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1  Introduction

CT perfusion (CTP) imaging is used as a diagnostic tool for 
initial evaluation of patients suffering from acute stroke [1]. 
CTP images are acquired by dynamically tracking the pas-
sage of a contrast agent through the cerebral blood vessels 
and tissue [2]. Analysis of CTP data enables the assessment 
of the severity of the damages caused by stroke. This infor-
mation can be used to choose the most adequate treatment 
for the patient [3]. Currently, CTP datasets can be as large 
as 3.76 GB, and when dealing with this amount of data, tra-
ditional processing methods are slow and delay the acute 
care. Also, these traditional methods are expensive because 
of the costs of purchase and maintenance of dedicated soft-
ware and hardware for image processing.

Cloud architectures have emerged as a cost-effective 
alternative for medical image processing. Cloud-based 
solutions make remote on-demand image processing ser-
vices available for wide use in medical practice. To pro-
vide high-performance processing, cloud architectures 
can make use of graphics processing units (GPUs), which 
are designed for very efficient parallel processing of large 
amounts of data. GPUs were demonstrated being capable 
of considerably speeding up medical image processing 
applications [4]. Nowadays CPUs are also capable of par-
allel processing. However, CPUs are designed for general 
purpose processing, and because of that, the processing 
power of a GPU can be superior to the processing power 
of a CPU in several applications. GPUs are used in several 
common image processing tasks such as filtering and ren-
dering. Thus, it is feasible to assume that the processing 
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of CTP image data can also take advantage of GPU-based 
architectures. However, to benefit from the GPU computa-
tional power, algorithms need to be adapted or developed 
from scratch.

The size of CTP data poses challenges for their process-
ing on GPU and on cloud infrastructures. The transfer of 
CTP data to cloud architectures can be time-consuming, 
which may limit the suitability of cloud applications for 
dealing with acute patients. In addition, to perform GPU 
computation, a host application is required, and the CTP 
data also need to be transferred from the host memory to 
the GPU memory. The time spent on the transfers from 
host to GPU has a considerable impact on the overall pro-
cessing time. In short, due to the large size of CTP datasets, 
the time to transfer the image data limits its application for 
remote processing in acute care scenarios.

Data compression techniques can be used to reduce the 
CTP dataset size and speed up its transfer to the cloud and 
to the GPU memory. Since time is critical in acute situa-
tions, the time required to compress, decompress, and trans-
fer the compressed data should not be larger than the time 
required to transfer the uncompressed data. Another impor-
tant constraint is that, in clinical care applications, the com-
pression technique must be lossless because no information 
can be removed or modified due to legal regulations.

The time required to execute the complete CTP data 
pipeline depends on scanner acquisition, data reconstruc-
tion, preprocessing, etc. Several aspects of this pipeline 
are strictly determined by scanner manufacturers. Fig-
ure 1 illustrates which pipeline stages (dark arrows) of the 
CTP processing in a GPU-based cloud infrastructure are 

affected by our compression method. Initially, the CTP data 
are produced at the scanner (A). After that, the CTP data 
must be compressed in a terminal (B) before the transfer 
to the GPU-based cloud infrastructure (C). While the CTP 
data are processed in the cloud infrastructure, several data 
transfers between host application memory (D) and GPU 
memory (E) can be required.

Ideally, the compression must be done in a machine 
capable of GPU processing. However, the compression can 
be executed in different computing devices such single-
core CPUs and many-core CPUs.

The main goal of our compression technique is to reduce 
the data size for faster transfer and faster GPU processing on 
cloud architectures. To achieve this, we introduce a fast and 
lossless compression technique that not only speeds up the 
transfer of dynamic CTP data to cloud architectures, but also 
facilitates their parallel processing on GPUs. This technique 
presents a compression time suitable for acute care situa-
tions and produces compressed data that can be processed 
on a GPU requiring no decompression of the entire CTP 
dataset. In our technique, intensities of an arbitrary voxel 
are retrieved from the compressed data using a fixed amount 
of instructions independent of the input value or size. This 
means that, in terms of computational complexity, determin-
ing the intensity value of a voxel is a constant-time proce-
dure (i.e., checking if a number is odd or even, checking a 
constant size lookup table), which is the fastest class of algo-
rithms with computational complexity classified as O(1). To 
the best of our knowledge, this is the first work to present a 
lossless method for medical image compression with direct 
access to the image elements from the compressed data.

CPU

Host Memory

GPU

GPU Memory

(A)

(B)

(C) (D) (E)

Fig. 1   CTP data processing pipeline in a GPU-based cloud infra-
structure: the CTP data are produced at the scanner (A), compressed 
in a terminal (B), sent to the GPU-based cloud infrastructure (C). 

