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Abstract

Motivation: Proteins are responsible for a multitude of vital tasks in all living organisms. Given that

a protein’s function and role are strongly related to its subcellular location, protein location predic-

tion is an important research area. While proteins move from one location to another and can local-

ize to multiple locations, most existing location prediction systems assign only a single location

per protein. A few recent systems attempt to predict multiple locations for proteins, however, their

performance leaves much room for improvement. Moreover, such systems do not capture depend-

encies among locations and usually consider locations as independent. We hypothesize that a

multi-location predictor that captures location inter-dependencies can improve location predictions

for proteins.

Results: We introduce a probabilistic generative model for protein localization, and develop a sys-

tem based on it—which we call MDLoc—that utilizes inter-dependencies among locations to pre-

dict multiple locations for proteins. The model captures location inter-dependencies using

Bayesian networks and represents dependency between features and locations using a mixture

model. We use iterative processes for learning model parameters and for estimating protein loca-

tions. We evaluate our classifier MDLoc, on a dataset of single- and multi-localized proteins derived

from the DBMLoc dataset, which is the most comprehensive protein multi-localization dataset cur-

rently available. Our results, obtained by using MDLoc, significantly improve upon results obtained

by an initial simpler classifier, as well as on results reported by other top systems.

Availability and implementation: MDLoc is available at: http://www.eecis.udel.edu/�compbio/mdloc.

Contact: shatkay@udel.edu.

1 Introduction

Proteins are responsible for a multitude of diverse vital tasks in all

living organisms (Rost et al., 2003). Given that a protein’s function

and role are strongly related to its subcellular location, protein loca-

tion prediction is an important research area (Alberts et al., 2002;

Nair and Rost, 2008). Furthermore, the location of a protein helps

understand the protein’s prospective utility as a drug target (Bakheet

and Doig, 2009). Methods for determining protein locations include

experimental as well as high-throughput computational ones. The

experimental methods accurately determine protein locations, but

are typically time consuming and are typically not cost effective for

finding locations for a large number of proteins. Such methods

include mass spectrometry (Dreger, 2003) and green fluorescence

detection (Simpson et al., 2000). On the other hand, the computa-

tional methods are fast, and can potentially predict locations for

proteins whose actual locations have not yet been experimentally

determined. Most of the prediction systems represent proteins using

sequence-derived features and utilize machine learning methods (e.g.

Blum et al., 2009; Emanuelsson et al., 2000; Nakai and Kanehisa,

1991; Shatkay et al., 2007).

Proteins move from one location to another and localize to multiple

subcellular compartments (Murphy, 2010; Pohlschroder et al., 2005).

For instance, the enzyme TREX1, which assists in DNA repair, is
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primarily present in the cytoplasm but is also transported to the nu-

cleus in response to DNA damage (Tomicic et al., 2013). Thus, predict-

ing multiple locations for proteins is important, as protein movement

across locations enables the protein to serve multiple distinct functions.

Nevertheless, all prediction systems mentioned earlier and most current

systems assign only a single location per protein. Since proteins localize

systematically, and translocation occurs only among specific locations

for the purpose of a particular subcellular function, our hypothesis is

that modeling inter-depedencies among locations can assist in predict-

ing locations of proteins more accurately.

Posing the problem using computational, machine-learning

terms, assigning multiple locations to proteins is a multi-label clas-

sification task. Traditional single-label classification assigns a sin-

gle label (location) to each instance (protein), and is addressed by

methods such as Support Vector Machines (Scholkopf and Smola,

2002), naı̈ve Bayes or neural networks (Russell and Norvig, 2010).

Multi-label classification, on the other hand, aims to associate

each instance with possibly multiple classes. Some of the simplest

and commonly used approaches transform the multi-label classifi-

cation task into one or more single-label classification task(s)

(Tsoumakas et al., 2010); such approaches do not capture label in-

ter-dependencies. More sophisticated multi-label classification

approaches attempt to capture label inter-dependencies and in-

corporate them into the classification process. Such multi-label

classification methods have not yet been employed in the context

of protein location prediction.

In this article, we present a new, dependency-based probabilistic

generative model for eukaryotic protein localization, and develop a

multi-location prediction system—which we call MDLoc, to predict

locations of multiply localized proteins. As was done before

(Briesemeister et al., 2010a; King and Guda, 2007; Li et al., 2012),

we use sequence-derived features and Gene Ontology (GO) terms to

represent proteins. Here we introduce a new model using Bayesian

networks to directly address and capture inter-dependencies among

locations. Furthermore, we present the concept of location depend-

ency sets and use a mixture model to represent feature dependency

on location-combinations. The new system uses a generative model

and an iterative procedure for estimating its parameters, and effect-

ively improves the estimation process of multi-locations. Our

method is based on iteratively learning parameters of the location-

Bayesian-network and the mixture model, while re-inferring the lo-

cation estimates of the proteins in each iteration. This improves on

our preliminary system, which comprised a collection of Bayesian

network classifiers, where location inter-dependencies were not

learnt as part of the model but rather captured based on simple esti-

mates of location values (Simha and Shatkay, 2014).

We evaluate MDLoc on a dataset derived from the DBMLoc

dataset (Zhang et al., 2008), which is the most comprehensive pro-

tein multi-localization dataset currently available, using multiple

runs of 5-fold cross-validation. We show that the performance of

MDLoc on multi-localized proteins improves over earlier results for

a top performing system, YLocþ (Briesemeister et al., 2010a). The

improved results obtained by MDLoc demonstrate the advantage of

utilizing location inter-dependencies and feature dependencies on lo-

cations in the prediction process.

The rest of the article proceeds as follows: Section 2 surveys

methods for protein multi-location prediction. In Section 3, we

introduce the concept of location dependency sets and provide rele-

vant notations; we also present our new probabilistic generative

model for protein localization, which captures dependencies be-

tween protein-features and locations. In Section 4, we discuss the

model parameters, the learning procedure used for finding them,

and the inference technique used for predicting multiple protein lo-

cations. Experiments and results are presented in Section 5, followed

by conclusions and future directions.

