
1 3

Med Biol Eng Comput (2016) 54:463–473
DOI 10.1007/s11517-015-1331-6

ORIGINAL ARTICLE

Dynamic CT perfusion image data compression for efficient
parallel processing

Renan Sales Barros1,2 · Silvia Delgado Olabarriaga2 · Jordi Borst3 ·
Marianne A. A. van Walderveen4 · Jorrit S. Posthuma1 · Geert J. Streekstra1,3 ·
Marcel van Herk1,5 · Charles B. L. M. Majoie3 · Henk A. Marquering1,3

Received: 22 October 2014 / Accepted: 8 June 2015 / Published online: 24 June 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Keywords  Acute care · CT perfusion · GPU · Lossless
compression · Parallel processing

1  Introduction

CT perfusion (CTP) imaging is used as a diagnostic tool for
initial evaluation of patients suffering from acute stroke [1].
CTP images are acquired by dynamically tracking the pas-
sage of a contrast agent through the cerebral blood vessels
and tissue [2]. Analysis of CTP data enables the assessment
of the severity of the damages caused by stroke. This infor-
mation can be used to choose the most adequate treatment
for the patient [3]. Currently, CTP datasets can be as large
as 3.76 GB, and when dealing with this amount of data, tra-
ditional processing methods are slow and delay the acute
care. Also, these traditional methods are expensive because
of the costs of purchase and maintenance of dedicated soft-
ware and hardware for image processing.

Cloud architectures have emerged as a cost-effective
alternative for medical image processing. Cloud-based
solutions make remote on-demand image processing ser-
vices available for wide use in medical practice. To pro-
vide high-performance processing, cloud architectures
can make use of graphics processing units (GPUs), which
are designed for very efficient parallel processing of large
amounts of data. GPUs were demonstrated being capable
of considerably speeding up medical image processing
applications [4]. Nowadays CPUs are also capable of par-
allel processing. However, CPUs are designed for general
purpose processing, and because of that, the processing
power of a GPU can be superior to the processing power
of a CPU in several applications. GPUs are used in several
common image processing tasks such as filtering and ren-
dering. Thus, it is feasible to assume that the processing

Abstract  The increasing size of medical imaging data,
in particular time series such as CT perfusion (CTP),
requires new and fast approaches to deliver timely results
for acute care. Cloud architectures based on graphics pro-
cessing units (GPUs) can provide the processing capac-
ity required for delivering fast results. However, the size
of CTP datasets makes transfers to cloud infrastructures
time-consuming and therefore not suitable in acute situ-
ations. To reduce this transfer time, this work proposes a
fast and lossless compression algorithm for CTP data. The
algorithm exploits redundancies in the temporal dimension
and keeps random read-only access to the image elements
directly from the compressed data on the GPU. To the best
of our knowledge, this is the first work to present a GPU-
ready method for medical image compression with random
access to the image elements from the compressed data.

 *	 Renan Sales Barros
	 r.salesbarros@amc.uva.nl

1	 Biomedical Engineering and Physics, Academic Medical
Center, University of Amsterdam, Location L0, Meibergdreef
15, 1105 AZ Amsterdam, The Netherlands

2	 Department of Clinical Epidemiology, Biostatistics
and Bioinformatics, Academic Medical Center, University
of Amsterdam, Location B0, Meibergdreef 9,
1105 AZ Amsterdam, The Netherlands

3	 Department of Radiology, Academic Medical Center,
University of Amsterdam, Location B0, Meibergdreef 9,
1105 AZ Amsterdam, The Netherlands

4	 Department of Radiology, Leiden University Medical Center,
Albinusdreef 2, 2333 ZA Leiden, The Netherlands

5	 Department of Radiation Oncology, The Netherlands Cancer
Institute, Plesmanlaan 121, 1066 CX Amsterdam,
The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s11517-015-1331-6&domain=pdf

464	 Med Biol Eng Comput (2016) 54:463–473

1 3

of CTP image data can also take advantage of GPU-based
architectures. However, to benefit from the GPU computa-
tional power, algorithms need to be adapted or developed
from scratch.

The size of CTP data poses challenges for their process-
ing on GPU and on cloud infrastructures. The transfer of
CTP data to cloud architectures can be time-consuming,
which may limit the suitability of cloud applications for
dealing with acute patients. In addition, to perform GPU
computation, a host application is required, and the CTP
data also need to be transferred from the host memory to
the GPU memory. The time spent on the transfers from
host to GPU has a considerable impact on the overall pro-
cessing time. In short, due to the large size of CTP datasets,
the time to transfer the image data limits its application for
remote processing in acute care scenarios.

Data compression techniques can be used to reduce the
CTP dataset size and speed up its transfer to the cloud and
to the GPU memory. Since time is critical in acute situa-
tions, the time required to compress, decompress, and trans-
fer the compressed data should not be larger than the time
required to transfer the uncompressed data. Another impor-
tant constraint is that, in clinical care applications, the com-
pression technique must be lossless because no information
can be removed or modified due to legal regulations.

The time required to execute the complete CTP data
pipeline depends on scanner acquisition, data reconstruc-
tion, preprocessing, etc. Several aspects of this pipeline
are strictly determined by scanner manufacturers. Fig-
ure 1 illustrates which pipeline stages (dark arrows) of the
CTP processing in a GPU-based cloud infrastructure are

affected by our compression method. Initially, the CTP data
are produced at the scanner (A). After that, the CTP data
must be compressed in a terminal (B) before the transfer
to the GPU-based cloud infrastructure (C). While the CTP
data are processed in the cloud infrastructure, several data
transfers between host application memory (D) and GPU
memory (E) can be required.

Ideally, the compression must be done in a machine
capable of GPU processing. However, the compression can
be executed in different computing devices such single-
core CPUs and many-core CPUs.