While being processed, the CTP data can be transferred several times 
between host application memory (D) and GPU memory (E)
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2 � Methods

This section describes the characteristics of the CTP data, 
presents our compression technique, and discusses the rel-
evant aspects that need to be considered during its imple-
mentation according to the targeted platform. Subsequently, 
the configuration of the experiments used to evaluate our 
compression technique is described.

2.1 � Characteristics of CTP data

The datasets used in this study consist of 20 dynamic 
whole-brain volumes from actual stroke patients. The 
scans have 320 slices of 512 ×  512 voxels with 16 bits/
voxel, and each acquisition has 24 time steps. The patients 
were scanned as part of a Dutch multicenter randomized 
trial [5]. Approval of the medical ethical committee was 
obtained. All patients or legal representatives signed 
informed consent. The volumes are acquired approxi-
mately every 2.5  s during the first 35  s, followed by a 
scan every 5  s until 60  s. Subsequently, five volumes are 
scanned with a 30-s interval. The size of each volume is 
160  MB, and thus the complete dataset has 3840  MB of 
data that need to be quickly processed for an initial evalu-
ation of the patient condition. Sometimes, an additional 
CTP dataset is produced to evaluate the treatment progress 
after around 24  h, resulting in up to 7.5  GB of data per 
patient. All the image data are saved according to the digi-
tal imaging and communications in medicine (DICOM) 
standard.

Every dataset can be described as I(x, t), which repre-
sents the image intensity at position x at time t. The inflow 
and outflow of contrast agent can be observed in all the 
brain tissue. However, the intensity values in the largest 
part of the brain tissue are expected to vary little over time. 
To illustrate this characteristic of the data, Fig.  2 shows 
the intensities at xa and xb along time. The intensities at 

xa are not strongly affected by the contrast agent. On the 
other hand, the intensities at xb are strongly affected by the 
inflow and outflow of contrast agent.

Voxel intensities in CT imaging are generally repre-
sented using 16 bits. However, the range of voxel values 
over time is smaller than the range that can be represented 
by 16 bits. Therefore, fewer bits can be used to repre-
sent exactly the same information by storing the varia-
tion of these intensities instead of their absolute values. 
This characteristic is illustrated by using the intensities at 
xb as an example. These intensities vary between 46 and 
191 HU, so only eight bits are required to represent them 
(
⌈

log2(191− 46+ 1)
⌉

= 8). For the voxel at xa, a bet-
ter compression can be obtained because only six bits are 
required (

⌈

log2(72− 22+ 1)
⌉

= 6), which represents a 
compression ratio of 2.6 compared with the original repre-
sentation using 16 bits.

As observed in Fig.  3, only 6  % of the voxels in that 
slice require more than eight bits to represent their inten-
sities variation over time, and a maximum of 11 bits is 
required to represent this variation.

The effect of motion artifacts is apparent in Fig.  3, 
and for this reason, a higher amount of bits is required 
to encode the area around the skull. However, this higher 
amount of bits (between 9 and 11 bits) is still considerably 
smaller than 16 bits, which are required for the uncom-
pressed image. Furthermore, the motion affects only a 
small portion of the image. In general, when motion is 
present, there is mainly overlapping of brain tissue with 
similar intensity values, which does not result in a higher 
amount of bits for encoding the voxel intensities over time. 
In short, Fig. 3 illustrates that, due to the characteristics of 
the CTP data, the number of voxels that have a large inten-
sities variation over time is rather small. This indicates that 
the temporal dimension of the CTP data is a substantial 
source of redundancies that can be exploited for compres-
sion purposes.

Fig. 2   Sample slice of CTP 
data at the time step 12, and the 
intensity values of the voxels at 
xa and xb over time. The intensi-
ties values at xa are not strongly 
affected by the contrast agent, 
and the intensities values at xb 
are strongly affected by contrast 
agent
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2.2 � Compression algorithm

Our compression technique exploits the time redundancy 
explained above. Let I(x, t) represent the uncompressed 
image intensity, where x indicates a 3D coordinate and t 
indicates a time step between 0 and n − 1. In compressed 
form, the image is represented as

with

and

For simplicity, we use

The set of values Dx given by

do not present a large variation, so fewer bits can be used to 
represent them. The exact number of bits required to repre-
sent Dx is given by:

Thus, Dx is stored by using

bits.
In a sequential processing unit, the voxels are com-

pressed one by one, and the time required to compress a 
single voxel is proportional to n because n computations 

I(x, t) = C(x)+∆(x, t)

minVx � C(x) � maxVx

Vx = {I(x, t0), I(x, t1), . . . , I(x, tn−1)}.