2 Related work

A number of recent location prediction systems attempt to

predict multiple locations for proteins, however their performance

leaves much room for improvement. While most use sequence-

derived features (e.g. amino acid composition) and GO terms to

represent proteins and to predict protein locations, a few are

based solely on sequence-based similarity. The former class of

methods incorporate one or more of the following classifiers: k-

nearest neighbors (k-NN, Chou et al., 2011), Support Vector

Machines (Li et al., 2012), naı̈ve Bayes (Briesemeister et al., 2010a)

and neural networks (Emanuelsson et al., 2000). KnowPredsite (Lin

et al., 2009) is an example of the latter, similarity based, class of

methods.

Systems that use k-NN adaptations to predict multiple locations

for proteins include WoLF PSORT (Horton et al., 2007), Euk-

mPLoc (Chou and Shen, 2007), iLoc-Euk (Chou et al., 2011) and an

ensemble system (Li et al., 2012). WoLF PSORT outputs for a query

protein the location-combination that is most frequent among the

protein’s k-NN in the training set; the predictions are thus restricted

to location-combinations already present in the set. Both iLoc-Euk

and Euk-mPLoc compute a score for each candidate location, based

on the query protein; iLoc-Euk outputs locations having the highest

scores; the number of locations is the same as that associated with

the query protein’s nearest neighbor in the dataset; Euk-mPLoc as-

signs the protein to locations whose score lies within a certain devi-

ation from the highest score.

All the methods described thus far treat locations as independent

from one another and do not utilize possible inter-dependencies

among locations in the prediction process. A few systems, however,

have tried to make use of location inter-dependencies to predict mul-

tiple locations for proteins. For example, the classifier by He et al.

(2012) attempts to use pairwise location- correlation in the predic-

tion process, but does not use more complex inter-dependencies.

YLocþ (Briesemeister et al., 2010a) introduces a new class for each

location-combination represented in the training dataset and uses a

naı̈ve Bayes classifier to predict a probability distribution over these

new classes. Thus, each classifier prediction is restricted to location-

combinations in the training set. YLocþ’s performance was

evaluated using the most comprehensive protein multi-localization

dataset and is the highest among current multi-location prediction

systems. In our earlier preliminary work (Simha and Shatkay, 2014),

we used a collection of Bayesian network classifiers to predict mul-

tiple locations of proteins. The simplified model used did not incorp-

orate location-interdependencies into the iterative learning process,

but rather utilized one-time estimates of location values to establish

interdependencies. The performance of that classifier was compar-

able to that of YLocþ when using the same dataset, but did not im-

prove on it.

In the next section, we present a new probabilistic generative

model for protein localization that directly incorporates the learning

of location inter-dependencies into the iterative learning process.

Additionally, we introduce the concept of location dependency sets,

which enables us to capture feature dependencies on location-

combinations in a mixture model setting. The resulting system

MDLoc, shows significant improvement, according to all evaluation

metrics, compared with previously reported performance for protein

multi-location prediction.
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3 A probabilistic generative model for protein
localization

As we and others have done before (Briesemeister et al., 2010a;

Garg and Raghava, 2008; Simha and Shatkay, 2014), we represent

each protein P as a weighted feature vector, f
!

P ¼ hf P
1 ; . . . ; f P

d i where

d is the number of features. Let S ¼ fs1; . . . ; sqg be the set of q sub-

cellular components in the cell. Each protein P localizes to at least

one—and possibly more than one—location. The locations of each

protein P are represented by a location indicator vector,

l
!

P ¼ hlP1 ; . . . ; lPq i of 0/1 values, where lPi ¼ 1 if P localizes to si, and

lPi ¼ 0 otherwise. We view each location indicator lPi as a value

taken by a random variable Li and each feature f P
j as a value taken

by a random variable Fj. Given a protein P, represented as a vector

f
!

P, the multi-localization task amounts to assigning a (correct) 0/1

value to each of the entries lPi .

3.1 Modeling location inter-dependency
We use Bayesian networks to model inter-dependencies among sub-

cellular locations. A Bayesian network consists of a directed acyclic

graph G ¼ ðL;EÞ whose set of nodes L corresponds to random vari-

ables and set of edges E indicates dependencies among the variables.

In our case, nodes represent location variables denoted

L ¼ fL1; . . . ;Lqg. Each variable Li corresponds to a location si

within the cell and takes on a 0/1 value. Figure 1 shows an example

Bayesian network we learn over location variables. A directed edge,

for instance, from membrane to cytoplasm represents the assertion

that knowing that a protein localizes to the membrane influences the

level of belief about the protein localizing to the cytoplasm.

According to the conditional independence relationship encoded in

the Bayesian network, each variable Li is conditionally independent

of its non-descendants given its parents PaðLiÞ (for additional details

see Russell and Norvig, 2010). The joint distribution of the location

variables can thus be calculated as:

PrðL1; . . . ;LqÞ ¼
Yq

i¼1

PrðLijPaðLiÞÞ: (1)

3.2 Capturing location-feature dependency
The value of each feature represents a certain characteristic of a

protein, such as the relative abundance of each amino acid in the

protein’s amino-acid composition (King and Guda, 2007). In our ex-

periments, we use the exact same features used by Briesemeister

et al. (2010a), as explained in Section 5.1. For the purpose of pre-

dicting locations for a protein, we view a protein as though it was

generated through a stochastic process, in which each of its feature

values was determined. The value of each feature variable Fj

(1 � j � d) is assigned based on the values taken by one or more

location random variables; that is, each feature value may depend

on multiple locations and not just on one. For instance, consider a

feature capturing the abundance of tryptophan (Trp) residues in the

amino acid composition of a protein; we denote the random variable

associated with this feature by FTrp. The value of this feature varies

greatly between proteins known to localize to the membrane vs.

those that are known to localize to both the membrane and the cyto-

plasm. Specifically, the probability of a membrane protein to have

more than three Trp residues (formally denoted as the conditional

probability: PrðFTrp > 3jLMem ¼ 1Þ), is 0.36 [this high probability

agrees with the well-established importance of Trp’s role in

membrane proteins (Schiffer et al., 1992)]. In contrast, the probabil-

ity of proteins known to be multi-localized to both the membrane

and the cytoplasm to have more than three Trp residues

(PrðFTrp > 3jLMem ¼ 1;LCyt ¼ 1Þ), is only 0.15 (the probability val-

ues are calculated based on the dataset described in Section 5.1).

Thus, the feature value depends on more than a single location

value. To accurately capture the dependency between protein

features and location-combinations, we view each feature value as

depending on a set of location indicator values.

Recall that we view a protein as represented by (i.e. comprised

of) a set of features. As such, we view each possible location of a

protein P as depending on a set of locations to which proteins with

similar feature values (including P itself) are likely to be localized.

