## metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## [(E)-10-(2,6-Dimethylphenylimino)-9methyl-9,10-dihydrophenanthren-9olato]pentamethyldialuminum(III)

### Bo Gao,<sup>a</sup> Qing Su,<sup>b</sup> Wei Gao<sup>b\*</sup> and Ying Mu<sup>a\*</sup>

<sup>a</sup>State Key Laboratory of Supramolecular Structure and Materials, School of Chemistry, Jilin University, Changchun 130012, People's Republic of China, and <sup>b</sup>School of Chemistry, Jilin University, Changchun 130012, People's Republic of China

Correspondence e-mail: gw@jlu.edu.cn, gaobo08@mails.jlu.edu.cn

Received 10 August 2011; accepted 6 September 2011

Key indicators: single-crystal X-ray study; T = 185 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.150; data-to-parameter ratio = 16.7.

The two Al atoms in the title compound,  $[Al_2(CH_3)_5 (C_{23}H_{20}NO)$ ], are four-coordinated in a distorted tetrahedral environment. The coordination of one Al atom includes three methyl-C atoms and the O atom from the ligand, whereas the second Al atom is surrounded by the O atom and one N atom from the ligand as well as by two methyl-C atoms. In the ligand, the dihedral angle between the two phenyl rings in the 9,10-dihydrophenanthren unit is  $20.64 (12)^{\circ}$ .

### **Related literature**

For background to Al complexes, see: Wang et al. (2006); Evans (1993); Liu et al. (2005, 2006); Yao et al. (2008); Gao et al. (2009). For background to anilido-imine complexes, see: Liu et al. (2005, 2006); Ren et al. (2007); Su et al. (2007); Yao et al. (2008); Wang et al. (2006). For the synthesis of the ligand, see: Li (2009).



### **Experimental**

#### Crystal data

[Al<sub>2</sub>(CH<sub>3</sub>)<sub>5</sub>(C<sub>23</sub>H<sub>20</sub>NO)]  $\gamma = 64.092 \ (2)^{\circ}$ V = 1307.9 (4) Å<sup>3</sup>  $M_r = 455.53$ Triclinic,  $P\overline{1}$ Z = 2a = 10.4535 (17) Å Mo  $K\alpha$  radiation b = 11.4306 (18) Å  $\mu = 0.13 \text{ mm}^{-1}$ c = 12.221 (2) Å T = 185 K $\alpha = 84.930 \ (3)^{\circ}$  $0.36 \times 0.32 \times 0.19 \text{ mm}$  $\beta = 86.308 (3)^{\circ}$ 

#### Data collection

SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2001)  $T_{\min} = 0.955, T_{\max} = 0.976$ 

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.054$ | 297 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.150$               | H-atom parameters constrained                              |
| S = 1.03                        | $\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$  |
| 4966 reflections                | $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$ |

6899 measured reflections 4966 independent reflections

 $R_{\rm int} = 0.020$ 

3558 reflections with  $I > 2\sigma(I)$ 

### Table 1

Selected bond lengths (Å).

| Al1-O1  | 1.9273 (17) | Al2-O1  | 1.8552 (17) |
|---------|-------------|---------|-------------|
| Al1-C25 | 1.972 (3)   | Al2-C28 | 1.944 (3)   |
| Al1-C26 | 1.974 (3)   | Al2-C27 | 1.954 (3)   |
| Al1-C24 | 1.980 (3)   | Al2-N1  | 1.993 (2)   |

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank the National Natural Science Foundation of China (grant No. 21074043) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2522).