C(x) = minVx

Dx = {∆(x, t0),∆(x, t1), . . . ,∆(x, tn−1)}.

⌈

log2(maxVx −minVx + 1)
⌉

.

⌈

log2(maxVx −minVx + 1)
⌉

× n

are required to determine Dx, min  Vx, and max  Vx. Thus, 
when executed sequentially, the computational complexity 
of our algorithm is m × n where m is the number of voxels 
in the dataset.

However, the compression of all the voxels is independ-
ent, and consequently, it can be done in parallel. During the 
compression of a voxel, the computations to calculate Dx 
are independent, and they can also be parallelized. More-
over, when using parallel processing, min  Vx and max  Vx 
can be calculated in a time proportional to log 2n through 
parallel reduction [6]. In a parallel implementation, the 
most expensive computations required by our algorithm 
correspond to finding min Vx and max Vx. Consequently, in 
terms of computational complexity, our algorithm can com-
press a CTP dataset in a time proportional to log 2n when 
running in parallel.

To retrieve the value of I(x, t), a sum needs to be per-
formed: C(x)+∆(x, t). By using fixed size arrays to store 
∆(x, t) and C(x), I(x, t) can be retrieved in constant time. 
The data stored using less bits, which is ∆(x, t), do not 
need to be modified. Thus, in our method, I(x, t) is deter-
mined using a single sum of values that can be retrieved in 
constant time.

2.3 � Implementation

The efficiency of our compression method is strongly 
dependent on the efficiency of the data structures used in its 
implementation, in particular for C(x) and ∆(x, t).

∆(x, t) is an element of the set Dx. All the elements in a 
set Dx are represented using the same number of bits. For 
instance, by considering the voxels at xa and xb in Fig. 2, 
six and eight bits are required to represent the elements 
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Fig. 3   Number of bits required to represent the variation of voxel 
intensities over time in the selected slice. The effect of motion arti-
facts is visible, and for this reason, a higher amount of bits is required 
to represent the area around the skull. Nevertheless, this higher 
amount of bits (9–11 bits) is considerably smaller than the original 

16 bits that are used by the uncompressed data. Furthermore, the 
motion affects only a small portion of the image. Only 6  % of the 
voxels require more than eight bits to represent their intensities vari-
ation over time
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in Dxa and Dxb
 respectively. Thus, because n =  24 in our 

datasets, Dxa requires 24 × 6 = 144 bits, and Dxb
 requires 

24 × 8 = 192 bits to be represented. Because the amount 
of bits required to represent each Dx set varies, it is not pos-
sible to use a single fixed size array to store all the different 
Dx sets in memory.

Current computers are not capable of addressing mem-
ory blocks of an arbitrary amount of bits. Thus, all the Dx 
sets are contiguously stored in a fixed size array of 32 bits 
elements named D. A maximum of two elements from D 
need to be accessed to store and retrieve a particular ∆(x, t) 
using a fixed amount of bit shift operations. The computa-
tional cost of these operations is constant, so they do not 
increase the computational complexity of reading and stor-
ing the values in D.

An offset is provided to determine where a Dx begins in 
the array D. All the offsets are stored in a fixed size array 
of 32 bits elements named O. Another fixed size array of 
eight-bit elements, named B, is used to store how many bits 
are used to represent the elements in Dx. In this way, differ-
ent elements in Dx can be distinguished. The offsets can be 
quickly calculated by traversing B. However, O is provided 
to keep instant access to any Dx in D. Finally, an array of 
16-bit elements, named C, is used to store all the C(x) val-
ues. The elements of C have 16 bits because they contain 
original intensity values from the 16-bit voxels. Figure  4 
illustrates the data structures used in our implementation. 
The size of the resulting compressed data is the sum of the 
sizes of the arrays C, O, B, and D.

Three different implementations of our dynamic image 
compression for parallel processing (DICOPP) were 
developed:

•	 DICOPP CPU—a parallel implementation compressing 
the voxels using multiple threads in a many-core CPU 
and using a sequential method to calculate min Vx and 
max Vx;

•	 DICOPP CPU PR—another parallel implementation 
targeted for a many-core CPU using multiple threads to 
calculate min Vx, and max Vx through the parallel reduc-
tion method; and

•	 DICOPP GPU—a parallel implementation running on 
the GPU and calculating min  Vx and max  Vx sequen-
tially.