We thus introduce the concept of location dependency sets. For a

location si, its dependency set comprises the minimal set of locations

fsi1 ; . . . ; simg such that the likelihood of a protein to localize to si

depends on (i.e is correlated or anti-correlated with) its likelihood of

to localize to each of fsi1 ; . . . ; simg. Using the Bayesian network

framework, we note that a dependency as described above between

the locations sij and si can be represented as a directed edge from the

graph node Lij to Li. Given a Bayesian network that represents

the dependencies among locations in this way, we can thus denote

the location dependency set for each location variable Li as the par-

ents of Li in the Bayesian network. As such, we define q location de-

pendency sets, one set per location,

LS1 ¼ fL1g [ PaðL1Þ; . . . ;LSq ¼ fLqg [ PaðLqÞ; (2)

where PaðLiÞ (1 � i � q) denotes the parents of location variable Li

in a Bayesian network.

Given a Bayesian network G, the steps involved in protein gener-

ation are discussed in the rest of this section. We use a coin-toss

model to set location indicator values, and two die-roll processes to

set feature values. For each feature, one die roll is used to select a lo-

cation dependency set, and another to assign the actual feature

value. We next describe each of the steps in detail.

3.3 Setting location values
As part of the generative process for a protein P, we view the value

of a location indicator lPi (1 � i � q) as set by tossing a coin Ci; if the

coin comes up Heads, the location indicator lPi is set to 1; otherwise

lPi ¼ 0. The probability of Ci to come up Heads is: PrðLi ¼ 1jPaðLiÞÞ.
Values comprising the location indicator vector l

!
P are thus set by

tossing the location-specific coins in a sequence one after the other.

We assume that there is a specific order in which the coins are

tossed. To establish the order, we use a topological ordering of loca-

tion variables in the Bayesian network G denoted as Lt1; . . . ;Ltq,

where each parent in the network appears before its descendant; an

example of such an ordering of nodes based on the network in

Figure 1 is L2;L1;L3;L4;Lq;L5. Consequently, coin Ct1 is tossed

first, and based on its outcome, the location indicator value lPt1 is

set, then Ct2 is tossed and lPt2 is set, and so on, until Ctq is tossed and

lPtq is set.

Fig. 1. An example location-Bayesian-network that we learn. Directed edges

represent dependencies between the connected nodes. The location associ-

ated with each variable is shown below the corresponding node

Protein (multi-)location prediction i367



3.4 Setting feature values
We further view each feature value f P

j ð1 � j � dÞ as selected from

among nj possible distinct values by adhering to the following steps:

1. A dependency set is selected: A location dependency set is chosen

based on a probability distribution over q such sets [see

Equation (2) for the sets definitions]. For each feature Fj, let kFj

be a random variable that takes on the values 1; . . . ; q, where a

value i (1 � i � q) indicates that the ith location dependency set

is selected. We denote the event of selecting the ith set, LSi, by

kFj ¼ i. Given a location indicator vector l
!

(selected in the previ-

ous step), to select a location dependency set, a die D
Fj

l
! with q

faces is rolled. If the die D
Fj

l
! lands with the ith face up, the set

LSi is selected. The probability of D
Fj

l
! to come up as i is:

hl
!
i ðFjÞ ¼ PrðkFj ¼ ij l

!Þ.

2. A feature-value is assigned: Based on the values taken by vari-

ables in a selected location set, the feature value is chosen. Given

that the set LSk was selected, we assume that a die D
Fj

k with nj

faces is rolled to pick a value for feature Fj. If the die D
Fj

k lands

with the vjth face up, the feature value is set to vj. The probabil-

ity of D
Fj

k to come up as vj is: PrðFj ¼ vjjlk;PaðLkÞÞ, where Fj is

the random variable associated with the jth feature.

Based on this model, each feature value f P
j is set independently of

other features to construct the complete feature vector of the protein

P, f
!

P ¼ hf P
1 ; . . . ; f P

d i.
The generative process for a protein P is summarized as shown

in Figure 2: First, the location coins are tossed in the order

Ct1;Ct2; . . . ;Ctq—as shown on the left side of the figure. If the coin

Cti (1 � i � q) comes up Heads, the location indicator lPti is set to 1;

otherwise lPti ¼ 0. Collectively, this results in choosing the location

indicator vector l
!

P. Next, for each feature Fj (1 � j � d), the loca-

tion vector die D
Fj

l
!

P
is rolled; if the die lands with the kth face up,

the set LSk is selected—as shown on the top-right side of the figure.

Based on the selected set LSk, the feature die D
Fj

k is rolled; if the die

lands with the vjth face up, the feature value f P
j is set to vj—as

shown on the bottom-right side of the figure.

We note that our generative model makes the following two in-

dependence assumptions:

1. The feature values f P
1 ; . . . ; f P

d of a protein P, are conditionally in-

dependent of each other given the protein’s location indicator

vector l
!

P, formally:

Prð f
!

Pj l
!

PÞ ¼
Yd

j¼1

Prðf P
j j l
!

PÞ: (3)

While this assumption may oversimplify the underlying biological

mechanisms, it works well in practice and has proven useful before

(Briesemeister et al., 2010a). Moreover, our model carefully accounts

for inter-dependencies among locations, as well as among locations and

features, thus indirectly capturing interdependencies among features.

2. Given the values taken by a location variable Lk and its parents

PaðLkÞ in a selected location dependency set LSk, the feature

value for a protein, f P
j , is conditionally independent of all other

location values, formally:

Prðf P
j jk ¼ k; lP1 ; . . . ; lPq Þ ¼ Prðf P

j jlPk ; PaðLkÞÞ: (4)

Figure 3 shows the protein generation process using the standard no-

tation of a probabilistic graphical model. Nodes represent random

variables and directed edges represent dependencies among vari-

ables. The values of location and feature random variables are gov-

erned by a probability distribution and as such are denoted using

circles. In contrast, the value of each location dependency set vari-

able LSk is assigned deterministically based on the values of the loca-

tion variable Lk and its parents PaðLkÞ, and is denoted as a square.

The variables representing locations, features, and location depend-

ency sets are observed and hence are shown as shaded; the rest of

the variables are latent and are shown unshaded. The latent variable

kFj takes on a value k, indicating the selection of the location set

LSk, with a probability hkðFjÞ. As was shown in Figure 1, edges

among location variables capture inter-dependencies among loca-

tions. The rectangular plate notation is used to represent replication

of feature and location set variables with the same dependencies.

