the mTEC
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compartment is highly diverse, consisting of multiple subsets
whose phenotypic and functional characteristics, as well as
lineage relationships have not yet been fully deciphered.
Nevertheless, there is mounting evidence that various mTEC
subsets significantly impact the establishment and/or
maintenance of central tolerance.

The TEC compartment is highly dynamic during the
perinatal to adult transition. TEC numbers expand
exponentially during mouse fetal thymus development, and
TEC cellularity continues to increase in the perinatal period
prior to temporarily leveling off in young adults (288, 289). In
parallel, there is a higher frequency of proliferating TECs in the
perinatal compared to adult thymus (279, 288, 290). Remodeling
of the TEC compartment during the perinatal period in mice is
reflected by an increase in the percentage of mTECs and a
corresponding decline in the percentage of cTECs (289, 291).
Interestingly, functional blockade of vascular endothelial growth
factor (VEGF) receptors in neonatal mice inhibits perinatal
thymus expansion and accelerates the shifted mTEC to cTEC
ratio despite the lack of VEGF receptors on thymocytes and
TECs (292). These effects were independent of changes in the
vasculature; however, VEGF inhibition altered expression of
genes regulating cellular adhesion, migration, adipogenesis and
inflammation in CD140a+ mesenchymal cells suggesting that
VEGF-mediated effects on mesenchymal stromal cells influences
changes in the TEC compartment during the perinatal period
(293). The relative increase in mTECs during the perinatal to
adult transition was found not only by flow cytometric analysis,
but also by microscopic analysis of histological sections (289)
showing that this change is not merely an artifact of the
enzymatic digestion procedure required to obtain single
thymus cell suspensions. This is a matter of concern because
enzymatic disaggregation results in suboptimal recovery of
cTECs, particularly those present in cage-like structures,
referred to as thymic nurse cells, which encompass DP
thymocytes (288, 289, 294). An increase in the frequency of
mTECs relative to cTECs was also demonstrated by single cell
transcriptional profiling of neonatal versus adult human
thymuses (295). Furthermore, a recent scRNAseq analysis
revealed the presence of a unique cTEC subset in the perinatal
mouse thymus that rapidly declined and was replaced by mature
cTECs in the adult thymus (193). The composition of the mTEC
compartment also changes as perinates transition into
adulthood. For example, few tuft cells are present in the
neonatal mouse thymus, but their numbers increase
substantially in adults (279, 281). Similarly, HCs become more
abundant after the perinatal to adult transition (296). Taken
together, these studies show that the network of TEC subsets
undergoes extensive remodeling during the perinatal to
adult transition.

TECs also undergo dynamic changes at the opposite end of
the age spectrum as the thymus undergoes involution, a general
feature of vertebrate aging. Thymus involution is characterized
by progressive organ atrophy, reduced T cell output, disruption
of thymus architecture and collapse of the TEC compartment
(193, 297–300). Although both thymocyte and TEC cellularity
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decline as the thymus undergoes involution (161, 194, 288, 289,
291, 297), TEC depletion is a primary factor driving thymus
involution. FOXN1, a transcription factor required for TEC
development and maintenance, declines with age in mice and
humans (291, 301–303). Genetic models in which Foxn1
expression is upregulated in TECs prior to or after thymus
involution can attenuate or reverse this process (195, 304),
whereas downregulation of Foxn1 results in early degeneration
of the TEC compartment and premature involution (291).
Furthermore, thymus involution can be prevented by
expressing either a Cyclin D1 or c-myc transgene in TECs, or
by deleting Retinoblastoma family genes, all of which result in a
continuous thymus growth phenotype despite the fact that
thymocytes are not genetically manipulated (290, 305, 306).
Furthermore, heterochronic parabiosis experiments showed
that migration of thymus-seeding hematopoietic cells from a
young partner into the thymus of an aged partner failed to
restore cellularity of the old, involuted thymus (307).
Collectively, these investigations indicate that degradation of
the TEC compartment is a major factor contributing to
thymus involution, a finding that is not surprising given that
TEC-derived signals are indispensable for T cell differentiation
and selection.

Although thymus involution is generally thought to result in a
progressive decline in the number of both cTEC and mTEC
compartments, this view was challenged by a recent
investigation showing that the extensive cytoplasmic projections
characteristic of cTECs contract during involution (308). Based on
these findings, it was suggested that changes in cTEC morphology,
rather than cellular depletion, are responsible for the apparent
reduction in cTEC cellularity and associated cortical thinning
(308). In contrast, morphological changes in mTECs were not
observed during thymus involution consistent with an age-
associated decline in the number of mTECs. In addition,
changes in mTEC gene expression patterns, including increased
expression of inflammatory pathway genes (193, 309) occur
during thymus involution. The mechanisms responsible for
transcriptional changes may reflect altered mTEC subset
composition and/or intrinsic alterations in transcriptional
regulation (193, 195, 196, 309). With regard to the former
possibility, a recent study combining scRNAseq and lineage
tracing approaches demonstrated marked changes in TEC subset
composition with age (193). Taken together, these studies show
that remodeling of the TEC compartment is a characteristic and
progressive feature of age-related thymus involution.