During the implementation, we observed that using par-
allel reduction to calculate min Vx and max Vx on the GPU 
requires a more complex organization of the data in the GPU 
memory, which slows down the memory operations and 
results in an inefficient GPU implementation. For this reason, 
this alternative was abandoned. Also, only 24 values need to 
be evaluated to calculate min Vx and max Vx, and at this scale, 
the benefits of using parallel reduction are not noticed.

Our implementations use the .NET framework ver-
sion 4.0 [7] and C# [8] as programming language. These 
technologies were chosen because our implementations 
need to be integrated in an existing platform for medical 
image processing based on .NET. Our implementations 

Input: + + +…+

Output:
C

B

32 bitsD

O

Fig. 4   Data structures used in the implementation. B is a constant 
size array of 8-bit elements that stores the amount of bits used to 
encode the intensity values of a voxel. C is a constant size array of 

16-bit elements used to store all the C(x) values. D is a constant size 
array of 32-bit elements used to store all the Dx sets. O is an offset to 
determine where a set Dx begins in the array D
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use Fellow Oak DICOM (FO-DICOM) for .NET version 
1.0.36 [9], which is a high-performance API for handling 
DICOM files. For the GPU computations, OpenCL 1.1 [10] 
was used. OpenCL is a framework for the development and 
execution of programs across platforms consisting of dif-
ferent types of processors such as CPUs, GPUs, digital sig-
nal processors, field-programmable gate arrays. OpenCL.
NET version 2.2.9 [11] was used to integrate OpenCL with 
.NET. OpenCL.NET is a library that wraps the original 
OpenCL 1.1 API for .NET.

2.4 � Evaluation setup

All the compression techniques that are incorporated in 
the DICOM format were selected for comparison with our 
method. However, according to the DICOM specification, 
MPEG2 and MPEG-4 compressions are inherently lossy, 
and for this reason, they were excluded of our comparison. 
JPEG 2000 lossless was also excluded from our compari-
son because it is much slower than the other methods, with-
out a considerable better compression ratio. Consequently, 
only the following techniques from the DICOM standard 
were used in our experiments:

•	 JPEG lossless, more precisely the JPEG process 14 
(first-order horizontal prediction [selection value 1], 
DPCM, non-hierarchical with Huffman coding);

•	 JPEG LS lossless; and
•	 Run-length encoding (RLE).

Very efficient low-level implementations of the tech-
niques from the DICOM standard were used in our compar-
ison. For JPEG and JPEG 2000, an open-source C library 
named FreeImage [12] was used. Regarding JPEG LS, an 
open-source and optimized C++  library named CharLS 
[13] was used. Finally, for the RLE compression, the C++ 
implementation provided with the FO-DICOM library was 
used. Regarding our method, the three implementations 
described in Sect. 2.3 were used in our comparison.

All the selected techniques from the DICOM standard 
were used only to perform 2D compression, and as a result, 
they were used to independently compress all the slices 
in a CTP dataset. These techniques are not designed to be 
executed in massively parallel architectures. Thus, to pro-
vide a fair comparison of the compression time with our 
implementations, which were designed for these architec-
tures, the compression of all slices were divided equally 
among the CPU threads available by a multithread applica-
tion. In this manner, the thread overhead was minimized, 
and the usage of the CPU for the compression task was 
maximized. Regarding our method, the same approach was 
used in our CPU implementations, i.e., use all the avail-
able CPU threads and distribute load equally. In the GPU 

implementation, the compression time includes the time 
required by the transfers between the host application and 
the GPU device.

Ideally, GPU implementations of the other compression 
techniques should be used for the comparison. However, to 
the best of our knowledge, there is no GPU implementa-
tion available for these methods. For JPEG, there are many 
GPU-based codecs, but none of them presents the lossless 
compression mode.

To compare the time to access the decompressed data, 
intensities of all time steps of 320 voxels in 320 slices were 
retrieved sequentially in an application running on the CPU 
and accessing the compressed data in the host application 
memory. Our method does not require complete decom-
pression of a CTP dataset, and in this manner, accessing the 
decompressed value of a single voxel is a straightforward 
way to compare the decompression performance of the 
evaluated methods. The compressed data produced by the 
three different implementations of our method are identi-
cal; therefore, reading time was computed only for one of 
the results.

To evaluate the impact of the number of processing units 
in the compression time of our method, the DICOPP CPU 
implementation was executed using from 1 up to 6 threads. 
The maximum of six threads was defined because this is 
the number of independent processing units available in the 
hardware configuration used (see Table 1).