The main goal of our compression technique is to reduce
the data size for faster transfer and faster GPU processing on
cloud architectures. To achieve this, we introduce a fast and
lossless compression technique that not only speeds up the
transfer of dynamic CTP data to cloud architectures, but also
facilitates their parallel processing on GPUs. This technique
presents a compression time suitable for acute care situa-
tions and produces compressed data that can be processed
on a GPU requiring no decompression of the entire CTP
dataset. In our technique, intensities of an arbitrary voxel
are retrieved from the compressed data using a fixed amount
of instructions independent of the input value or size. This
means that, in terms of computational complexity, determin-
ing the intensity value of a voxel is a constant-time proce-
dure (i.e., checking if a number is odd or even, checking a
constant size lookup table), which is the fastest class of algo-
rithms with computational complexity classified as O(1). To
the best of our knowledge, this is the first work to present a
lossless method for medical image compression with direct
access to the image elements from the compressed data.

CPU

Host Memory

GPU

GPU Memory

(A)

(B)

(C) (D) (E)

Fig. 1   CTP data processing pipeline in a GPU-based cloud infra-
structure: the CTP data are produced at the scanner (A), compressed
in a terminal (B), sent to the GPU-based cloud infrastructure (C).

While being processed, the CTP data can be transferred several times
between host application memory (D) and GPU memory (E)

465Med Biol Eng Comput (2016) 54:463–473	

1 3

2 � Methods

This section describes the characteristics of the CTP data,
presents our compression technique, and discusses the rel-
evant aspects that need to be considered during its imple-
mentation according to the targeted platform. Subsequently,
the configuration of the experiments used to evaluate our
compression technique is described.

2.1 � Characteristics of CTP data

The datasets used in this study consist of 20 dynamic
whole-brain volumes from actual stroke patients. The
scans have 320 slices of 512 × 512 voxels with 16 bits/
voxel, and each acquisition has 24 time steps. The patients
were scanned as part of a Dutch multicenter randomized
trial [5]. Approval of the medical ethical committee was
obtained. All patients or legal representatives signed
informed consent. The volumes are acquired approxi-
mately every 2.5 s during the first 35 s, followed by a
scan every 5 s until 60 s. Subsequently, five volumes are
scanned with a 30-s interval. The size of each volume is
160 MB, and thus the complete dataset has 3840 MB of
data that need to be quickly processed for an initial evalu-
ation of the patient condition. Sometimes, an additional
CTP dataset is produced to evaluate the treatment progress
after around 24 h, resulting in up to 7.5 GB of data per
patient. All the image data are saved according to the digi-
tal imaging and communications in medicine (DICOM)
standard.

Every dataset can be described as I(x, t), which repre-
sents the image intensity at position x at time t. The inflow
and outflow of contrast agent can be observed in all the
brain tissue. However, the intensity values in the largest
part of the brain tissue are expected to vary little over time.
To illustrate this characteristic of the data, Fig. 2 shows
the intensities at xa and xb along time. The intensities at

xa are not strongly affected by the contrast agent. On the
other hand, the intensities at xb are strongly affected by the
inflow and outflow of contrast agent.

Voxel intensities in CT imaging are generally repre-
sented using 16 bits. However, the range of voxel values
over time is smaller than the range that can be represented
by 16 bits. Therefore, fewer bits can be used to repre-
sent exactly the same information by storing the varia-
tion of these intensities instead of their absolute values.
This characteristic is illustrated by using the intensities at
xb as an example. These intensities vary between 46 and
191 HU, so only eight bits are required to represent them
(
⌈

log2(191− 46+ 1)
⌉

= 8). For the voxel at xa, a bet-
ter compression can be obtained because only six bits are
required (

⌈

log2(72− 22+ 1)
⌉

= 6), which represents a
compression ratio of 2.6 compared with the original repre-
sentation using 16 bits.

As observed in Fig. 3, only 6 % of the voxels in that
slice require more than eight bits to represent their inten-
sities variation over time, and a maximum of 11 bits is
required to represent this variation.

The effect of motion artifacts is apparent in Fig. 3,
and for this reason, a higher amount of bits is required
to encode the area around the skull. However, this higher
amount of bits (between 9 and 11 bits) is still considerably
smaller than 16 bits, which are required for the uncom-
pressed image. Furthermore, the motion affects only a
small portion of the image. In general, when motion is
present, there is mainly overlapping of brain tissue with
similar intensity values, which does not result in a higher
amount of bits for encoding the voxel intensities over time.
In short, Fig. 3 illustrates that, due to the characteristics of
the CTP data, the number of voxels that have a large inten-
sities variation over time is rather small. This indicates that
the temporal dimension of the CTP data is a substantial
source of redundancies that can be exploited for compres-
sion purposes.

Fig. 2   Sample slice of CTP
data at the time step 12, and the
intensity values of the voxels at
xa and xb over time. The intensi-
ties values at xa are not strongly
affected by the contrast agent,
and the intensities values at xb
are strongly affected by contrast
agent

0

50

100

150

200

250

0 4 8 12 16 20
vo

xe
l i

nt
en

si
tie

s
(H

U
)

time steps

466	 Med Biol Eng Comput (2016) 54:463–473

1 3

2.2 � Compression algorithm

Our compression technique exploits the time redundancy
explained above. Let I(x, t) represent the uncompressed
image intensity, where x indicates a 3D coordinate and t
indicates a time step between 0 and n − 1. In compressed
form, the image is represented as

with

and

For simplicity, we use

The set of values Dx given by

do not present a large variation, so fewer bits can be used to
represent them. The exact number of bits required to repre-
sent Dx is given by:

Thus, Dx is stored by using

bits.
In a sequential processing unit, the voxels are com-

pressed one by one, and the time required to compress a
single voxel is proportional to n because n computations

I(x, t) = C(x)+∆(x, t)

minVx � C(x) � maxVx

Vx = {I(x, t0), I(x, t1), . . . , I(x, tn−1)}.

C(x) = minVx

Dx = {∆(x, t0),∆(x, t1), . . . ,∆(x, tn−1)}.