Depletion of the mTEC compartment during aging,
particularly the decline in mature mTECs that express Aire-
dependent TRAs (195, 196, 288, 291), is likely to compromise
central tolerance and result in increased export of self-reactive T
cells. Indeed, a decline in expression of Aire-regulated as well as
Aire-independent TRAs has been associated with age-related
thymus involution (193, 194). Interestingly, however, neither the
expression of Aire nor Fezf2 (required for expression of Aire-
independent TRAs) was altered in TECs obtained from aged,
involuted thymuses suggesting that TRA expression depends on
additional, as yet undefined, factors (193, 194). Collectively, these
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data suggest that the decline in mTEC cellularity, changes in
mTEC subset composition and altered transcriptional signatures
of mTEC subsets are features of thymus involution that may
affect central tolerance and contribute to the age-associated
increase in autoimmunity (3, 310).

Changes in HAPCs Across the Lifespan
While mTECs present self-antigens directly to thymocytes to
mediate central tolerance, DCs also cross-present mTEC-derived
TRAs to induce negative selection and Treg generation (48, 53,
54, 62, 66, 71, 73, 74). Changes have been documented in the
composition of thymic DCs during the perinatal to adult
transition. Some studies indicate that CD8a+ cDC1s increase
in the thymus of adult relative to fetal and neonatal mice (242,
311). However, another study showed that CD8a+ cDC1s
decrease during the transition from neonate to adult, whereas
Sirpa+ cDC2s and pDCs increase with age in the thymus (69).
Adult cDC2s express higher levels of genes associated with
antigen processing and presentation and are more efficient at
MHCII-dependent antigen processing and presentation to T
cells compared to newborn cDC2s. Interestingly, this study
indicates that the efficiency of negative selection is diminished
in perinatal mice, compared to adults, correlating with a lower
frequency of cDC2 cells (69). In the human thymus, XCR1+
cDC1s increase in the second trimester of pregnancy and decline
postnatally with increasing age (295), consistent with the trend
reported in mice (69). Thus, while multiple studies have
established that the DC compartment changes with age, the
cellular composition and molecular alterations remain to
be elucidated.

Since mTECs influence thymic DC localization and
composition, mTEC-DC crosstalk likely plays an important
role in mediating central tolerance. For instance, in the adult
thymus, mTECs express CCL2, XCL1, JAG1, CCL19, and
CCL21, which could promote recruitment, localization and/or
maturation of thymic DCs (30, 33, 34, 61, 274, 295, 312–314).
CCR7 is expressed not only by thymocytes, but also by some
thymic DCs, indicating that expression of CCL19 and CCL21 by
mTECs could recruit not only post-positive selection thymocytes
to the medulla, but also CCR7+ DCs. CCR7 is upregulated on
thymic DCs by interactions with autoreactive thymocytes in a
CD40-CD40L dependent manner (65). CCR7+ DCs in human
and mouse fetal and postnatal thymuses express high levels of
MHCII and costimulatory molecules, suggesting they may have
an increased capacity to present self-antigens to medullary
thymocytes (64, 65, 295). Indeed, compared to CCR7- cDC1s,
CCR7+ cDC1s are more efficient at acquiring and presenting
Aire-dependent TRAs to CD8SP cells (64) and CCR7+ cDC1s
have also been implicated in playing a central role in presenting
mTEC-derived antigens to promote Treg selection (48, 66). We
found that CCR7 deficiency results in increased apoptosis of
MHCIIhi cDC1s and reduced antigen transfer from mTECs, with
a concomitant increase in cDC2 and, surprisingly, Treg
induction (70). Thus, production of CCR7 ligands by mTECs
alters the composition of the thymic DC compartment, with
downstream consequences for central tolerance. Taken together
with the age-associated changes in DCs and mTECs, these
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findings suggest that altered mTEC-DC crosstalk in the
perinatal period likely impacts central tolerance induction.