The main goal of our compression technique is to ena-
ble faster transfer to cloud architectures. To evaluate this, 
the total transfer time of each compression method used 
in our comparison was computed. This time is calculated 
by adding: the compression time, the time to transfer the 
compressed data, and the time to read the compressed data. 
The time to transfer the compressed data was calculated 
by considering the theoretical transfer rate of the follow-
ing network standards: OC-3/STM-1 [14], OC-12/STM-4 
[14], 1000BASE-T [15], and OC-48/STM-16 [14], or 155, 
622, 1000, and 2400 Mbps, respectively. 1000BASE-T is a 

Table 1   Hardware configuration used to execute the compression 
methods evaluated in our experiments

CPU name Intel Xeon E5-2620

CPU clock 2.00 GHz

CPU cores 6

CPU threads 12

RAM memory 64 GB

GPU name GeForce GTX TITAN

GPU driver version 331.65

GPU cores 2688

GPU clock 836 MHz

Dedicated video memory 6 GB GDDR5
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standard for gigabit Ethernet networks. The other standards 
specify the transmission bandwidth for digital signals that 
can be carried on fiber-optic networks.

Our compression technique enables GPU processing 
directly from the compressed data. By processing the com-
pressed CTP data, less data need to be transferred between 
host and GPU. This feature can speed up the total GPU 
processing time considerably because, in some applica-
tions, most of the time in a GPU computation is spent on 
data transfers. In order to evaluate the GPU processing time 
improvement, a GPU application that creates a mask from 
the CTP data was developed. The mask, which is defined 
by the double threshold 0–15 HU, is part of a noise reduc-
tion filter for dynamic CTP data described in [16]. In our 
evaluation, the developed GPU application computes this 
mask in two different ways: using the uncompressed data 
and using the compressed data generated by our method. 
In both ways, the time to compute the mask is measured 
including the time spent by the transfers between host and 
GPU.

All the evaluations described in this section were per-
formed in the same hardware configuration (see Table  1) 
using Windows 7 Enterprise 64 bits as operating system. 
For all the time measurements, the high-resolution timing 
counters provided by the Win32 API were used.

3 � Results

Table  2 shows the performance results of the evalu-
ated compression techniques applied to 20 CTP datasets 
described in Sect. 2.1. The DICOPP CPU PR implementa-
tion achieved a better compression time than the DICOPP 
CPU implementation in 85 % of the executions. As men-
tioned in Sect. 2.3, the CTP datasets time dimension is too 
short to substantially benefit from parallel reduction for 
computing min Vx, and max Vx.

In our evaluation setup, all the data are transferred to 
CPU memory before being accessed or decompressed. 
Thus, all the reading and decompression operations are 
executed only in the host application. The reported time 

corresponds to the reading time of only 320 × 24 voxels, 
and not to the entire CTP dataset. Our method does not 
require full decompression of a dataset, and because of 
this, it achieved a read time many times lower than the best 
result from the other methods.

JPEG 2000 lossless took 132 and 470 s to compress and 
read the compressed data of a single CTP dataset. This is 
more than six times slower than the results in Table 2.

The number of processing units used to execute our 
compression method has a major impact in its compres-
sion time. To illustrate this, Fig.  5 shows the compres-
sion time obtained by using different number of threads 
for compressing 20 CTP datasets using the DICOPP CPU 
implementation. The standard deviations of the compres-
sion time of the executions using from 1 to 6 threads are, 
respectively, 14.27, 7.30, 5.76, 4.32, 3.83, and 2.86 s.

Table  3 shows the total transfer time (compression 
time  +  time to transfer compressed data  +  decompres-
sion time) for the 20 CTP datasets using the maximum 
transfer rate of four different types of network. As a refer-
ence, the first row of Table  3 shows the only the transfer 
time of an uncompressed dataset. DICOPP GPU achieved 
the lowest transfer time in all the network types listed in 

Table 2   Compression time, reading time, and compression ratio for 20 datasets (mean ± SD [min., max.]) using different compression meth-
ods. The best results are underlined

Compression method Compression time (ms) Reading time (ms) Compression ratio

JPEG LS 09911 ± 0398 [08879, 10806] 58267 ± 2546 [49924, 62052] 4.64 ± 0.29 [4.14, 5.55]

JPEG 14552 ± 0742 [12234, 16095] 43443 ± 1791 [37033, 44997] 2.09 ± 0.16 [2.74, 3.55]

RLE 09679 ± 0947 [08286, 11110] 15554 ± 0634 [13468, 16669] 2.31 ± 0.10 [2.12, 2.66]

DICOPP CPU 20350 ± 2602 [14157, 24239] 0.15 ± 0.36 [0, 1] 2.20 ± 0.17 [1.95, 2.75]

DICOPP CPU PR 17718 ± 1413 [14934, 20712]

DICOPP GPU 05944 ± 0711 [04826, 07873]
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Table 3. However, in networks slower than the ones listed 
in Table 3, JPEG LS achieves a better transfer time because 
it has a better compression ratio. In faster networks, it takes 
longer to compress and transfer the data than to transfer the 
original data without compression.

