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 Glaucoma is an optic neuropathy characterized by a 
specific structural alteration of the head of the optic nerve ac-
companied by progressive damage to the visual field. Primary 
open-angle glaucoma (POAG) is the most common form of 
glaucoma, and it is one of the leading causes of irreversible 
blindness worldwide [1].

Although increased intraocular pressure (IOP) is a major 
risk factor for POAG, other concomitant factors affecting the 
eye play important roles including reactive oxygen species 
(ROS)-mediated oxidative damage. Oxidative DNA damage 
is significantly increased in the trabecular meshwork (TM) of 
glaucoma patients compared to controls, and the existence of 
a significant correlation between oxidative DNA damage and 
IOP in glaucoma patients has been reported [2-7]. Izzotti [8] 
reported that DNA damage may result in chronic degenerative 
diseases, including glaucoma, depending on the replication 
rate of the target cell population.

Recently, it has been hypothesized in many studies that 
polymorphisms in DNA repair genes reduce their capacity to 
repair DNA damage and thereby lead to a greater susceptibility 
to cancer or age-related diseases [9,10]. Although the exact 
pathogenetic mechanism of open angle glaucoma has not yet 
been fully clarified, the possible involvement of oxidative 
damage to DNA in POAG pathogenesis may indicate the role 
of DNA repair enzymes. Consistent with this hypothesis, Chen 

and Kadlubar [7] stated that polymorphisms in genes involved 
in antioxidant defenses and DNA damage repair may be genetic 
factors that predispose to an increased risk of glaucoma.

DNA repair enzymes continuously monitor chromosomes 
to correct damaged nucleotide residues generated by exposure 
to cytotoxic compounds or carcinogens. Repair of oxidative 
DNA damage is mediated by both base excision repair (BER) 
and nucleotide excision repair (NER) mechanisms [11,12]. 
Although hundreds of polymorphisms in DNA repair genes 
have been identified [13,14], their effects on repair function 
have not been well characterized. Among them, Xeroderma 
pigmentosum complementation group D (XPD), X-ray cross-
complementing group 1 (XRCC1), and X-ray cross-comple-
menting group 3 (XRCC3) have been frequently studied, and 
there is a growing body of evidence that polymorphisms of 
these genes may have some phenotypic significance [9,13].

XRCC1, a DNA repair protein involved in single-strand 
breaks (SSBs) and BER pathway, has been reported to be 
responsible for the efficient repair of DNA damage caused by 
active oxygen, ionization, and alkylating agents [15,16]. It 
is a multidomain protein that interacts with the nicked DNA 
and participates with at least three different enzymes, poly-
ADP-ribose polymerase (PARP), DNA ligase III, and DNA 
polymerase β, to repair SSBs [17]. Three polymorphisms 
occurring at conserved sequences in the XRCC1 gene were 
reported by Shen et al. [16]. These coding polymorphisms, 
resulting in amino acid substitutions, were detected at codons 
194 (Arg-Trp), 280 (Arg-His), and 399 (Arg-Gln). In particular, 
the 399Gln polymorphism resulting from a guanine to adenine 
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nucleotide substitution occurs in the PARP binding domain 
and may affect complex assembly or repair efficiency. Several 
studies have linked XRCC1-Arg399Gln polymorphism with 
biomarkers of DNA damage [18,19].

XPD encodes a helicase, which participates in both NER 
and basal transcription as part of the transcription factor IIH 
[9]. Mutations destroying enzymatic function of the XPD pro-
tein are manifested clinically in combinations of three severe 
syndromes, Cockayne syndrome, xeroderma pigmentosum, 
and trichotiodystrophy, depending on the location of the 
mutation [9]. Because XPD is important in multiple cellular 
tasks and rare XPD mutations result in genetic diseases, XPD 
polymorphisms may operate as genetic susceptibility factors. 
Premature aging has been reported in mice deficient in DNA 
repair and transcription because of a mutation in the XPD 
gene [20] Several single nucleotide polymorphisms (SNPs) 
in the XPD gene exons have been identified [9,17]. The XPD-
Lys751Gln variant substantially modifies the amino-acid elec-
tronic configuration in a domain important for the interaction 
with helicase activator p44 and may produce the most relevant 
change in XPD function [21]. Lunn et al. [22] showed that 
individuals with the XPD codon 751 Lys/Lys genotype had a 
seven fold increased risk of suboptimal DNA repair.