⌈

log2(maxVx −minVx + 1)
⌉

.

⌈

log2(maxVx −minVx + 1)
⌉

× n

are required to determine Dx, min Vx, and max Vx. Thus,
when executed sequentially, the computational complexity
of our algorithm is m × n where m is the number of voxels
in the dataset.

However, the compression of all the voxels is independ-
ent, and consequently, it can be done in parallel. During the
compression of a voxel, the computations to calculate Dx
are independent, and they can also be parallelized. More-
over, when using parallel processing, min Vx and max Vx
can be calculated in a time proportional to log 2n through
parallel reduction [6]. In a parallel implementation, the
most expensive computations required by our algorithm
correspond to finding min Vx and max Vx. Consequently, in
terms of computational complexity, our algorithm can com-
press a CTP dataset in a time proportional to log 2n when
running in parallel.

To retrieve the value of I(x, t), a sum needs to be per-
formed: C(x)+∆(x, t). By using fixed size arrays to store
∆(x, t) and C(x), I(x, t) can be retrieved in constant time.
The data stored using less bits, which is ∆(x, t), do not
need to be modified. Thus, in our method, I(x, t) is deter-
mined using a single sum of values that can be retrieved in
constant time.

2.3 � Implementation

The efficiency of our compression method is strongly
dependent on the efficiency of the data structures used in its
implementation, in particular for C(x) and ∆(x, t).

∆(x, t) is an element of the set Dx. All the elements in a
set Dx are represented using the same number of bits. For
instance, by considering the voxels at xa and xb in Fig. 2,
six and eight bits are required to represent the elements

13-14 bits

11-12 bits

9-10 bits

7-8 bits

5-6 bits

3-4 bits

1-2 bits

0 bits

15-16 bits

56
26

1
0 0 0 18

8
37

13
2

11
39

18
24

82
6

14
06

7
96

94
56

60
39

8
0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

nu
m

be
r o

f v
ox

el
s

bits

Fig. 3   Number of bits required to represent the variation of voxel
intensities over time in the selected slice. The effect of motion arti-
facts is visible, and for this reason, a higher amount of bits is required
to represent the area around the skull. Nevertheless, this higher
amount of bits (9–11 bits) is considerably smaller than the original

16 bits that are used by the uncompressed data. Furthermore, the
motion affects only a small portion of the image. Only 6 % of the
voxels require more than eight bits to represent their intensities vari-
ation over time

467Med Biol Eng Comput (2016) 54:463–473	

1 3

in Dxa and Dxb
 respectively. Thus, because n = 24 in our

datasets, Dxa requires 24 × 6 = 144 bits, and Dxb
 requires

24 × 8 = 192 bits to be represented. Because the amount
of bits required to represent each Dx set varies, it is not pos-
sible to use a single fixed size array to store all the different
Dx sets in memory.

Current computers are not capable of addressing mem-
ory blocks of an arbitrary amount of bits. Thus, all the Dx
sets are contiguously stored in a fixed size array of 32 bits
elements named D. A maximum of two elements from D
need to be accessed to store and retrieve a particular ∆(x, t)
using a fixed amount of bit shift operations. The computa-
tional cost of these operations is constant, so they do not
increase the computational complexity of reading and stor-
ing the values in D.

An offset is provided to determine where a Dx begins in
the array D. All the offsets are stored in a fixed size array
of 32 bits elements named O. Another fixed size array of
eight-bit elements, named B, is used to store how many bits
are used to represent the elements in Dx. In this way, differ-
ent elements in Dx can be distinguished. The offsets can be
quickly calculated by traversing B. However, O is provided
to keep instant access to any Dx in D. Finally, an array of
16-bit elements, named C, is used to store all the C(x) val-
ues. The elements of C have 16 bits because they contain
original intensity values from the 16-bit voxels. Figure 4
illustrates the data structures used in our implementation.
The size of the resulting compressed data is the sum of the
sizes of the arrays C, O, B, and D.

Three different implementations of our dynamic image
compression for parallel processing (DICOPP) were
developed:

•	 DICOPP CPU—a parallel implementation compressing
the voxels using multiple threads in a many-core CPU
and using a sequential method to calculate min Vx and
max Vx;

•	 DICOPP CPU PR—another parallel implementation
targeted for a many-core CPU using multiple threads to
calculate min Vx, and max Vx through the parallel reduc-
tion method; and

•	 DICOPP GPU—a parallel implementation running on
the GPU and calculating min Vx and max Vx sequen-
tially.

During the implementation, we observed that using par-
allel reduction to calculate min Vx and max Vx on the GPU
requires a more complex organization of the data in the GPU
memory, which slows down the memory operations and
results in an inefficient GPU implementation. For this reason,
this alternative was abandoned. Also, only 24 values need to
be evaluated to calculate min Vx and max Vx, and at this scale,
the benefits of using parallel reduction are not noticed.

Our implementations use the .NET framework ver-
sion 4.0 [7] and C# [8] as programming language. These
technologies were chosen because our implementations
need to be integrated in an existing platform for medical
image processing based on .NET. Our implementations

Input: + + +…+

Output:
C

B

32 bitsD

O

Fig. 4   Data structures used in the implementation. B is a constant
size array of 8-bit elements that stores the amount of bits used to
encode the intensity values of a voxel. C is a constant size array of

16-bit elements used to store all the C(x) values. D is a constant size
array of 32-bit elements used to store all the Dx sets. O is an offset to
determine where a set Dx begins in the array D

468	 Med Biol Eng Comput (2016) 54:463–473

1 3

use Fellow Oak DICOM (FO-DICOM) for .NET version
1.0.36 [9], which is a high-performance API for handling
DICOM files. For the GPU computations, OpenCL 1.1 [10]
was used. OpenCL is a framework for the development and
execution of programs across platforms consisting of dif-
ferent types of processors such as CPUs, GPUs, digital sig-
nal processors, field-programmable gate arrays. OpenCL.
NET version 2.2.9 [11] was used to integrate OpenCL with
.NET. OpenCL.NET is a library that wraps the original
OpenCL 1.1 API for .NET.