Regarding the GPU processing time, the GPU process-
ing of the mask using the original and the compressed data 
took 2818  ±  382 [2664, 4392] and 1903  ±  186 [1712, 
2668] milliseconds, respectively. Accordingly to these 
results, the GPU processing using the compressed data 
was, on average, more than 30 % faster than the processing 
of the original data.

4 � Discussion

The compression time of the DICOPP GPU implementation 
is notably faster than the other methods. Even simple algo-
rithms, such as RLE running in parallel, are around 1.6 times 
slower than the DICOPP GPU implementation. Note that the 
implementations of our method used more abstraction lay-
ers than the other implementations used in the comparison. 
For instance, memory management in .NET applications is 
different from low-level applications, and this can result in 
a slower execution time when compared with C or C++ 
applications, which is the case of the other methods. How-
ever, despite the higher level of abstraction, the compression 
time of our CPU implementations is approximately only 5 to 
10 s slower than the other methods.

As expected, our method presents negligible times to 
read the voxel intensities from the compressed data, as 
illustrated in Table 2. This is possible because our method 
is the only to provide direct access to the voxel intensities. 
The random access to voxel values has many advantages, 
and it enables the application of several imaging operations 
to the entire image data in the compressed form. Because 
of this direct access, operations such as local filtering and 

threshold-based segmentations can be performed without 
decompression. By doing this, our method saves memory 
(the compressed data are processed) and processing time 
(the decompression step is skipped). The direct access to 
voxel values provided only by our method also speeds up 
the GPU processing. This is possible because our method 
reduces the amount of data that need to be transferred 
between host application and GPU, which is also a com-
mon bottleneck in GPU-based computing. As presented in 
Sect. 3, the GPU computation of a mask from the CTP data 
was speeded up more than 30 % by using the compressed 
data produced by our method. We must highlight that 
exactly the same instructions were executed in the com-
pressed and uncompressed representations of the CTP data. 
This speedup is only possible because of the direct access 
to the voxel values from the compressed data on the GPU.

As previously stated, the main goal in acute care is to 
provide fast results, and as observed in Table 3, the imple-
mentations of our method achieve better transfer times 
than all the others. In networks slower than 100  Mbps, 
our method was overcome by other compression methods. 
However, it is reasonable to assume that current cloud infra-
structures provide connections with speeds that are higher 
than 100 Mbps. In fact, most of the current cloud provid-
ers offer direct connections up to 10  Gbps. For instance, 
Microsoft Azure [17] offers connections from 200  Mbps 
up to 10 Gbps, and Amazon Web Services [18] offers con-
nections from 50 Mbps up to 10 Gbps. In these very fast 
connections, transferring the uncompressed data is faster 
than transferring the compressed data. However, these very 
fast connections are expensive and priced according to the 
offered speed. This means that our method enables a cost-
effective usage of these connections. Our method can also 
reduce the GPU processing time of the CTP data. Because 
of this feature, our method not only contributes for a faster 
analysis of CTP data, which is crucial in acute stroke cases, 
but also to cheaper analysis on pay-per-use infrastructures. 

Table 3   Total transfer time (in s) for 20 datasets compressed by different methods and using different network speeds (mean ±  SD [min., 
max.])

The total transfer time is the sum of the compression time, time to transfer the compressed data, and the decompression time. The first row 
shows the transfer times of an uncompressed CTP dataset. The data transfer times were calculated based on the theoretical transfer rate of the 
network standards: OC-3/STM-1 [16], OC-12/STM-4 [16], 1000BASE-T [28], and OC-48/STM-16 [16]. Respectively, these transfer rates are: 
155, 622, 1000, and 2400 Mbps. The best results are underlined

OC-3/STM-1 (s) OC-12/STM-4 (s) 1000BASE-T (s) OC-48/STM-16 (s)

Original Data 207.82 51.79 32.21 13.42

JPEG LS 113 ± 5.3 [096, 122] 79 ± 3.2 [68, 84] 75 ± 3.2 [64, 79] 71 ± 3.0 [61, 75]

JPEG 127 ± 5.4 [107, 134] 75 ± 3.0 [63, 78] 68 ± 2.7 [58, 71] 62 ± 2.5 [53, 64]

RLE 115 ± 4.7 [100, 123] 47 ± 1.9 [41, 50] 39 ± 1.6 [34, 41] 31 ± 1.4 [27, 33]