While the perinatal thymic HAPC compartment has slowly
garnered interest over the last two decades, there is relatively less
information regarding the impact of age-associated thymic
involution on thymic HAPCs. The numbers and proportions
of CD8a+ cDC1s and pDCs decrease gradually with age in the
mouse thymus, while migratory Sirpa+ cDC2s remain constant
in number, thus comprising an increased proportion of the
thymic DC compartment (315). Though reduced in number,
DCs in aged mice express similar levels of the activation markers
CD40, CD80, CD86, and MHCII compared to young DCs,
suggesting they are functionally intact (315). In humans, the
number of total thymic DCs declines in proportion to the overall
decrease in cellularity of the thymus with age (316). Similar to the
mouse thymus, the proportion of DCs expressing MHCII, CD80,
and CD86 was not altered with age, though expression of CD40
was diminished with age (316). Our transcriptional profiling
analysis showed that murine thymic cDC1s and cDC2s express
an increasingly proinflammatory gene signature with age,
including expression of Il1a, Il6, Tnf and Il18 (309). These
aging DCs could potentially contribute to the age-associated
inflammation observed in the thymus (317) and alter central
tolerance. As previously mentioned, B cells mediate negative
selection (81–83) and Treg induction in the thymus (318),
underscoring their crucial contribution to central tolerance.
Although the frequency of thymic B cells increases with age,
there is a dramatic age-associated decline in Aire and Aire-
dependent TRA expression in mouse and human thymic B cells
(199), which could impair negative selection and Treg induction.
These studies suggest that age-associated changes in HAPC
subset composition and/or gene expression may impact central
tolerance, highlighting the need for more comprehensive studies
to determine how age-associated changes in thymic HAPCs
influence negative selection, Treg induction, and the incidence
of autoimmunity.
CONCLUSIONS

The cellular composition and transcriptional profiles of TECs
and HAPCs undergo profound changes throughout life,
suggesting that a concomitant change in central tolerance
likely occurs. Indeed, multiple lines of evidence presented
above suggest that the perinatal thymic microenvironment is
inefficient at inducing negative selection of Tconv cells, but is
biased towards selection of auto reactive Tregs that are critical for
suppressing autoimmunity in various tissues throughout life. On
the other end of the aging spectrum, evidence suggests that the
involuting thymus becomes inefficient at supporting both
negative selection and Treg induction. The impact of age on
the ability of the thymus to support both arms of central
tolerance warrants further investigation. Studies to date raise
several important issues. For example, while negative selection
may be inefficient in both the perinatal and aged thymus, only
the aged thymus appears to be impaired in supporting Treg
generation, invoking a possible link with the age-associated
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increase in incidence of autoimmune disorders. Moreover, given
that age-related changes in peripheral T cell differentiation and
maintenance can impact the outcome of T cell responses to self
and foreign antigens, it will be important to distinguish thymic
from peripheral contributions with regard to changes in Tconv
and Treg cells as a function of age.

Given that expression levels of CD5 on T cells are set during
positive selection in the thymus, and that the level of CD5 on Tconv
and Treg cells correlates with altered activity in the periphery,
elevated CD5 levels on Tconv and/or Treg cells in the neonatal and
aged periods indicate that age-associated changes in thymic
selection impact peripheral T cell responses. However, changes in
thymic selection could reflect either an altered capacity of thymic
APCs to induce selection or cell-intrinsic changes in the
differentiation potential of hematopoietic progenitors that seed
and differentiate within the thymus. For example, the bias of
neonatal CD8 T cells towards short-lived effectors reflects altered
functional potential of neonatal versus adult hematopoietic cells
(122). Whether preferential differentiation of CD4SP cells into Th2
effectors and Tregs in perinates reflects changes in T cell
differentiation in the periphery and/or altered thymic selection,
due to either an altered microenvironment or changes in
hematopoeitic progenitors, requires further investigation.
Furthermore, the mechanisms underlying thymic selection of T
cells with altered self-reactivity have not been firmly established.
Elucidating altered functions of Tconv and Treg cells with age will
enhance understanding of how the immune system responds to
pathogens throughout life without invoking autoimmunity.
Furthermore, determining the mechanisms underlying altered
thymic selection and peripheral maintenance of functionally
distinct T cell subests will inform future strategies for enhancing
T cell mediated immune protection and suppressing autoimmunity.

While studies to date have identified unique aspects of
immune responses at both extremes of the age spectrum, and
suggested that central tolerance is subject to age-related
restrictions, a number of questions remain unanswered. Some
of these unresolved questions include:
Frontiers in Immunology | www.frontiersin.org 16
1. What are the precise roles of diverse mTEC and HAPC
subsets in selection across the lifespan?

2. Is the bias of perinatal Tconv towards Th2 and short-lived
effector cells due to altered thymic selection? Although this
was found not to be the case for short lived CD8 effector cells
(85), this question remains open for CD4+ T cells.

3. Do Aire-dependent versus Aire-independent Treg subsets
induce anergy in Tconv cells in a tissue-specific manner?

4. What cellular subsets and molecular mechanisms account for
the propensity of the perinatal thymic microenvironment to
select CD5hi Tregs?

5. Are the activated Tregs that accumulate with age and have
heightened suppressive ability (159) essential for maintaining
tolerance with age? A related issue is whether Tregs generated
in adulthood contribute to tolerance.
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