The lack of feature–feature edges captures the conditional indepen-

dencies among features given location sets.

Fig. 2. The generative process for a protein P. First, location coins, Ct1; . . . ;Ctq, are tossed (top left); based on the outcomes, location indicator values, lP
t1; . . . ; lP

tq,

are chosen (bottom left). Collectively, these values make up the location indicator vector l
!

P . For each feature Fj, the die D
Fj

l
!

P
is then tossed to select a location de-

pendency set (top right); based on the selected set LSk, the feature die D
Fj

k is tossed to pick the feature-value f P
j (bottom right)

Fig. 3. The probabilistic graphical model for the generation of protein fea-

tures. Directed edges represent dependencies between nodes. Locations and

features are shown as circles and location sets as squares. Shaded nodes rep-

resent observed variables and unshaded nodes represent latent variables.

The variable kFj takes on a value k, indicating the selection of the set LSk, with

a probability hk ðFj Þ. The rectangular plate notation is used to represent repli-

cation of features and location sets with the same dependencies
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Under the independence assumptions and the structure of our

model described earlier, the joint probability of the location indica-

tor vector l
!

P and the feature vector f
!

P is expressed as:

Prð l
!

P; f
!

PÞ ¼ Prð l
!

PÞPrð f
!

Pj l
!

PÞ ¼

¼
Yq

i¼1

PrðLi¼ lPi jPaðLiÞÞ�
Yd

j¼1

Xq

k¼1

hl
!P

k ðFjÞPrðFj ¼ f P
j jLk ¼ lPk ;PaðLkÞÞ;

(5)

where each term corresponds to a parameter of the generative

model as described below:

a.
Qq

i¼1 PrðLi ¼ lPi jPaðLiÞÞ is the factorization of the joint probabil-

ity Prð l
!

PÞ ¼ PrðL1 ¼ lP1 ; . . . ;Lq ¼ lPq Þ, over the individual q loca-

tion indicator values;

b. PrðFj ¼ f P
j jLk;PaðLkÞÞ denotes the conditional probability of a

feature value f P
j (1 � j � d, where d is the total number of fea-

tures), given the values taken by a location variable Lk and its

parents PaðLiÞ comprising the location dependency set LSk

(under the current model G);

c. hl
!P

k ðFjÞ denotes the probability that the location dependency set

LSk was selected for a given feature Fj and a location indicator

vector l
!

P.

4 Model learning and protein multi-location
prediction

In this section, we introduce the procedure used for learning the struc-

ture and the parameters of our generative model and for predicting

multiple locations for proteins. We present an expectation maximiza-

tion (EM) algorithm to estimate the hidden parameters and explain

the inference technique used for multi-location prediction.

As our goal is to predict multiple locations for proteins, we use

the probabilistic generative model presented in Section 3 to predict a

0/1 value for each location variable Li. To obtain the model, we use

an iterative process (see Fig. 4) in which the structure of a Bayesian

network and the parameters of the generative model [shown in

Equation (5)] are learned. Each iteration consists of first learning a

network structure and estimating its parameters, and following the

learning by performance assessment of the resulting model by using

it to infer the locations of proteins in the training dataset. This pro-

cess is continued until a stopping criterion is met, namely, until the

prediction performance of the learned model on the proteins from

the training-set does not improve between two successive iterations.

Typically the process does not require more than ten iterations to

complete. To measure prediction performance in each iteration, we

use the F1-score metric, which is formally defined later in Section

5.2. We next discuss the procedures used for learning the structure

and the parameters of our model.

4.1 Model learning
In each iteration of the learning process, we obtain a Bayesian net-

work structure of locations using the software package BANJO

(Smith et al., 2006) and estimate the model parameters shown in the

previous section in Equation (5). The initial Bayesian network struc-

ture is learned from protein locations in the training set, and itera-

tively updated to reflect the most-recently estimated locations.

To estimate the model parameters described in components (a)

and (b) of Equation (5), we calculate the maximum likelihood esti-

mates from frequency counts in the training dataset. As for compo-

nent (c) there, the location set probability hl
!
k ðFjÞ for a given location

indicator vector l
!

and a feature Fj cannot be directly computed from

the dataset. We thus use an EM algorithm (Dempster et al., 1977) to

estimate the hidden parameter h
! l
!
ðFjÞ, as described next.

In the E-step, for each protein P and each of its feature values f P
j

in the training set, we compute the probability of a location set LSk

to be used to determine the protein’s feature value as:

Prðk ¼ kjf P
j ; l
!

PÞ ¼
hl
!P

k ðFjÞPrðf P
j jlPk ; PaðLkÞÞ

Xq

k¼1

hl
!P

k ðFjÞPrðf P
j jlPk ; PaðLkÞÞ

: (6)

In Equation (6), for each location indicator vector l
!

P and feature

Fj, the distribution h
!l
!PðFjÞ over q location sets is initialized as uni-

form; thus initially hl
!P

k ðFjÞ ¼ 1=q for all k, ð1 � k � q). The condi-

tional probability, Prðf P
j jlPk ;PaðLkÞÞ, of a feature value f P

j given the

location set LSk (where LSk ¼ Lk [ PaðLkÞ) is initialized to the max-

imum likelihood estimate computed using the training dataset.

In the M-step, we re-estimate all the model parameters. For each

location indicator vector l
!

and feature Fj, the probability of a loca-

tion dependency set LSk is re-estimated as:

hl
!
k ðFjÞ ¼

X

vj

X

fPjl!P¼l
!
; f P

j
¼vjg

PrðkFj ¼ kjf P
j ; l
!

PÞ Prðf P
j j l
!

PÞ

Xq

k¼1

X

vj

X

fPjl!P¼l
!
;f P

j
¼vjg

PrðkFj ¼ kjf P
j ; l
!

PÞ Prðf P
j j l
!

PÞ
; (7)

where vj is a feature value of Fj and k denotes the selection of the de-

pendency set LSk. That is, in the numerator, for each feature, Fj, we

go over all feature values vj that Fj takes, and all proteins in the set

that have this feature value; we sum the probability of having used the

dependency set LSk to generate feature value vj—weighted by the

probability of observing that feature value. The denominator is a nor-

malization factor ensuring that probabilities sum to 1. The probability

of a set LSk to be selected for determining f P
j ; PrðkFj ¼ kjf P

j ; l
!