Screening for the possible relationship between poly-
morphisms of DNA repair genes and POAG may contribute 
to understanding the pathogenesis of glaucoma and may be 
useful in the prevention of this disease. To our knowledge, no 
studies have examined the relationship between DNA repair 
enzymes polymorphisms and ocular disease susceptibility. 
As the polymorphisms in XPD codon 751 (Lys-Gln) and 
XRCC1 codon 399 (Arg-Trp) are common in the population 
and have immediate functional significance, we determined 
the frequency of the polymorphisms in a sample of Turkish 
patients with POAG, and evaluated their association with 
POAG development.

 
METHODS

 This case-control study included a total of 144 patients with 
POAG and 121 disease-free controls. The eligible patients with 
POAG and controls were selected consecutively at Istanbul 
University Cerrahpasa Medical Faculty Ophthalmology De-
partment. The research followed the tenets of the Declaration 
of Helsinki, and all patients signed an informed consent form 
after they received an explanation of the nature of the study.

Each subject underwent a complete ophthalmological 
examination. Glaucoma subjects were defined by the presence 
of pathological cupping of the optic disc, and a glaucoma 
hemifield test (GHT) outside normal limits with reproducible 
visual field defects (VFD) at the same location on two consecu-
tive visits, and an IOP higher than 21 mmHg. The number of 
patients with mild, moderate, and severe VFD was 52 (36%), 
56 (39%) and 36 (25%), respectively. 106 (74%) of the patients 
had IOP levels between 21 and 28 mmHg. The rest of them 
(26%) had higher than 28 mm Hg.

Patients with a history of eye surgery before the diagnosis 
of glaucoma or with an evidence of secondary glaucoma, such 
as exfoliation, pigment dispersion, or uveitis were excluded. 

The mean age of the glaucoma group was 61.3±6.9 years 
(ranging from 48 to 79). Of these, 73 (51%) were at or lower 
than 60 years of age, and 70 (49%) were men.

Normal subjects presented with nonspecific ocular com-
plaints, such as conjunctivitis, refractive disorders, blepharitis, 
etc., to our outpatient department. They were age-matched 
healthy volunteers with normal ocular examination including 
an IOP lower than 21 mmHg and GHT within normal limits. 
The mean age of the control group was 59.1±5.8 years (rang-
ing from 51 to 75). Of these, 63 (53%) were at or lower than 
60 years of age, and 66 (55%) were men.

Blood samples and DNA isolation:  Venous blood samples 
were obtained from patient and control groups and collected 
into EDTA tubes. Immediately after collection, whole blood 
was stored in aliquots at -20 °C until use. Genomic DNA was 
extracted from whole blood using a NucleoSpin DNA purifica-
tion kit (Macherey-Nagel GmbH, Duren, Germany) according 
to the manufacturerʼs instructions.

Genotyping of XRCC1 codon 399: XRCC1 genotypes 
were determined by polymerase chain reaction restriction 
fragment length polymorphism (PCR-RFLP). An Arg->Gln 
substitution in exon 10 (codon 399) was amplified to form 
an undigested fragment of 242 bp using primers described 
in reference [23]: 5ʼ-CCC CAA GTA CAG CCA GGT C-3  ̓
(forward) and 5ʼ-TGT CCC GCT CCT CTC AGT AG-3  ̓(re-
verse). After an initial denaturation at 94 °C for 4 min, there 
were 35 cycles of 30 s at 94 °C, 30 s at 60 °C, and 30 s at 72 
°C, and then a final extension step of 10 min at 72 °C. PCR 
products were digested with Msp I (Promega, Madison, WI) 
at 37 °C overnight and analyzed on 2% agarose gel. Arg/Arg 
individuals had 94 and 148 bp fragments, Arg/Gln individuals 
had 94, 148, and 242 bp fragments, and Gln/Gln individuals 
had only a 242 bp fragment.