#### References

- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Evans, K. A. (1993). Chemistry of Aluminium, Gallium, Indium and Thallium., edited by A. J. Downs, p. 248. Chapman & Hall: New York.
- Gao, A., Su, Q. & Mu, Y. (2009). Acta Cryst. E65, m577.
- Li, L. (2009). ARKIVOC, pp 95-111.
- Liu, X.-M., Gao, W., Mu, Y., Li, G.-H., Ye, L., Xia, H., Ren, Y. & Feng, S. (2005). Organometallics, 24, 1614-1619.
- Liu, X.-M., Xia, H., Gao, W., Ye, L., Mu, Y., Su, Q. & Ren, Y. (2006). Eur. J. Inorg. Chem., pp. 1216-1222.
- Ren, Y., Liu, X.-M., Gao, W., Xia, H., Ye, L. & Mu, Y. (2007). Eur. J. Inorg. Chem., pp. 1808-1814.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Su, Q., Gao, W., Wu, Q.-L., Ye, L., Li, G.-H. & Mu, Y. (2007). Eur. J. Inorg. Chem., pp. 4168-4175.
- Wang, H.-Y., Meng, X. & Jin, G.-X. (2006). Dalton Trans. pp. 2579-2585.
- Yao, W., Mu, Y., Gao, A.-H., Su, Q., Liu, Y.-J. & Zhang, Y.-Y. (2008). Polymer, 49, 2486-2491.

Acta Cryst. (2011). E67, m1374 [doi:10.1107/S1600536811036312]

# [(*E*)-10-(2,6-Dimethylphenylimino)-9-methyl-9,10-dihydrophenanthren-9-olato]pentamethyldialuminum(III)

### B. Gao, Q. Su, W. Gao and Y. Mu

### Comment

Organoaluminum complexes have received considerable attention due to their interesting properties and potential applications in organic synthesis and catalysis. It is known that alkylaluminum reagents are widely applied to Lewis acid-mediated reactions while aluminium acetylides play an important role in addition reaction (Evans, 1993). Organoaluminum complexes supported by anilido-imine,  $\beta$ -diketiminate and salicyaldiminato ligands are of particular interest, owning to their interesting coordination chemistry and catalytic performance (Wang *et al.*, 2006). Furthermore, we have previously reported a series of Zn(II) (Su *et al.*, 2007), Al(III) (Liu *et al.*, 2005; 2006; Yao *et al.*, 2008) and B(III) (Ren *et al.*, 2007) complexes with chelating anilido-imine ligands. As a part of our continuing study, we have investigated the two-step reaction procedures including the 1,2-addition reaction of trimethylaluminium with (*E*)-10-(2,6-dimethylphenylimino)phenanthren-9(10*H*)-one), and subseqent reaction with trimethylaluminium to form the corresponding product. Herein, the preparation and crystal structure of the title compound, (I), [Al<sub>2</sub>(CH<sub>3</sub>)<sub>5</sub>(C<sub>23</sub>H<sub>20</sub>NO)], is reported.

In the molecule of compound (I), (Fig. 1), the two Al atoms exist in different coordination environments, both adopting distorted tetrahedral geometries. The tetrahedral coordination around Al1 involves three methyl-C atoms and the O1 atom from the ligand. The coordination around the Al2 atom involves the O1 atom and N1 atom from the ligand and two methyl-C atoms. The Al—Al separation distance is 3.1625(13) Å. The Al2—O1 distance (1.8552(17) Å) is significantly shorter than the Al1—O1 distance (1.9273(17) Å), indicating that the former has a more covalent character. The two Al2—O1 and Al1—O1 distances are somewhat longer than the corresponding distances in { $\mu$ -[2-(dimethylamino)phenyl] (2-fluorophenyl)methanolato}pentamethyldialuminum(III) (Gao *et al.*, 2009; Al2—O1, 1.8165(19) Å; Al1—O1, 1.9199(19) Å), owing to a larger steric disturbance. The five-membered chelate ring, O1/Al2/N1/C13/C14, is nearly planar, with a maximum deviation of 0.059 (2) Å of O1 from the least-squares plane. The dihedral angles between the five-membered chelate ring and the phenyl rings C16—C11, C7—C11 and C1—C6 are 82.78 (12)°, 62.74 (11) ° and 46.99 (11) °, respectively. The coplarity of the 9,10-phenanthrene aromatic rings is not retained after the addition reaction of Al(CH<sub>3</sub>)<sub>3</sub> to the C=O bond of (*E*)-10-(2,6-dimethylphenylimino)phenanthren-9(10*H*)-one) with the dihedral angle between the two phenyl rings (C7—C12, C1—C6) being 20.64 (12)°.