PÞ, is

calculated in the E-step [see Equation (6)]. Note that hl
!
k ðFjÞ is com-

puted separately for each feature since feature-values are determined

independently of each other during protein generation.

To re-estimate the conditional probability PrðFj ¼ vjjLSkÞ, we

introduce the notation l
!

P
LSk

to denote the restriction of the location

indicator vector l
!

P to only those locations that are members in the

location dependency set LSk. The conditional probability is then cal-

culated as:

PrðFj ¼ vjjLk; PaðLkÞÞ ¼ PrðFj ¼ vjjLSkÞ ¼
X

fPjl!P
LSk
¼l
!

LSk
; f P

j
¼vjg

PrðkFj ¼ kjf P
j ; l
!

PÞPrðf P
j j l
!

P Þ

:
X

vj

X

fPjl!P
LSk
¼l
!

LSk
; f P

j
¼vjg

PrðkFj ¼ kjf P
j ; l
!

PÞPrðf P
j j l
!

PÞ

INITIALIZE 
model structure 
and parameters 

PREDICT locations 
for training proteins 

using recently 
learned model 

UPDATE model structure and 
parameters based on current estimates 

Prediction 
performance 
improved? 

s

Learned 
Model 

YES 

NO 

f

NON

Fig. 4. A summary of our model-learning process. The rectangular boxes rep-

resent steps in the learning process, the diamond indicates checking for a

stopping criterion, and the oval represents the output, which in our case is

the learned model. Directed edges indicate the order among steps
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This re-estimation formula is similar to the one shown in Equation

(7), but taking into account only those proteins in the training

set that are localized to the locations included in the dependency

set LSk.

The process of alternating between the E-step and the M-step is

carried out until convergence is reached, i.e. until changes to the hid-

den parameter values between iterations are no greater than 0.05.

Throughout the estimation process, we use Laplace smoothing to

avoid overfitting, by adding fractional pseudocounts to observed

counts of events (Russell and Norvig, 2010). The smoothing param-

eter (a) is set to 0.5, which is close to the count of rare events and al-

most insignificant compared with counts of frequent ones. We next

present the inference procedure that we use for predicting protein

locations.

4.2 Multiple location prediction
Given a protein P, represented as a feature vector f

!
P, our task is to

predict its location indicator vector l
!

P, i.e. we need to assign a 0/1

value to each of its location indicators lPi ð1 � i � qÞ. Under the

Bayesian network model, this task translates to inferring the value

of the random variable Li, which in turn depends on the values of its

parent nodes PaðLiÞ. We thus infer the values of the location de-

pendency set fLig [ PaðLiÞ. The inference procedure aims to assign

values to Li and to PaðLiÞ such that the conditional probability,

PrðLi; PaðLiÞj f
!

PÞ is maximized.

To infer these values, we follow an iterative process. We start by

initializing all location indicators in l
!

P to 0. For any value-assign-

ment, li to Li, we denote by Pa
!
ðliÞ the values assigned to all parents

of Li. We also denote by Li the current value assignment for all loca-

tion random variables in the network other than Li and PaðLiÞ. In

each iteration, we consider in turn each of the random variables Li.

For all possible value assignments, li, Pa
!
ðliÞ, to Li and PaðLiÞ, re-

spectively, we calculate the conditional probability,

PrðLi ¼ li; PaðLiÞ ¼ Pa
!
ðliÞj f

!
P;LiÞ. The value assignment to Li that

produces the highest probability is the one used as the current esti-

mate for Li. As noted earlier, the process typically requires about ten

iterations to reach convergence.

We next describe our experiments and the results obtained using

the protein generation model.

5 Experiments and results

We implemented our algorithms for learning parameters of the genera-

tive model and for inferring locations using Python. We have applied

our system MDLoc to the largest available dataset of multi-localized

proteins, previously used for training YLocþ (Briesemeister et al.,

2010a). Next, we describe the dataset and the evaluation methods we

use, followed by experiments and results obtained using MDLoc. We

also provide several specific examples demonstrating the utility of

incorporating location inter-dependencies into the prediction process.

5.1 Data
In our experiments, we use a dataset first constructed for an exten-

sive comparison of multi-location prediction systems as part of the

evaluation of YLocþ (Briesemeister et al., 2010a). It contains 5447

single-localized proteins, originally published by Höglund et al.

(2006), and 3056 multi-localized proteins, originally published as

part of the DBMLoc dataset (Zhang et al., 2008). As in a true

prediction scenario it is not known a priori whether a protein may

localize to a single or to multiple locations, we train our system on

the combined set of proteins, thus enabling it to handle the actual

prediction task. The dataset is already homology-reduced, i.e. pro-

teins sharing >80% sequence identity with another protein in the

dataset were removed. We compare the performance of our system

to that of others using only multi-localized proteins (3056 proteins)

because the only results publicly available for the other systems were

obtained on this dataset (Briesemeister et al., 2010a). The single-

localized proteins are from the following locations (abbreviations

and number of proteins per location are given in parentheses): cyto-

plasm (cyt, 1411 proteins); endoplasmic reticulum (ER, 198); extra

cellular space (ex, 843); golgi apparatus (gol, 150); lysosome (lys,

103); mitochondrion (mi, 510); nucleus (nuc, 837); membrane

(mem, 1238); peroxisome (per, 157). The multi-localized proteins

are from the following pairs of locations: cyt_nuc: 1882 proteins;

ex_mem: 334; cyt_mem: 252; cyt_mi: 240; nuc_mi: 120; ER_ex:

115; ex_nuc: 113. Note that all the multi-location subsets used have

over 100 representative proteins. We use the exact same representa-

tion of a 30-dimensional feature vector as used for evaluating

YLocþ (for further details see Briesemeister et al., 2010b): (i) thir-

teen features derived directly from the protein sequence data; (ii)

nine features constructed using pseudo-amino acid composition

(Chou, 2001); (iii) two annotation-based features constructed using

two distinct groups of PROSITE patterns; (iv) six annotation-based

features based on GO-annotations.