2.4 � Evaluation setup

All the compression techniques that are incorporated in
the DICOM format were selected for comparison with our
method. However, according to the DICOM specification,
MPEG2 and MPEG-4 compressions are inherently lossy,
and for this reason, they were excluded of our comparison.
JPEG 2000 lossless was also excluded from our compari-
son because it is much slower than the other methods, with-
out a considerable better compression ratio. Consequently,
only the following techniques from the DICOM standard
were used in our experiments:

•	 JPEG lossless, more precisely the JPEG process 14
(first-order horizontal prediction [selection value 1],
DPCM, non-hierarchical with Huffman coding);

•	 JPEG LS lossless; and
•	 Run-length encoding (RLE).

Very efficient low-level implementations of the tech-
niques from the DICOM standard were used in our compar-
ison. For JPEG and JPEG 2000, an open-source C library
named FreeImage [12] was used. Regarding JPEG LS, an
open-source and optimized C++ library named CharLS
[13] was used. Finally, for the RLE compression, the C++
implementation provided with the FO-DICOM library was
used. Regarding our method, the three implementations
described in Sect. 2.3 were used in our comparison.

All the selected techniques from the DICOM standard
were used only to perform 2D compression, and as a result,
they were used to independently compress all the slices
in a CTP dataset. These techniques are not designed to be
executed in massively parallel architectures. Thus, to pro-
vide a fair comparison of the compression time with our
implementations, which were designed for these architec-
tures, the compression of all slices were divided equally
among the CPU threads available by a multithread applica-
tion. In this manner, the thread overhead was minimized,
and the usage of the CPU for the compression task was
maximized. Regarding our method, the same approach was
used in our CPU implementations, i.e., use all the avail-
able CPU threads and distribute load equally. In the GPU

implementation, the compression time includes the time
required by the transfers between the host application and
the GPU device.

Ideally, GPU implementations of the other compression
techniques should be used for the comparison. However, to
the best of our knowledge, there is no GPU implementa-
tion available for these methods. For JPEG, there are many
GPU-based codecs, but none of them presents the lossless
compression mode.

To compare the time to access the decompressed data,
intensities of all time steps of 320 voxels in 320 slices were
retrieved sequentially in an application running on the CPU
and accessing the compressed data in the host application
memory. Our method does not require complete decom-
pression of a CTP dataset, and in this manner, accessing the
decompressed value of a single voxel is a straightforward
way to compare the decompression performance of the
evaluated methods. The compressed data produced by the
three different implementations of our method are identi-
cal; therefore, reading time was computed only for one of
the results.

To evaluate the impact of the number of processing units
in the compression time of our method, the DICOPP CPU
implementation was executed using from 1 up to 6 threads.
The maximum of six threads was defined because this is
the number of independent processing units available in the
hardware configuration used (see Table 1).

The main goal of our compression technique is to ena-
ble faster transfer to cloud architectures. To evaluate this,
the total transfer time of each compression method used
in our comparison was computed. This time is calculated
by adding: the compression time, the time to transfer the
compressed data, and the time to read the compressed data.
The time to transfer the compressed data was calculated
by considering the theoretical transfer rate of the follow-
ing network standards: OC-3/STM-1 [14], OC-12/STM-4
[14], 1000BASE-T [15], and OC-48/STM-16 [14], or 155,
622, 1000, and 2400 Mbps, respectively. 1000BASE-T is a

Table 1   Hardware configuration used to execute the compression
methods evaluated in our experiments

CPU name Intel Xeon E5-2620

CPU clock 2.00 GHz

CPU cores 6

CPU threads 12

RAM memory 64 GB

GPU name GeForce GTX TITAN

GPU driver version 331.65

GPU cores 2688

GPU clock 836 MHz

Dedicated video memory 6 GB GDDR5

469Med Biol Eng Comput (2016) 54:463–473	

1 3

standard for gigabit Ethernet networks. The other standards
specify the transmission bandwidth for digital signals that
can be carried on fiber-optic networks.

Our compression technique enables GPU processing
directly from the compressed data. By processing the com-
pressed CTP data, less data need to be transferred between
host and GPU. This feature can speed up the total GPU
processing time considerably because, in some applica-
tions, most of the time in a GPU computation is spent on
data transfers. In order to evaluate the GPU processing time
improvement, a GPU application that creates a mask from
the CTP data was developed. The mask, which is defined
by the double threshold 0–15 HU, is part of a noise reduc-
tion filter for dynamic CTP data described in [16]. In our
evaluation, the developed GPU application computes this
mask in two different ways: using the uncompressed data
and using the compressed data generated by our method.
In both ways, the time to compute the mask is measured
including the time spent by the transfers between host and
GPU.

All the evaluations described in this section were per-
formed in the same hardware configuration (see Table 1)
using Windows 7 Enterprise 64 bits as operating system.
For all the time measurements, the high-resolution timing
counters provided by the Win32 API were used.

3 � Results

Table 2 shows the performance results of the evalu-
ated compression techniques applied to 20 CTP datasets
described in Sect. 2.1. The DICOPP CPU PR implementa-
tion achieved a better compression time than the DICOPP
CPU implementation in 85 % of the executions. As men-
tioned in Sect. 2.3, the CTP datasets time dimension is too
short to substantially benefit from parallel reduction for
computing min Vx, and max Vx.

In our evaluation setup, all the data are transferred to
CPU memory before being accessed or decompressed.
Thus, all the reading and decompression operations are
executed only in the host application. The reported time

corresponds to the reading time of only 320 × 24 voxels,
and not to the entire CTP dataset. Our method does not
require full decompression of a dataset, and because of
this, it achieved a read time many times lower than the best
result from the other methods.

JPEG 2000 lossless took 132 and 470 s to compress and
read the compressed data of a single CTP dataset. This is
more than six times slower than the results in Table 2.