### **Experimental**

The dinuclear aluminium complex was prepared as following. The Schiff base ligand ((*E*)-10-(2,6-dimethylphenylimino)phenanthren-9(10*H*)-one) (1.0 mmol) which was synthesized according to the reported literature (Li, 2009), was dissolved in toluene (20 ml), and then trimethylaluminum (1.1 mmol) in hexane solution (1.1 ml, 1*M*) was added slowly at 243 K. The whole mixture was warmed up to room temperature in 2 h and refluxed for 5 h which provided a clear, yellow solution. Then volatile materials were removed under vacuum. The residue was recrystallized in toluene to give yellow crystalline solid (yield: 61%, 0.277 g). Anal. Calcd. for  $C_{28}H_{35}Al_2NO$  (455.55): C 73.82, H 7.74, N 3.07; Found: C 73.80, H 7.72, N 3.04%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 298 K)  $\delta$  (p.p.m.): -0.93 (s, 3H,Al(CH<sub>3</sub>)<sub>2</sub>), -0.65(s, 9H,Al(CH<sub>3</sub>)<sub>3</sub>),

-0.45 (s, 3H,Al(CH<sub>3</sub>)<sub>2</sub>), 1.41(s, 3H, Ar(CH<sub>3</sub>)<sub>2</sub>), 1.98 (s, 3H, CH<sub>3</sub>), 2.44 (s, 3H, Ar (CH<sub>3</sub>)<sub>2</sub>), 6.65 (m, 1H), 6.88 (m, 1H), 7.05 (m, 1H), 7.12 (m, 1H), 7.19 (m, 1H), 7.44 (m, 2H), 7.55 (m, 1H), 7.69 (m, 1H), 7.84 (m, 1H), 7.95 (m, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 298 K) δ (p.p.m.): -8.8,-7.2,-5.1,16.9, 18.2, 18.8, 30.6, 48.3, 123.9, 124.3, 124.8, 126.0, 126.4, 127.3, 127.6, 128.2, 128.6, 128.7, 129.1, 129.2, 129.3, 131.3, 131.8, 132.5, 133.9, 136.6.

### Refinement

The C-bound H atoms were positioned geometrically with C—H = 0.93 (aromatic carbon) and 0.96 (methyl) Å, and allowed to ride on their parent atoms in the riding model approximation with  $U_{iso}(H) = 1.2$  (1.5 for methyl)  $U_{eq}(C)$ .

### **Figures**

Convertent dans



Fig. 1. View of the molecule of compound (I) showing the atom labelling scheme, with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms were omitted for clarity.

### [(E)-10-(2,6-Dimethylphenylimino)-9-methyl-9,10-dihydrophenanthren-9- olato]pentamethyldialuminum(III)

| Crystal dala                                                                           |                                                       |
|----------------------------------------------------------------------------------------|-------------------------------------------------------|
| [Al <sub>2</sub> (CH <sub>3</sub> ) <sub>5</sub> (C <sub>23</sub> H <sub>20</sub> NO)] | Z = 2                                                 |
| $M_r = 455.53$                                                                         | F(000) = 488                                          |
| Triclinic, PT                                                                          | $D_{\rm x} = 1.157 {\rm ~Mg~m}^{-3}$                  |
| Hall symbol: -P 1                                                                      | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 10.4535 (17)  Å                                                                    | Cell parameters from 2148 reflections                 |
| <i>b</i> = 11.4306 (18) Å                                                              | $\theta = 3.652.0^{\circ}$                            |
| c = 12.221 (2) Å                                                                       | $\mu = 0.13 \text{ mm}^{-1}$                          |
| $\alpha = 84.930 \ (3)^{\circ}$                                                        | <i>T</i> = 185 K                                      |
| $\beta = 86.308 \ (3)^{\circ}$                                                         | Block, colorless                                      |
| $\gamma = 64.092 \ (2)^{\circ}$                                                        | $0.36\times0.32\times0.19~mm$                         |
| $V = 1307.9 (4) \text{ Å}^3$                                                           |                                                       |
|                                                                                        |                                                       |
|                                                                                        |                                                       |