5.2 Experimental setting and performance measures
We compare the performance of MDLoc to that of our prelimin-

ary system (Simha and Shatkay, 2014) and to other systems, spe-

cifically, YLocþ (Briesemeister et al., 2010a), Euk-mPLoc (Chou

and Shen, 2007), WoLF PSORT (Horton et al., 2007)

and KnowPredsite (Lin et al., 2009), whose results on the multi-

localized proteins are described in a previously published compre-

hensive study by Briesemeister et al. (2010a). The comparison uses

the exact same dataset from that study, and employs multiple runs

of stratified 5-fold cross-validation. That is, we ran 5-fold-cross-

validation five complete times (25 runs in total), using a different

five-way split each time. The use of multiple runs with multiple

splits helps validate the stability and the significance of the results.

The total training time for our system for the 25 training

experiments is about 8 hours (wall-clock), when running on a

standard Dell Poweredge machine with 32 AMD Opteron 6276

processors.

To formally define the evaluation measures we use, let D be a

dataset containing proteins. For a given protein P, let

MP ¼ fsi j lPi ¼ 1, where 1 � i � qg be the set of locations to which

protein P localizes according to the dataset, and let

M̂
P ¼ fsi j l̂

P

i ¼ 1, where 1 � i � qg be the set of locations that a

classifier predicts for P, where l̂
P

i is the 0/1 prediction obtained for

location si. We use adapted measures of multi-label precision and re-

call denoted Presi
and Recsi

and defined as follows (Briesemeister

et al., 2010a):

Presi
¼ 1

jfP 2 Djsi 2 M̂Pgj
�

X

P2Djsi2M̂P

jMP \ M̂Pj
jM̂Pj

;

Recsi
¼ 1

jfP 2 Djsi 2MPgj �
X

P2Djsi2MP

jMP \ M̂Pj
jMPj :

We also use the adapted measure of accuracy proposed by

Tsoumakas et al. (2010) for evaluating multi-label classification.

Some of these measures have also been previously used for multi-

location evaluation (Briesemeister et al., 2010a; He et al., 2012).
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The multi-label accuracy and the F1-label score used for the evalu-

ation of YLocþ (Briesemeister et al., 2010a) are computed as:

Acc ¼ 1

jDj
X

P2D

jMP \ M̂Pj
jMP [ M̂Pj

and F1-label ¼ 1

jSj
X

si2S

2� Presi
�Recsi

Presi
þ Recsi

:

Finally, to evaluate the correctness of predictions made for each loca-

tion si, we use the standard precision and recall measures, denoted

by Pre-Stdsi
and Rec-Stdsi

and defined as: Pre-Stdsi
¼ TP=ðTPþ FPÞ

and Rec-Stdsi
¼ TP=ðTPþ FNÞ, where TP (true positives) denotes

the number of proteins that localize to si and are predicted to local-

ize to si, FP (false positives) denotes the number of proteins that do

not localize to si but are predicted to localize to si, and FN (false

negatives) denotes the number of proteins that localize to si but

are not predicted to localize to si. The F1-score for location si is

defined as:

F1-scoresi
¼ 2� Pre-Stdsi

� Rec-Stdsi

ðPre-Stdsi
þRec-Stdsi

Þ :

5.3 Classification results
In this section, we compare the performance of our system with that

of existing location prediction systems over the commonly used set

of multi-localized proteins. We also report experiments using the

combined set of single and multi-localized proteins as mentioned in

Section 5.1. Our analysis includes an examination of the per-

location break-up of the results. Additionally, we focus on several

specific examples demonstrating the benefit of incorporating loca-

tion interdependency into our prediction system.

Table 1A shows the F1-label score and the accuracy obtained by

our current system MDLoc compared with those obtained by other

multi-location predictors [YLocþ, Euk-mPLoc, WoLF PSORT and

KnowPredsite as reported by Briesemeister et al. (2010a) in Table 3]

and by our preliminary system (Bayesian network classifiers, denoted

BNCs, Simha and Shatkay, 2014), using the same set of multi-local-

ized proteins and evaluation measures. The table shows that MDLoc

performs better than the existing top-systems, including YLocþ which

has the best performance reported so far and whose predictions are

based only on location-combinations in the training set. In contrast,

MDLoc is not limited to the location-combinations in the training set,

as it represents dependency of features on location-combinations in a

generalizable manner, and directly captures inter-dependencies among

locations. The only other system that attempts to capture such

dependencies is our preliminary system BNCs.

To illustrate the use of interdependency, consider the protein

Securin which is included in our dataset and localizes to both the

cytoplasm (cyt) and the nucleus (nuc). Securin, initially present in

the cytoplasm, translocates to the nucleus in response to DNA

damage (Kim et al., 2007). While MDLoc assigns it to both the cyt

and the nuc, YLocþ assigns it to the nuc only. Our system utilizes

the dependency between nuc and cyt (represented by a directed

edge between the two locations, see Fig. 1) to make an accurate

multi-location prediction. Location dependencies reflect intrinsic

relationships that locations share with each other, and in this case,

it is well-known that proteins shuttle continuously between the nu-

cleus and the cytoplasm to control a variety of functions such as

cell cycle progression (Gama-Carvalho and Carmo-Fonseca,

2001). MDLoc’s benefit from capturing the interdependency be-

tween cyt and nuc is also reflected in its significantly higher

Multilabel-Precision and Multilabel-Recall (Presi
and Recsi

, re-

spectively) for the cyt and the nuc as shown in Table 1B. As an-

other example, consider Protransforming growth factor alpha

(TGF-alpha), a protein that assists in cell growth (See NCBI’s

Gene database, http://www.ncbi.nlm.nih.gov/gene/7039), localizes

to both the extracellular space (ex) and the plasma membrane

(mem), and is correctly assigned by MDLoc to both. Here MDLoc

employs the well-known dependency between the extracellular

space and the plasma membrane, as reflected for instance in the

exocytic trafficking pathway (Tokarev et al., 2000), and in the

transition of proteins such as hsp 90-alpha (initiated by TGF-

alpha) from the extracellular space to the plasma membrane in re-

sponse to stress (Cheng et al., 2008). Again, the value of utilizing

interdependencies is demonstrated in MDLoc’s significantly im-

proved precision in terms of Multilabel-Precision (Presi
) on the ex

and mem proteins (while still retaining a similar level of recall,

Recsi
, to that of YLocþ).