The number of processing units used to execute our
compression method has a major impact in its compres-
sion time. To illustrate this, Fig. 5 shows the compres-
sion time obtained by using different number of threads
for compressing 20 CTP datasets using the DICOPP CPU
implementation. The standard deviations of the compres-
sion time of the executions using from 1 to 6 threads are,
respectively, 14.27, 7.30, 5.76, 4.32, 3.83, and 2.86 s.

Table 3 shows the total transfer time (compression
time + time to transfer compressed data + decompres-
sion time) for the 20 CTP datasets using the maximum
transfer rate of four different types of network. As a refer-
ence, the first row of Table 3 shows the only the transfer
time of an uncompressed dataset. DICOPP GPU achieved
the lowest transfer time in all the network types listed in

Table 2   Compression time, reading time, and compression ratio for 20 datasets (mean ± SD [min., max.]) using different compression meth-
ods. The best results are underlined

Compression method Compression time (ms) Reading time (ms) Compression ratio

JPEG LS 09911 ± 0398 [08879, 10806] 58267 ± 2546 [49924, 62052] 4.64 ± 0.29 [4.14, 5.55]

JPEG 14552 ± 0742 [12234, 16095] 43443 ± 1791 [37033, 44997] 2.09 ± 0.16 [2.74, 3.55]

RLE 09679 ± 0947 [08286, 11110] 15554 ± 0634 [13468, 16669] 2.31 ± 0.10 [2.12, 2.66]

DICOPP CPU 20350 ± 2602 [14157, 24239] 0.15 ± 0.36 [0, 1] 2.20 ± 0.17 [1.95, 2.75]

DICOPP CPU PR 17718 ± 1413 [14934, 20712]

DICOPP GPU 05944 ± 0711 [04826, 07873]

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6

tim
e

(s
)

threads

max mean min

Fig. 5   Maximum, mean, and minimum times (vertical axis) spent to
compress 20 CTP datasets by using different number of threads (hori-
zontal axis)

470	 Med Biol Eng Comput (2016) 54:463–473

1 3

Table 3. However, in networks slower than the ones listed
in Table 3, JPEG LS achieves a better transfer time because
it has a better compression ratio. In faster networks, it takes
longer to compress and transfer the data than to transfer the
original data without compression.

Regarding the GPU processing time, the GPU process-
ing of the mask using the original and the compressed data
took 2818 ± 382 [2664, 4392] and 1903 ± 186 [1712,
2668] milliseconds, respectively. Accordingly to these
results, the GPU processing using the compressed data
was, on average, more than 30 % faster than the processing
of the original data.

4 � Discussion

The compression time of the DICOPP GPU implementation
is notably faster than the other methods. Even simple algo-
rithms, such as RLE running in parallel, are around 1.6 times
slower than the DICOPP GPU implementation. Note that the
implementations of our method used more abstraction lay-
ers than the other implementations used in the comparison.
For instance, memory management in .NET applications is
different from low-level applications, and this can result in
a slower execution time when compared with C or C++
applications, which is the case of the other methods. How-
ever, despite the higher level of abstraction, the compression
time of our CPU implementations is approximately only 5 to
10 s slower than the other methods.

As expected, our method presents negligible times to
read the voxel intensities from the compressed data, as
illustrated in Table 2. This is possible because our method
is the only to provide direct access to the voxel intensities.
The random access to voxel values has many advantages,
and it enables the application of several imaging operations
to the entire image data in the compressed form. Because
of this direct access, operations such as local filtering and

threshold-based segmentations can be performed without
decompression. By doing this, our method saves memory
(the compressed data are processed) and processing time
(the decompression step is skipped). The direct access to
voxel values provided only by our method also speeds up
the GPU processing. This is possible because our method
reduces the amount of data that need to be transferred
between host application and GPU, which is also a com-
mon bottleneck in GPU-based computing. As presented in
Sect. 3, the GPU computation of a mask from the CTP data
was speeded up more than 30 % by using the compressed
data produced by our method. We must highlight that
exactly the same instructions were executed in the com-
pressed and uncompressed representations of the CTP data.
This speedup is only possible because of the direct access
to the voxel values from the compressed data on the GPU.

As previously stated, the main goal in acute care is to
provide fast results, and as observed in Table 3, the imple-
mentations of our method achieve better transfer times
than all the others. In networks slower than 100 Mbps,
our method was overcome by other compression methods.
However, it is reasonable to assume that current cloud infra-
structures provide connections with speeds that are higher
than 100 Mbps. In fact, most of the current cloud provid-
ers offer direct connections up to 10 Gbps. For instance,
Microsoft Azure [17] offers connections from 200 Mbps
up to 10 Gbps, and Amazon Web Services [18] offers con-
nections from 50 Mbps up to 10 Gbps. In these very fast
connections, transferring the uncompressed data is faster
than transferring the compressed data. However, these very
fast connections are expensive and priced according to the
offered speed. This means that our method enables a cost-
effective usage of these connections. Our method can also
reduce the GPU processing time of the CTP data. Because
of this feature, our method not only contributes for a faster
analysis of CTP data, which is crucial in acute stroke cases,
but also to cheaper analysis on pay-per-use infrastructures.

Table 3   Total transfer time (in s) for 20 datasets compressed by different methods and using different network speeds (mean ± SD [min.,
max.])