DICOPP CPU 115 ± 7.9 [089, 127] 44 ± 3.5 [32, 48] 35 ± 3.0 [25, 38] 26 ± 2.7 [19, 30]

DICOPP CPU PR 112 ± 7.4 [090, 123] 41 ± 2.5 [33, 45] 45] 32 ± 2.0 [26, 36] 36] 23 ± 1.6 [19, 27]

DICOPP GPU 100 ± 6.9 [080. 111] 29 ± 1.9 [23, 32] 20 ± 1.3 [16, 22] 12 ± 0.8 [09, 14]
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Thus, regarding the processing pipeline of CTP data on 
GPU-based cloud infrastructures, our compression method 
enables fast transfers and fast GPU processing, which con-
sequently results in reducing costs and providing the faster 
image processing required when dealing with acute stroke 
patients.

Our compression technique was developed to be exe-
cuted in massively parallel architectures. Thus, it is pos-
sible to achieve faster results when using more parallel 
processing units (see Fig. 5). Also, as observed in Table 3, 
our compression technique is the only one that enables 
reducing transfer times in fast data connections because 
of its fast compression and because it does not require a 
decompression step prior to processing. Because of these 
characteristics, our compression technique is better suited 
for future computational infrastructures than the other com-
pression techniques evaluated, since it can benefit from 
massively parallel processing and fast data connections. We 
must emphasize that, if ignoring the cost aspect, there are 
connections speeds currently available that are fast enough 
to be used for transferring uncompressed CTP data. How-
ever, with more powerful parallel processing devices, our 
method can become beneficial even with these connection 
speeds. Thus, because of these trends, we believe that our 
method is beneficial not only in current cloud infrastruc-
tures but also in the upcoming cloud infrastructures.

The compression ratio of our method is inferior to the 
compression ratio of the other methods. To improve our 
compression ratio, different preprocessing operations 
could be applied. However, this preprocessing can make 
the execution of our compression technique considerable 
longer. To avoid that, the CTP processing pipeline has to 
be carefully analyzed to identify whether the adoption of 
preprocessing steps will effectively result in a faster data 
transfer, which is the main goal of our work. For instance, 
usually the CTP analysis requires the application of a noise 
reduction filter. In a new pipeline configuration, this noise 
reduction can be done before the compression in order to 
achieve a better compression ratio. Noise reduction may 
also improve the compression ratio of our method because 
noise strongly influences the variation of the voxel values 
over time. It is expected that thick slices have less noise, 
and it may result in better compression ratios. A detailed 
study to assess the effects of different noise levels in the 
performance of our compression method can be performed. 
However, in this paper, we focused on the evaluation of our 
compression method in the image data that are generated in 
clinical practice.

Apart from noise, motion artifacts can also affect the 
compression ratio of our method. Again, a possible solu-
tion is a preprocessing step for motion correction before 
the compression step [19]. However, this will result in 

increasing processing time. We evaluated our method in 
actual patient data, which included motion artifacts, and as 
shown in Fig. 3, the effects of motion do not have a strong 
impact on our compression ratio. Motion does not affect 
the compression ratio of our method considerably because, 
in different time frames, different types of tissue rarely 
overlap, and thus constant geometrical locations still have 
similar intensity values. The only exceptions are the areas 
around the skull, which are a small portion of the image 
data. However, even in these areas, the amount of bits 
required to represent the compressed data are still consid-
erably smaller than the original amount of bits used in the 
uncompressed data.

Perhaps, the most effective preprocessing step that could 
be applied is a simple threshold segmentation and removal 
of useless data (i.e., the air around the patient). Never-
theless, we focused in evaluating our method in original 
patient data. An extensive analysis of the different tech-
niques that can be combined with our compression method 
was beyond the scope of this study.

Our goal was to provide a compression technique to be 
used in a specific clinical practice rather than to be used 
as a general compression technique. In clinical practice, 
we are dealing with large datasets that are very precisely 
defined (±24 time steps of approximately 320 slices of 
512 ×  512 pixels of 16 bits) and that are well accepted 
worldwide. Since CTP acquisitions are performed tens of 
thousands times per year, we believe that a specific and 
applied compression technique is worth studying. Although 
our technique is applied to and focused on CTP data, we 
believe that any other medical image time series could be 
potentially suited for compression by our algorithm. For 
example, all the medical images used in the experiments 
described in [2] have the necessary characteristics to be 
exploited by our compression algorithm, which is a small 
variation of voxel values over time.