Table 1. Multi-location prediction results, averaged over 25 runs of 5-fold cross-validation, for multi-localized proteins only

(A)

MDLoc BNCs YLocþ Euk-mPLoc WoLF PSORT KnowPredsite

F1-label 0.71 (6 0.02) 0.66 (6 0.02) 0.68 0.44 0.53 0.66

Acc 0.68 (6 0.01) 0.63 (6 0.01) 0.64 0.41 0.43 0.63

(B)

cyt (2374) p-value nuc (2115) p-value mem (586) p-value ex (562) p-value mi (360) p-value

Recsi MDLoc 0.750 (60.012) �0.001 0.776 (60.014) �0.001 0.527 (60.022) 0.01 0.547 (60.035) 0.01 0.519 (60.026) 0.04

YLocþ 0.712 (60.009) 0.728 (60.011) 0.543 (60.018) 0.573 (60.026) 0.536 (60.031)

Presi MDLoc 0.911 (60.008) �0.001 0.929 (60.008) 0.03 0.807 (60.036) �0.001 0.833 (60.044) �0.001 0.832 (60.042) �0.001

YLocþ 0.893 (60.010) 0.924 (60.008) 0.764 (60.029) 0.740 (60.053) 0.765 (60.033)

Rec-Stdsi MDLoc 0.817 (60.021) �0.001 0.746 (60.028) �0.001 0.588 (60.042) 0.04 0.385 (60.058) 0.3 0.388 (60.062) 0.03

YLocþ 0.786 (60.020) 0.684 (60.015) 0.614 (60.042) 0.401 (60.037) 0.429 (60.060)

Prec-Stdsi MDLoc 0.942 (60.009) 0.01 0.904 (60.014) 0.02 0.794 (60.039) �0.001 0.830 (60.046) �0.001 0.784 (60.057) �0.001

YLocþ 0.935 (60.009) 0.914 (60.014) 0.730 (60.047) 0.771 (60.055) 0.670 (60.055)

Standard deviations are shown in parentheses (if available). The highest values are shown in boldface. (A) Overall F1-label scores and overall accuracy (Acc) ob-

tained using our current system MDLoc, our preliminary system (denoted BNCs, Simha and Shatkay, 2014), YLocþ (Briesemeister et al., 2010a), Euk-mPLoc

(Chou and Shen, 2007), WoLF PSORT (Horton et al., 2007) and KnowPredsite (Lin et al., 2009). The four rightmost columns are taken directly from Table 3 in

the article by Briesemeister et al. (2010a). (B) Per location scores: Multilabel-Precision (Presi ) and Recall (Recsi ), as well as standard precision (Pre-Stdsi ) and recall

(Rec-Stdsi
), for each location si, for MDLoc and YLocþ. Results for YLocþ were reproduced using our five-way splits. The p-values indicate the statistical signifi-

cance of the differences between the values obtained from MDLoc and from YLocþ.
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As an example for MDLoc’s ability to handle proteins whose lo-

cation-combination is not included in the training set, consider

Transmembrane emp24 domain-containing protein 7 (emp24). It lo-

calizes to the ER and transports secretory proteins to the golgi com-

plex (gol) (Belden and Barlowe, 1996). (The tables shown do not

include ER and gol proteins, as the number of proteins from either

of these locations in the dataset is very small.) MDLoc assigns

emp24 to both the ER and the gol, whereas YLocþ assigns it to the

ER only. As indicated before, MDLoc makes use of the dependency

which captures the relationship between the ER and the gol, both of

which act as components in the exocytic trafficking pathway

(Tokarev et al., 2000). We thus see that MDLoc is not restricted to

predicting only pre-defined location-combinations.

Table 1B shows the per-location prediction results for multi-

localized proteins obtained by MDLoc compared with those

obtained by YLocþ (Briesemeister et al., 2010a). Per-location predic-

tions for the other systems are not shown here as they are not

publicly available. Results are shown for the five locations with the

largest number of associated proteins. For each location si, we show

Multilabel-Precision (Presi
) and Multilabel-Recall (Recsi

) as well as

standard precision (Pre-Stdsi
) and recall (Rec-Stdsi

). For the cyto-

plasm and the nucleus, which have a large number of proteins, the

precision and recall values obtained using MDLoc are significantly

higher in most cases than those obtained using YLocþ. For locations

with much fewer proteins, while the recall values when using

MDLoc are marginally lower than when using YLocþ, MDLoc’s

precision values are typically significantly higher than those of

YLocþ. We note that YLocþ assigns each protein to all the locations

whose probability exceeds a pre-defined threshold; as such, the

number of locations it assigns exceeds that to which the protein ac-

tually localizes resulting in a lower precision. In contrast, MDLoc

does not simply assign a protein to each location whose probability

is higher, but rather, it simultaneously considers a set of locations

and assigns each protein to the set whose overall probability is high,

leading to a higher precision.

Table 2 shows the per-location prediction results on the com-

bined dataset of both single- and multi-localized proteins obtained

by MDLoc, in comparision to those obtained by BNCs (Simha and

Shatkay, 2014). While MDLoc’s precision values are somewhat

lower than those of BNCs, MDLoc’s recall is typically higher.

MDLoc simultaneously infers the probability of a set of locations; in

contrast, BNCs uses an independent Bayesian network structure to

infer the probability of each location separately. As such, the likeli-

hood of BNCs to correctly assign the combination of several loca-

tions to a protein is much lower than its probability to correctly

assign a single location, which directly translates into a relatively

low recall measure. When using MDLoc, the increase in recall values

for almost all cases is higher than the decrease in the precision val-

ues, except in the case of the extracellular space (ex). Notably, pro-

teins in the extracellular space all originate from or are bound

toward another location within the cell and as such predicting them

as extracellular is challenging for most prediction systems.

Moreover, MDLoc assigns some proteins hitherto known to lo-

calize only to a single location into multiple locations. It is likely

that at least some of these additional predicted locations are indeed

correct and can be the subject of an experimental validation. For in-

stance, Calreticulin (Cal) is currently annotated by SwissProt as

localized to the ER only. However, MDLoc assigns it to both the

ER and the ex, and work by Gold et al. (2010) suggests that it in-

deed relocates from the ER to the ex.