The total transfer time is the sum of the compression time, time to transfer the compressed data, and the decompression time. The first row
shows the transfer times of an uncompressed CTP dataset. The data transfer times were calculated based on the theoretical transfer rate of the
network standards: OC-3/STM-1 [16], OC-12/STM-4 [16], 1000BASE-T [28], and OC-48/STM-16 [16]. Respectively, these transfer rates are:
155, 622, 1000, and 2400 Mbps. The best results are underlined

OC-3/STM-1 (s) OC-12/STM-4 (s) 1000BASE-T (s) OC-48/STM-16 (s)

Original Data 207.82 51.79 32.21 13.42

JPEG LS 113 ± 5.3 [096, 122] 79 ± 3.2 [68, 84] 75 ± 3.2 [64, 79] 71 ± 3.0 [61, 75]

JPEG 127 ± 5.4 [107, 134] 75 ± 3.0 [63, 78] 68 ± 2.7 [58, 71] 62 ± 2.5 [53, 64]

RLE 115 ± 4.7 [100, 123] 47 ± 1.9 [41, 50] 39 ± 1.6 [34, 41] 31 ± 1.4 [27, 33]

DICOPP CPU 115 ± 7.9 [089, 127] 44 ± 3.5 [32, 48] 35 ± 3.0 [25, 38] 26 ± 2.7 [19, 30]

DICOPP CPU PR 112 ± 7.4 [090, 123] 41 ± 2.5 [33, 45] 45] 32 ± 2.0 [26, 36] 36] 23 ± 1.6 [19, 27]

DICOPP GPU 100 ± 6.9 [080. 111] 29 ± 1.9 [23, 32] 20 ± 1.3 [16, 22] 12 ± 0.8 [09, 14]

471Med Biol Eng Comput (2016) 54:463–473	

1 3

Thus, regarding the processing pipeline of CTP data on
GPU-based cloud infrastructures, our compression method
enables fast transfers and fast GPU processing, which con-
sequently results in reducing costs and providing the faster
image processing required when dealing with acute stroke
patients.

Our compression technique was developed to be exe-
cuted in massively parallel architectures. Thus, it is pos-
sible to achieve faster results when using more parallel
processing units (see Fig. 5). Also, as observed in Table 3,
our compression technique is the only one that enables
reducing transfer times in fast data connections because
of its fast compression and because it does not require a
decompression step prior to processing. Because of these
characteristics, our compression technique is better suited
for future computational infrastructures than the other com-
pression techniques evaluated, since it can benefit from
massively parallel processing and fast data connections. We
must emphasize that, if ignoring the cost aspect, there are
connections speeds currently available that are fast enough
to be used for transferring uncompressed CTP data. How-
ever, with more powerful parallel processing devices, our
method can become beneficial even with these connection
speeds. Thus, because of these trends, we believe that our
method is beneficial not only in current cloud infrastruc-
tures but also in the upcoming cloud infrastructures.

The compression ratio of our method is inferior to the
compression ratio of the other methods. To improve our
compression ratio, different preprocessing operations
could be applied. However, this preprocessing can make
the execution of our compression technique considerable
longer. To avoid that, the CTP processing pipeline has to
be carefully analyzed to identify whether the adoption of
preprocessing steps will effectively result in a faster data
transfer, which is the main goal of our work. For instance,
usually the CTP analysis requires the application of a noise
reduction filter. In a new pipeline configuration, this noise
reduction can be done before the compression in order to
achieve a better compression ratio. Noise reduction may
also improve the compression ratio of our method because
noise strongly influences the variation of the voxel values
over time. It is expected that thick slices have less noise,
and it may result in better compression ratios. A detailed
study to assess the effects of different noise levels in the
performance of our compression method can be performed.
However, in this paper, we focused on the evaluation of our
compression method in the image data that are generated in
clinical practice.

Apart from noise, motion artifacts can also affect the
compression ratio of our method. Again, a possible solu-
tion is a preprocessing step for motion correction before
the compression step [19]. However, this will result in

increasing processing time. We evaluated our method in
actual patient data, which included motion artifacts, and as
shown in Fig. 3, the effects of motion do not have a strong
impact on our compression ratio. Motion does not affect
the compression ratio of our method considerably because,
in different time frames, different types of tissue rarely
overlap, and thus constant geometrical locations still have
similar intensity values. The only exceptions are the areas
around the skull, which are a small portion of the image
data. However, even in these areas, the amount of bits
required to represent the compressed data are still consid-
erably smaller than the original amount of bits used in the
uncompressed data.

Perhaps, the most effective preprocessing step that could
be applied is a simple threshold segmentation and removal
of useless data (i.e., the air around the patient). Never-
theless, we focused in evaluating our method in original
patient data. An extensive analysis of the different tech-
niques that can be combined with our compression method
was beyond the scope of this study.

Our goal was to provide a compression technique to be
used in a specific clinical practice rather than to be used
as a general compression technique. In clinical practice,
we are dealing with large datasets that are very precisely
defined (±24 time steps of approximately 320 slices of
512 × 512 pixels of 16 bits) and that are well accepted
worldwide. Since CTP acquisitions are performed tens of
thousands times per year, we believe that a specific and
applied compression technique is worth studying. Although
our technique is applied to and focused on CTP data, we
believe that any other medical image time series could be
potentially suited for compression by our algorithm. For
example, all the medical images used in the experiments
described in [2] have the necessary characteristics to be
exploited by our compression algorithm, which is a small
variation of voxel values over time.

4.1 � Related work

Previous works also explored the redundancies in the tem-
poral dimension of medical image data for compression
purposes. The work presented in [20] calculates the dif-
ferences between two contiguous images from a medical
image time series and store these differences using eight
bits when this is possible. When this difference can-
not be expressed using eight bits, the original 16 bits are
used. Because of this approach, the theoretical maximum
compression ratio achieved by this method is 2. In this
method, to retrieve the intensities from a particular time
step, it is necessary to decompress all intensities from the
previous time steps. The main differences between this
and our method are: our method achieves compression

472	 Med Biol Eng Comput (2016) 54:463–473

1 3

ratios greater than 2, and in our technique, any arbitrary
image intensity in the four-dimensional space can be
retrieved independently with a constant computational
complexity.