4.1 � Related work

Previous works also explored the redundancies in the tem-
poral dimension of medical image data for compression 
purposes. The work presented in [20] calculates the dif-
ferences between two contiguous images from a medical 
image time series and store these differences using eight 
bits when this is possible. When this difference can-
not be expressed using eight bits, the original 16 bits are 
used. Because of this approach, the theoretical maximum 
compression ratio achieved by this method is 2. In this 
method, to retrieve the intensities from a particular time 
step, it is necessary to decompress all intensities from the 
previous time steps. The main differences between this 
and our method are: our method achieves compression 
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ratios greater than 2, and in our technique, any arbitrary 
image intensity in the four-dimensional space can be 
retrieved independently with a constant computational 
complexity.

Other compression techniques explore the effect of 
motion in 4D medical images. Motion is a feature espe-
cially present in 4D cardiac images. In the context of 
exploring motion for compression purposes, [21] proposed 
a technique based on the combination of a predictive image 
compression and a motion compensation technique. The 
work presented in [22] evaluates the motion in 4D medi-
cal images for compression purposes using motion fields 
that produce input parameters for a neural network used 
for motion estimation. [22] combines motion analysis with 
segmentation, block matching, and expert knowledge, to 
develop a framework for 4D medical compression. The 
authors of [23] apply recursively a multiframe motion com-
pensation process that employs 4D search, variable block-
sizes, and bidirectional prediction for reducing redundan-
cies in spatial and temporal dimensions. All these three 
techniques were developed for achieving high compression 
ratios, and because of their complexity of compression 
and decompression, they are not well suited for the fast 
processing as required in acute care situations. Also, dif-
ferently from our technique, they require a decompression 
step before processing.

Another common approach is to adapt or use exist-
ing sound, image, or video compression techniques for 
4D medical image data. However, most of these compres-
sion techniques, like MPEG-2 and MPEG-4, are lossy 
and, for this reason, cannot be used in the same context as 
the proposed technique. Regarding lossless compression, 
the authors of [24] proposed a technique for 4D medical 
images based on the H.264/AVC standard for video com-
pression. Again, this compression technique was designed 
to achieve high compression ratios, being too complex for 
producing fast response.

In CTP data, any particular voxel can be considered as 
an independent time series. Time series compression tech-
niques can be applied independently for each voxel. How-
ever, most time series compression techniques are funda-
mentally lossy [25] and consequently cannot be used for 
the purposes of this study.

Regarding the lossless compression of time series, cur-
rent techniques focus on the compression of long time 
series and are based on very complex models [26–29] 
that may even require the usage of a database for predic-
tion purposes [28]. Because these techniques are developed 
for compressing long time series, it is not feasible to use 
them in CTP datasets, which present only 24 time steps. To 
illustrate this problem, the smaller model mentioned in [29] 
requires 192 bits only to store the initial conditions of the 

model equations describing a time series. This represents 
half of the size of entire time series of a particular voxel in 
CTP datasets (24 × 16 bits). The lossless time series com-
pression can be also based on features that are not available 
in CTP datasets, such as multichannel [30] or multispectral 
information [31]. In short, the usage of state-of-the-art loss-
less time series compression in the time series from CTP 
datasets would not be effective because of the short length 
of these time series.

5 � Conclusion

In this paper, we presented a new method to compress CTP 
data that take advantage of data redundancy in the time 
dimension. The proposed algorithm reduces the image size 
by using fewer bits to represent data that do not vary much 
along time. This method focuses on providing faster trans-
fer of CTP data to GPU-based cloud infrastructures; there-
fore, a balance between compression ratio and compression 
time has been pursued, which is different from many com-
pression methods which pursue good compression ratios. 
Our algorithm was designed for massively parallel archi-
tectures, and it is well suited for many-core CPU or GPU 
execution.

The proposed method was applied to 20 datasets and 
obtained the faster results compared to the lossless com-
pression techniques adopted in the DICOM standard, 
despite its inferior compression ratio.

The resulting data representation offers direct random 
access for subsequent GPU processing, which is a feature 
not found in the other compression methods. Because of 
this, our time for retrieving information from the com-
pressed data is negligible. This feature also makes it pos-
sible to reduce the time to transfer CTP data between host 
application and GPU because only the compressed form of 
the CTP data needs to be used in these transfers. Conse-
quently, the GPU processing of CTP data can be speeded 
up when using the data in compressed form.

Currently, different ways to improve the compression 
ratio of our method are being investigated. This investiga-
tion focuses on the usage of fast techniques for noise reduc-
tion, motion identification, and segmentation of mean-
ingless image elements. All these techniques need to be 
compatible with current clinical practices adopted when 
analyzing CTP data.
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