We also examine the statistically significant differences in the

Multilabel-Recall for the location with the highest number of

Table 2. Multi-location prediction results, per location, averaged over 25 runs of 5-fold cross-validation, for the combined set of single- and

multi-localized proteins

cyt (3785) p-value nuc (2952) p-value ex (1405) p-value mem (1824) p-value mi (870) p-value

Recsi
MDLoc 0.825 (60.009) �0.001 0.830 (60.010) �0.001 0.780 (60.020) �0.001 0.822 (60.012) �0.001 0.773 (60.013) �0.001

BNCs 0.795 (60.011) 0.784 (60.017) 0.737 (60.022) 0.780 (60.014) 0.730 (60.025)

Presi
MDLoc 0.819 (60.013) 0.03 0.822 (60.014) 0.02 0.864 (60.020) �0.001 0.872 (60.014) �0.001 0.861 (60.024) 0.001

BNCs 0.809 (60.018) 0.832 (60.013) 0.912 (60.019) 0.900 (60.012) 0.885 (60.023)

Rec-Stdsi
MDLoc 0.867 (60.015) 0.1 0.808 (60.021) �0.001 0.715 (60.030) �0.001 0.842 (60.017) �0.001 0.719 (60.028) �0.001

BNCs 0.861 (60.014) 0.736 (60.031) 0.652 (60.024) 0.805 (60.017) 0.664 (60.034)

Prec-Stdsi
MDLoc 0.854 (60.014) 0.001 0.783 (60.020) 0.6 0.839 (60.028) �0.001 0.882 (60.014) �0.001 0.843 (60.026) 0.001

BNCs 0.840 (60.011) 0.786 (60.026) 0.906 (60.022) 0.900 (60.015) 0.873 (60.034)

The table shows the same measures used in Table 1B obtained over the combined dataset using our current system MDLoc, and using our preliminary system

(denoted BNCs) (Simha and Shatkay, 2014). The highest values are shown in boldface. The p-values indicate the statistical significance of the differences between

the values obtained from MDLoc and those obtained from BNCs. Standard deviations are shown in parentheses.

Table 3. Multi-location prediction results, per location-combination, obtained using one run of 5-fold cross-validation, for multi-localized

proteins only

cyt_nuc (1882) ex_mem (334) cyt_mem (252) cyt_mi (240) nuc_mi (120) ER_ex (115) ex_nuc (113)

Both locations correct MDLoc 1253 (66.6%) 34 (10.2%) 31 (12.3%) 36 (15%) 15 (12.5%) 35 (30.4%) 51 (45.1%)

BNCs 976 (51.9%) 16 (4.8%) 15 (6%) 25 (10.4%) 11 (9.2%) 16 (13.9%) 54 (47.8%)

First location correct MDLoc 1603 (85.2%) 87 (26%) 186 (73.8%) 164 (68.3%) 43 (35.8%) 66 (57.4%) 73 (64.6%)

BNCs 1578 (83.8%) 60 (18%) 174 (69%) 165 (68.8%) 37 (30.8%) 66 (57.4%) 68 (60.2%)

Second location correct MDLoc 1481 (78.7%) 258 (77.2%) 82 (32.5%) 99 (41.3%) 67 (55.8%) 51 (44.3%) 72 (63.7%)

BNCs 1240 (65.9%) 246 (73.7%) 68 (27%) 85 (35.4%) 64 (53.3%) 27 (23.5%) 68 (60.2%)

For each combination, the table shows the number of proteins with correct predictions for both locations, for the first of the two locations, and for the second

of the two locations, using MDLoc and using our preliminary system (BNCs, Simha and Shatkay, 2014). The highest values are shown in boldface.
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multi-localized proteins (cytoplasm, 2374 proteins) and the location

with the lowest number (endoplasmic reticulum, 115 proteins). The

Multilabel-Recall for cytoplasm (Reccyt) increases from 0.80 when

classifying using BNCs, to 0.83 when using MDLoc. Similarly, the

Multilabel-Recall for endoplasmic reticulum (RecER, not shown in

Table 2) increases from 0.64 to 0.69. This analysis demonstrates the

advantage of using MDLoc for predicting protein locations, not just

for locations that have a large number of associated proteins but

also for locations that are associated with relatively few proteins.

Table 3 shows the prediction results obtained using MDLoc in

contrast to those obtained using BNCs (Simha and Shatkay, 2014)

for all location-combinations, using multi-localized proteins only.

For each location combination in the dataset, we show the number

of proteins with correct predictions for both locations, as well as for

the first of the two locations, and for the second, separately. For al-

most all combinations, the number of proteins whose location is cor-

rectly predicted by MDLoc is significantly higher than the

corresponding number when using BNCs. We examine the predic-

tions for the location-combination with the highest number of pro-

teins (cytoplasm and nucleus—1882 proteins) and its constituent

locations (cytoplasm—1411 and nucleus—837 proteins). As can be

seen from the table, the number of multi-localized proteins whose

combined-location is correctly predicted increases significantly from

976 when classifying using BNCs, to 1253 when using MDLoc. The

increase shows that location inter-dependencies learnt using MDLoc

help to improve predictions for multi-localized proteins.

6 Conclusion and future work

We presented a new probabilistic generative model for protein local-

ization based on Bayesian networks and a mixture model, and de-

veloped a system MDLoc, to predict multiple locations for proteins.

MDLoc takes advantage of the location inter-dependencies and lo-

cation-feature dependency to provide a generalizable method for

predicting multiple locations for proteins. Our results demonstrate

the utility of using location inter-dependencies in the prediction pro-

cess, and show that the performance of MDLoc improves over cur-

rent state-of-the-art reported results.

MDLoc significantly improves over our own preliminary method

which used a relatively simple collection of Bayesian network classi-

fiers (Simha and Shatkay, 2014) whose performance was on par

with that of YLocþ (Briesemeister et al., 2010a). In our previous

method, location inter-dependencies were not learnt as part of the

model but rather captured based on simple estimates of location

values. In contrast, MDLoc uses a generative model

comprising Bayesian networks to directly address and capture inter-

dependencies among locations, and a mixture model to represent

feature dependency on location-combinations. We iteratively learn a

Bayesian network over location variables while estimating the loca-

tions using expectation maximization.

Our future work includes exploring alternative ways to learn the

mixture model parameters, to evaluate the model learned in each it-

eration of our current process, and to perform multi-location infer-

ence. We will also conduct experiments testing our system’s

performance on more complex location-combinations. Having a

larger set of multi-localized proteins from plant-, fungi- and animal-

specific organelles will also enable us to explore the possibility of

building a model for each taxonomic group.

As another direction, we will also experiment with features other

than the ones previously used by YLocþ, utilizing multiple data-

sources, which is likely to be more appropriate for representing pro-

teins in the context of multi-location prediction.
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