Genotyping of XPD codon 751: XPD genotypes were 
determined by PCR-RFLP. A Lys->Gln in exon 23 (codon 751) 
was amplified to form an undigested fragment of 436 bp using 
primers described in reference [24]: 5ʼ-GCC CGC TCT GGA 
TTA TAC G-3  ̓(forward) and 5ʼ-CTA TCA TCT CCT GGC 
CCC C-3  ̓(reverse). After an initial denaturation at 94 °C for 
3 min, there were 38 cycles of 45 s at 94 °C, 45 s at 60 °C, 
and 60 s at 72 °C, and then a final extension step of 7 min at 
72 °C. PCR products were digested with Pst I (Promega) at 37 
°C overnight and analyzed on a 3% agarose gel. Pst I digestion 
resulted in two fragments of 290 and 146 bp for the wild-type 
homozygotes (Lys/Lys); three fragments of 227, 146, and 63 
bp for the variant homozygotes (Gln/Gln); and four fragments 
at 290, 227, 146, and 63 bp for the heterozygotes (Lys/Gln).

Statistical analysis:  Ages of the patient and the control 
groups were compared with Student s̓ t-test. Chi-square analy-
sis (χ2 tests) was used to compare the gender distribution, test 
the association between the genotypes and alleles in relation to 
the cases and controls, and test for deviation of genotype dis-
tribution from Hardy-Weinberg equilibrium (HWE). A p<0.05 
was used as the criterion of significance. The odds ratio (OR) 
and their 95% confidence intervals (CI) were calculated to 
estimate the strength of the association between polymorphism 
genotype alleles and patients and controls.
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For the total sample size used in this study, we found an 
association with an OR 2.5 or more for acquiring a polymor-
phism could be detected with 80% or more power.

 
RESULTS

 As shown in Table 1, the study included 144 cases with POAG 
and 121 healthy controls. The groups were not statistically dif-
ferent with respect to age (p=0.21) and gender (p=0.40).

The distributions of the XPD-Lys751Gln and XRCC1-
Arg399Gln genotypes were in accordance with HWE among 
the controls (p=0.25, p=0.06, respectively) and the cases 
(p=0.20 and p=0.16, respectively). No statistically significant 
differences were observed in the alleles or in the genotype 

frequencies of the XRCC1-Arg399Gln and XPD-Lys751Gln 
gene polymorphisms between the control group and the pa-
tients with POAG (Table 2).

To explore whether or not a selective effect of polymor-
phisms exist in particular patient subgroups, we also analyzed 
the results by stratifying subjects depending on their age (less 
than or equal to 60 versus >60), IOP (between 21 mmHg and 
28 mmHg, and higher than 28 mmHg), and visual field defects 
(mild, moderate, severe). Statistical analysis revealed no as-
sociation between the alleles or the genotype frequencies of the 
XRCC1-Arg399Gln and XPD-Lys751Gln gene polymorphisms 
and the patient subtypes (>0.05).

 
DISCUSSION

 Oxidative damage to DNA is the seemingly inevitable conse-
quence of cellular metabolism. Elevated levels of oxidatively 
damaged DNA have been measured in numerous diseases 
including many types of cancer, neurologic disorders, coro-
nary heart disease, hepatic diseases, and atopic dermatitis. As 
a result, it has been hypothesized that such damage plays an 
integral role in the etiology of these diseases [25].

ROS-mediated oxidative damage has been shown in the 
pathogenesis of POAG [2,4,5,8]. Oxidative stress also appears 
to be involved in the neuronal cell death affecting the optic 
nerve in POAG [2,3]. ROS can induce base damage, abasic 
sites, single strand breaks, and double-strand breaks in DNA 
[13]. Some studies have reported that oxidative DNA damage 
is significantly increased in the TM of glaucomatous patients 
compared to controls. Also, the existence of a significant cor-
relation between oxidative DNA damage and IOP in glaucoma 
patients has been reported [2-7]. DNA damage in nonreplicat-
ing cells, such as in TM, may trigger apoptosis and death of 
cells that cannot be replaced, thus causing tissue degeneration 
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TABLE 1. DEMOGRAPHIC DATA OF PRIMARY OPEN ANGLE GLAUCOMA 
PATIENTS AND DISEASE-FREE CONTROLS USED IN THIS STUDY