### Data collection

| SMART CCD area-detector<br>diffractometer                            | 4966 independent reflections                                              |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                             | 3558 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                             | $R_{\rm int} = 0.020$                                                     |
| phi and $\omega$ scans                                               | $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2001) | $h = -11 \rightarrow 12$                                                  |
| $T_{\min} = 0.955, \ T_{\max} = 0.976$                               | $k = -11 \rightarrow 14$                                                  |

| 6899 measured reflections | $l = -15 \rightarrow 14$ |
|---------------------------|--------------------------|
|---------------------------|--------------------------|

### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                      |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
| $R[F^2 > 2\sigma(F^2)] = 0.054$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.150$               | H-atom parameters constrained                                                       |
| <i>S</i> = 1.03                 | $w = 1/[\sigma^2(F_o^2) + (0.0783P)^2 + 0.4595P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 4966 reflections                | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 297 parameters                  | $\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$                                 |
| 0 restraints                    | $\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$                              |

### Special details

### Experimental. see experiment

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x             | у            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|---------------|--------------|--------------|---------------------------|
| All | -0.25584 (8)  | 0.40105 (7)  | 0.13162 (7)  | 0.0300 (2)                |
| A12 | -0.06773 (8)  | 0.36784 (8)  | 0.33504 (6)  | 0.0288 (2)                |
| 01  | -0.08466 (16) | 0.29493 (15) | 0.21020 (13) | 0.0250 (4)                |
| N1  | 0.1395 (2)    | 0.25468 (19) | 0.31395 (16) | 0.0253 (5)                |
| C1  | 0.3077 (2)    | 0.0805 (2)   | 0.19939 (19) | 0.0252 (5)                |
| C2  | 0.4290 (3)    | 0.1021 (3)   | 0.1830 (2)   | 0.0290 (6)                |
| H2  | 0.4254        | 0.1823       | 0.1968       | 0.035*                    |
| C3  | 0.5548 (3)    | 0.0042 (3)   | 0.1463 (2)   | 0.0334 (6)                |
| Н3  | 0.6355        | 0.0188       | 0.1336       | 0.040*                    |
| C4  | 0.5597 (3)    | -0.1155 (3)  | 0.1285 (2)   | 0.0353 (6)                |
| H4  | 0.6451        | -0.1822      | 0.1060       | 0.042*                    |
| C5  | 0.4395 (3)    | -0.1376 (3)  | 0.1436 (2)   | 0.0323 (6)                |
| Н5  | 0.4449        | -0.2187      | 0.1307       | 0.039*                    |
| C6  | 0.3106 (3)    | -0.0396 (2)  | 0.17803 (19) | 0.0269 (5)                |
| C7  | 0.1771 (3)    | -0.0561 (2)  | 0.19599 (19) | 0.0266 (5)                |
| C8  | 0.1793 (3)    | -0.1788 (2)  | 0.2152 (2)   | 0.0341 (6)                |