Other compression techniques explore the effect of
motion in 4D medical images. Motion is a feature espe-
cially present in 4D cardiac images. In the context of
exploring motion for compression purposes, [21] proposed
a technique based on the combination of a predictive image
compression and a motion compensation technique. The
work presented in [22] evaluates the motion in 4D medi-
cal images for compression purposes using motion fields
that produce input parameters for a neural network used
for motion estimation. [22] combines motion analysis with
segmentation, block matching, and expert knowledge, to
develop a framework for 4D medical compression. The
authors of [23] apply recursively a multiframe motion com-
pensation process that employs 4D search, variable block-
sizes, and bidirectional prediction for reducing redundan-
cies in spatial and temporal dimensions. All these three
techniques were developed for achieving high compression
ratios, and because of their complexity of compression
and decompression, they are not well suited for the fast
processing as required in acute care situations. Also, dif-
ferently from our technique, they require a decompression
step before processing.

Another common approach is to adapt or use exist-
ing sound, image, or video compression techniques for
4D medical image data. However, most of these compres-
sion techniques, like MPEG-2 and MPEG-4, are lossy
and, for this reason, cannot be used in the same context as
the proposed technique. Regarding lossless compression,
the authors of [24] proposed a technique for 4D medical
images based on the H.264/AVC standard for video com-
pression. Again, this compression technique was designed
to achieve high compression ratios, being too complex for
producing fast response.

In CTP data, any particular voxel can be considered as
an independent time series. Time series compression tech-
niques can be applied independently for each voxel. How-
ever, most time series compression techniques are funda-
mentally lossy [25] and consequently cannot be used for
the purposes of this study.

Regarding the lossless compression of time series, cur-
rent techniques focus on the compression of long time
series and are based on very complex models [26–29]
that may even require the usage of a database for predic-
tion purposes [28]. Because these techniques are developed
for compressing long time series, it is not feasible to use
them in CTP datasets, which present only 24 time steps. To
illustrate this problem, the smaller model mentioned in [29]
requires 192 bits only to store the initial conditions of the

model equations describing a time series. This represents
half of the size of entire time series of a particular voxel in
CTP datasets (24 × 16 bits). The lossless time series com-
pression can be also based on features that are not available
in CTP datasets, such as multichannel [30] or multispectral
information [31]. In short, the usage of state-of-the-art loss-
less time series compression in the time series from CTP
datasets would not be effective because of the short length
of these time series.

5 � Conclusion

In this paper, we presented a new method to compress CTP
data that take advantage of data redundancy in the time
dimension. The proposed algorithm reduces the image size
by using fewer bits to represent data that do not vary much
along time. This method focuses on providing faster trans-
fer of CTP data to GPU-based cloud infrastructures; there-
fore, a balance between compression ratio and compression
time has been pursued, which is different from many com-
pression methods which pursue good compression ratios.
Our algorithm was designed for massively parallel archi-
tectures, and it is well suited for many-core CPU or GPU
execution.

The proposed method was applied to 20 datasets and
obtained the faster results compared to the lossless com-
pression techniques adopted in the DICOM standard,
despite its inferior compression ratio.

The resulting data representation offers direct random
access for subsequent GPU processing, which is a feature
not found in the other compression methods. Because of
this, our time for retrieving information from the com-
pressed data is negligible. This feature also makes it pos-
sible to reduce the time to transfer CTP data between host
application and GPU because only the compressed form of
the CTP data needs to be used in these transfers. Conse-
quently, the GPU processing of CTP data can be speeded
up when using the data in compressed form.

Currently, different ways to improve the compression
ratio of our method are being investigated. This investiga-
tion focuses on the usage of fast techniques for noise reduc-
tion, motion identification, and segmentation of mean-
ingless image elements. All these techniques need to be
compatible with current clinical practices adopted when
analyzing CTP data.

Acknowledgments  This work has been funded by ITEA2
10004: Medical Distributed Utilization of Services & Applications
(MEDUSA).

Conflict of interest  The authors declare that they have no conflict
of interest.

473Med Biol Eng Comput (2016) 54:463–473	

1 3

Open Access  This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

	 1.	 Fahmi F, Riordan A, Beenen LFM, Streekstra GJ, Janssen NY,
de Jong HW, Majoie CBL, van Bavel E, Marquering HA (2014)
The effect of head movement on CT perfusion summary maps:
simulations with CT hybrid phantom data. Med Biol Eng Com-
put 52:141–147

	 2.	 Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen
M, Goldsher D, Pineda C, Serena J, van der Schaaf I, Waaijer A,
Anderson J, Nesbit G, Gabriely I, Medina V, Quiles A, Pohlman
S, Quist M, Schnyder P, Bogousslavsky J, Dillon WP, Pedraza S
(2006) Perfusion-CT assessment of infarct core and penumbra:
receiver operating characteristic curve analysis in 130 patients
suspected of acute hemispheric stroke. Stroke 37:979–985

	 3.	 Allmendinger AM, Tang ER, Lui YW, Spektor V (2012) Imaging
of stroke: part 1, perfusion CT—overview of imaging technique,
interpretation pearls, and common pitfalls. AJR Am J Roent-
genol 198:52–62

	 4.	 Eklund A, Dufort P, Forsberg D, LaConte SM (2013) Medical
image processing on the GPU—past, present and future. Med
Image Anal 17:1073–1094

	 5.	 Berkhemer OA, Fransen PSS, Beumer D, van den Berg LA,
Lingsma HF, Yoo AJ, Schonewille WJ, Vos JA, Nederkoorn PJ,
Wermer MJH et al (2015) A randomized trial of intraarterial
treatment for acute ischemic stroke. N Engl J Med 372:11–20

	 6.	 Harris M, Sengupta S, Owens JD (2007) Parallel prefix sum
(Scan) with CUDA. In: Nguyen H (ed) GPU gems 3, 1st edn.
Pearson Education, Boston, pp 851–876

	 7.	 .NET Framework 4. http://msdn.microsoft.com/en-us/library/
vstudio/w0x726c2(v=vs.100).aspx. Accessed 13 Apr 2015