                Glaucoma   Control
                 group      group     p-value
-------------   --------   --------   -------
Number          144        121

Gender                                 0.40
Male, n (%)     70 (49)    66 (55)
Female, n (%)   74 (51)    55 (45)

Age (years)
Mean±SD         61.3±S6.9  59.1±S5.8   0.21
Range           48-79      51-75

A total of 265 Turkish subjects were examined. No significant dif-
ference was observed in respect to gender or age between glaucoma 
(144 patients) and healthy controls (121 patients). Data for age is 
expressed as mean±standard deviation and range of the ages. Data 
for gender is number with percentages in parentheses.

TABLE 2. DISTRIBUTION OF ALLELE AND GENOTYPE FREQUENCY OF XRCC1-ARG399GLN AND XPD-LYS751GLN POLYMORPHISMS IN GLAUCOMA 
PATIENTS AND HEALTHY CONTROLS

                           Controls   Patients
          Gene              n (%)      n (%)       OR (95% CI)      p-value
------------------------   --------   --------   ----------------   -------
XPD
Lys/Lys                    25 (21)    33 (23)    Reference
Lys/Gln                    74 (61)    87 (60)    0.89 (0.46-1.70)    0.82
Gln/Gln                    22 (18)    24 (17)    0.82 (0.35-1.93)    0.77
A (Lys) allele frequency   0.51       0.53
C (Gln) allele frequency   0.49       0.47       1.08 (0.60-1.96)    0.88

XRCC1
Arg/Arg                    34 (28)    56 (40)    Reference
Arg/Gln                    76 (63)    78 (55)    0.62 (0.35-1.10)    0.11
Gln/Gln                    11 (9)     10 (5)     0.55 (0.19-1.58)    0.33
G (Arg) allele frequency   0.60       0.65
A (Gln) allele frequency   0.40       0.35       0.77 (0.41-1.43)    0.46

A two-side χ2 test was used to compare the distribution of the genotypes and alleles between cases and controls. Conditional logistic regres-
sion analysis was performed to calculate the odds ratios (OR) with 95% confidence intervals (CI) for estimating the strength of the association 
between polymorphism genotype alleles and patients and controls. No statistically significant differences were observed in the alleles or in 
the genotype frequencies of the XRCC1-Arg399Gln and XPD-Lys751Gln gene polymorphisms between the control group and the patients 
with POAG.
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[26]. Consistent with this, some studies showed decrease in 
TM cells with age and POAG [27,28].

It has been also reported that IOP increase and severity of 
visual-field defects in glaucoma patients parallel the amount 
of oxidative DNA damage affecting TM [2]. Sacca et al. [4] 
reported that oxidative DNA damage in the human TM may 
represent an important pathogenetic step in POAG because 
it could induce human TM degeneration, favoring an IOP in-
crease, thus priming the glaucoma pathogenetic cascade. Izzotti 
et al. [5] found increased levels of 8-hydroxy-2ʼ-deoxyguano-
sine (8-OH-dG) levels, an indicator of oxidative DNA damage, 
in glaucoma patients and showed an oxidative stress-dependent 
accumulation of DNA damage in the TM region. Interestingly, 
increased 8-OH-dG levels have been found previously to be 
related with XRCC1 polymorphism [29].

POAG typically occurs after the age of 40 years, and its 
prevalence increases with age [5]. The recent hypothesis is 
that common variants SNPs in the population may contribute 
significantly to genetic risk for common diseases including 
age-related disorders. Functional variants of DNA replication 
and repair genes also might be expected to be highly signifi-
cant to cancer and aging [10]. As an example, Duell et al. [30] 
showed that XRCC1 Arg399Gln polymorphism caused more 
markers of DNA damage among older subjects than younger 
subjects.

It has been known for a long time that many primary 
eye diseases, including POAG, have genetic components. At 
least 15 genetic loci have been mapped for POAG [29]. Also, 
polymorphisms of the related genes, a subject of research in 
understanding the pathogenesis of POAG, have been shown 
to have some role in the development of glaucoma [31-34]. 
Polymorphisms of glutathione S-transferases (GST) enzymes, 
being one of the enzymatic antioxidant systems, have been also 
reported to be associated with the development of glaucoma 
[5,35-37].

XRCC1 is a gene that is emerging as an essential ele-
ment in the repair of both damaged bases and SSBs. XRCC1 
has been shown to have a large number of SNPs, several of 
which are being increasingly studied in cancer epidemiology 
investigations and age-related diseases, in part because of their 
relative high frequency in the population [10,38]. A total of 37 
SNPs for XRCC1 have been identified, 14 of which code for 
amino acid change, and four of which have allelic frequencies 
of 3% or greater. Three SNPs, which have been investigated 
epidemiologically, were confirmed at codons Arg280His, 
Arg194Trp, and Arg399Gln, with allelic frequencies of 7, 13, 
and 27%, respectively [10].

Many SNPs in the human XPD gene have also been ob-
served at >1% frequency. About 125 have been found within 
introns, and most of these are probably innocuous, although 
some may change the splicing pattern of primary XPD tran-
scripts [9]. Among these SNPs, common polymorphisms have 
been observed at codons 312 and 751, with allelic frequencies 
ranging from 6% to 34% and from 9% to 3%, respectively [10]. 
Previous studies suggested that the Asp312Asn and Lys751Gln 
polymorphisms in the XPD gene may influence DNA repair 

capacity [17,22]. We therefore investigated the frequency of 
polymorphisms in XPD codon 751 (Lys-Gln) and XRCC1 co-
don 399 (Arg-Trp), which are the most frequent and the most 
commonly studied polymorphisms of these two well-known 
DNA repair genes. We did not find a statistically significant 
association between POAG and the XRCC1-Arg399Gln, and 
XPD -Lys751Gln polymorphisms in this case-control study.

Although there is an apparent divergence among the 
results, earlier studies have reported mainly the relationship 
between cancers and XRCC1-Arg399Gln and XPD-Lys751Gln 
polymorphisms [39-42]. The association of XRCC1 SNPs 
and cardiovascular disease has also received attention [10]. 
At this time, no studies have evaluated the possible relation-
ship between ocular diseases and the polymorphisms of DNA 
repair enzymes.

There may be some explanations regarding the results, 
indicating no relationship between the polymorphisms of DNA 
repair enzymes and the risk of POAG in the current study. 
First, the exposure and interaction of other genes participating 
in DNA damage recognition, repair and cell cycle regulation 
may have altered the effect of XPD and XRCC1 polymorphisms 
[43]. Second, ethnic, genetic and environmental differences 
in allele frequency for the investigated polymorphisms might 
also affect the results in genetic studies. For example, XRCC1 
gene allele frequencies for Arg399 and Gln399 polymorphisms 
were found as 0.60 and 0.40, respectively, in a Turkish popu-
lation [44]. Another study in Turkish population reported the 
frequencies as 0.37 and 0.63, respectively [45]. Results of both 
studies are comparable to our results. On the other hand, Park 
et al. [46] found the frequencies as 0.79 and 0.21, respectively, 
in a Korean population.

Third, different levels of exposure of certain oxidative 
stimuli in different individuals may also have contributed 
to the association between the polymorphisms of the DNA 
repair genes and the risk of diseases, namely POAG. Fourth, 
DNA repair capacity among individuals is variable and it is 
genetically determined. Everyone has a unique combination 
of polymorphic traits that modify susceptibility and response 
to drugs, exogenous and endogenous chemical toxins, and 
carcinogenic exposures. Finally, glaucoma is a multifactorial 
disease. Possible causes of POAG include not only mutations 
of specific genes, but also vascular alterations, toxic effects, 
and mechanical injury induced by elevated IOP [5].

In conclusion, although the sample sizes of the groups of 
patients with POAG and healthy controls were not sufficiently 
large to detect any true differences between the groups, this 
is the first study to evaluate the possible association between 
the DNA repair enzyme genes and POAG development. Our 
results indicate that two well-known DNA-repair enzyme 
polymorphisms are not significantly associated with POAG 
development in the study population. Further studies of the 
precise mechanisms leading to glaucoma development are 
merited.
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