	 8.	 C# Reference. http://msdn.microsoft.com/en-us/library/618ayhy6
(v=vs.100).aspx. Accessed 13 Apr 2015

	 9.	 Dillion C (2013) Fellow Oak DICOM for .NET. https://github.
com/rcd/fo-dicom. Accessed 13 Apr 2015

	10.	 Munshi A (2011) The OpenCL Specification. http://www.khronos.
org/registry/cl/specs/opencl-1.1.pdf. Accessed 13 Apr 2015

	11.	 (2013) OpenCL.NET. http://openclnet.codeplex.com/. Accessed
13 Apr 2015

	12.	 Drolon H (2013) FreeImage. http://freeimage.sourceforge.net/.
Accessed 13 Apr 2015

	13.	 Vaan J de (2010) CharLS, a JPEG-LS library. http://charls.code-
plex.com/. Accessed 13 Apr 2015

	14.	 Robertazzi T (2012) SONET and WDM. In: Basics computer net-
working. SpringerBriefs in Electrical and Computer Engineering.
Springer New York, pp 59–64. doi: 10.1007/978-1-4614-2104-7_7

	15.	 (2012) IEEE Standard for Ethernet. http://standards.ieee.org/
about/get/802/802.3.html. Accessed 13 Apr 2015

	16.	 Mendrik AM, Vonken E, van Ginneken B, de Jong HW, Riordan
A, van Seeters T, Smit EJ, Viergever MA, Prokop M (2011)
TIPS bilateral noise reduction in 4D CT perfusion scans pro-
duces high-quality cerebral blood flow maps. Phys Med Biol
56:3857–3872

	17.	 Pricing Details—ExpressRoute | Microsoft Azure. http://azure.
microsoft.com/en-us/pricing/details/expressroute/. Accessed 21
Oct 2014

	18.	 AWS Direct Connect | Pricing. http://aws.amazon.com/direct-
connect/pricing/. Accessed 21 Oct 2014

	19.	 Fahmi F, Marquering HA, Borst J, Streekstra GJ, Beenen LFM,
Niesten JM, Velthuis BK, Majoie CBL, Vanbavel E (2014) 3D
movement correction of CT brain perfusion image data of
patients with acute ischemic stroke. Neuroradiology 56:445–452

	20.	 Cohen MS (2001) A data compression method for image time
series. Hum Brain Mapp 12:20–24

	21.	 Yan P, Kassim A (2004) Lossless and near-lossless motion-com-
pensated 4D medical image compression. In: IEEE international
workshop biomedical circuits systems, pp 13–16

	22.	 Žagar M, Kovač M, Hofman D (2012) Framework for 4D medi-
cal data compression. Teh Vjesn 19:99–105

	23.	 Sanchez V, Nasiopoulos P, Abugharbieh R (2008) Efficient 4D
motion compensated lossless compression of dynamic volumet-
ric medical image data. In: IEEE international conference acous-
tics speech signal processing, pp 549–552

	24.	 Sanchez V, Nasiopoulos P, Abugharbieh R (2006) Lossless com-
pression of 4D medical images using H. 264/AVC. IEEE interna-
tional conference acoustics speech signal process. pp 1116–1119

	25.	 Oinam SB, HK P, Patil SB (2013) Compression of time series sig-
nal using wavelet decomposition, wavelet packet and decimated
discrete wavelet compression transforms techniques and their
comparison. Int J Adv Res Comput Commun Eng 2:1540–1544

	26.	 Takezawa T, Asakura K, Watanabe T (2010) Lossless compres-
sion of time-series data based on increasing average of neighbor-
ing signals. Electron Commun Japan 93:47–56

	27.	 Lang W, Morse M, Patel JM (2010) Dictionary-based compres-
sion for long time-series similarity. IEEE Trans Knowl Data Eng
22:1609–1622

	28.	 Izumi T, Iiguni Y (2006) Data compression of nonlinear time
series using a hybrid linear/nonlinear predictor. Sig Process
86:2439–2446

	29.	 Ogorzalek MJ (2001) Approximation and compression of arbi-
trary time-series based on nonlinear dynamics. In: IEEE interna-
tional symposium circuits systems, pp 405–408

	30.	 Kamamoto Y, Harada N, Moriya T, Ito N, Ono N, Nishimoto T,
Sagayama S (2009) An efficient lossless compression of multi-
channel time-series signals by MPEG-4 ALS. In: IEEE interna-
tional symposium consumer electronics, pp 159–163

	31.	 Spring JM, Langdon Jr GG (1997) Experiments in the lossless
compression of time series satellite images using multispectral
image compression techniques. In: Conference recreation thirty-
first asilomar conference signals, systems and computers, pp
1437–1441

http://msdn.microsoft.com/en-us/library/vstudio/w0x726c2(v%3dvs.100).aspx
http://msdn.microsoft.com/en-us/library/vstudio/w0x726c2(v%3dvs.100).aspx
http://msdn.microsoft.com/en-us/library/618ayhy6(v%3dvs.100).aspx
http://msdn.microsoft.com/en-us/library/618ayhy6(v%3dvs.100).aspx
https://github.com/rcd/fo-dicom
https://github.com/rcd/fo-dicom
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://openclnet.codeplex.com/
http://freeimage.sourceforge.net/
http://charls.codeplex.com/
http://charls.codeplex.com/
http://dx.doi.org/10.1007/978-1-4614-2104-7_7
http://standards.ieee.org/about/get/802/802.3.html
http://standards.ieee.org/about/get/802/802.3.html
http://azure.microsoft.com/en-us/pricing/details/expressroute/
http://azure.microsoft.com/en-us/pricing/details/expressroute/
http://aws.amazon.com/directconnect/pricing/
http://aws.amazon.com/directconnect/pricing/

	Dynamic CT perfusion image data compression for efficient parallel processing
	Abstract
	1 Introduction
	2 Methods
	2.1 Characteristics of CTP data
	2.2 Compression algorithm
	2.3 Implementation
	2.4 Evaluation setup

	3 Results
	4 Discussion
	4.1 Related work

	5 Conclusion
	Acknowledgments
	References