| H8            | 0.2659                 | -0.2527              | 0.2143       | 0.041*               |
|---------------|------------------------|----------------------|--------------|----------------------|
| C9            | 0.0543 (3)             | -0.1924 (3)          | 0.2355 (2)   | 0.0360 (6)           |
| H9            | 0.0570                 | -0.2750              | 0.2461       | 0.043*               |
| C10           | -0.0745 (3)            | -0.0827 (3)          | 0.2400 (2)   | 0.0347 (6)           |
| H10           | -0.1581                | -0.0917              | 0.2555       | 0.042*               |
| C11           | -0.0793 (3)            | 0.0401 (3)           | 0.2216 (2)   | 0.0308 (6)           |
| H11           | -0.1663                | 0.1133               | 0.2251       | 0.037*               |
| C12           | 0.0445 (3)             | 0.0554 (2)           | 0.19813 (19) | 0.0252 (5)           |
| C13           | 0.0425 (2)             | 0.1901 (2)           | 0.17092 (19) | 0.0235 (5)           |
| C14           | 0.1680 (2)             | 0.1824 (2)           | 0.23304 (19) | 0.0238 (5)           |
| C15           | 0.0633 (3)             | 0.2121 (2)           | 0.0467 (2)   | 0.0290 (6)           |
| H15A          | -0.0174                | 0.2171               | 0.0096       | 0.044*               |
| H15B          | 0.1479                 | 0.1409               | 0.0213       | 0.044*               |
| H15C          | 0.0723                 | 0.2920               | 0.0315       | 0.044*               |
| C16           | 0.2479 (2)             | 0.2390 (3)           | 0.3914 (2)   | 0.0293 (6)           |
| C17           | 0.2796 (3)             | 0.1390 (3)           | 0.4746 (2)   | 0.0370 (7)           |
| C18           | 0.3754 (3)             | 0.1313 (3)           | 0.5532 (2)   | 0.0490 (9)           |
| H18           | 0.3996                 | 0.0659               | 0.6096       | 0.059*               |
| C19           | 0.4342 (3)             | 0.2176 (3)           | 0.5490 (3)   | 0.0529 (9)           |
| H19           | 0.4959                 | 0.2111               | 0.6032       | 0.064*               |
| C20           | 0.4026 (3)             | 0.3144 (3)           | 0.4649 (3)   | 0.0462 (8)           |
| H20           | 0.4444                 | 0.3716               | 0.4623       | 0.055*               |
| C21           | 0.3079 (3)             | 0.3267 (3)           | 0.3836(2)    | 0.0343 (6)           |
| C22           | 0.2180 (3)             | 0.0417 (3)           | 0.4797 (2)   | 0.0471 (8)           |
| H22A          | 0.1166                 | 0.0859               | 0.4905       | 0.071*               |
| H22B          | 0.2580                 | -0.0219              | 0.5397       | 0.071*               |
| H22C          | 0 2400                 | -0.0009              | 0.4121       | 0.071*               |
| C23           | 0.2785 (3)             | 0 4301 (3)           | 0 2915 (3)   | 0.071<br>0.0416(7)   |
| H23A          | 0.3604                 | 0 4064               | 0.2428       | 0.062*               |
| H23B          | 0.2578                 | 0 5117               | 0.3211       | 0.062*               |
| H23C          | 0.1984                 | 0.4382               | 0.2518       | 0.062*               |
| C24           | -0.3850(3)             | 0.4894(3)            | 0.2547(3)    | 0.002                |
| H24A          | -0.3840                | 0.4254               | 0.3115       | 0.068*               |
| H24R          | -0.4799                | 0.5379               | 0.2287       | 0.000                |
| H24C          | -0.3538                | 0.5477               | 0.2237       | 0.000                |
| C25           | -0.3291(3)             | 0.2930 (3)           | 0.2635       | 0.008                |
| H25A          | -0.2523                | 0.2930 (3)           | 0.0038 (5)   | 0.0489 (8)           |
| H25R          | -0.3006                | 0.2249               | 0.0271       | 0.073*               |
| H25C          | -0.2711                | 0.2403               | 0.0115       | 0.073*               |
| H25C          | -0.3/11<br>-0.2127 (2) | 0.2332<br>0.5212 (2) | 0.1197       | 0.075                |
|               | -0.2137 (3)            | 0.5215 (5)           | 0.0238 (3)   | 0.0470(0)            |
| П20А<br>U26D  | -0.1376                | 0.5340               | 0.0003       | 0.072*               |
|               | -0.3011                | 0.3923               | 0.0023       | 0.072*               |
| H20C          | -0.101/                | 0.4754               | -0.0367      | $0.0/2^{+}$          |
| U27           | -0.0914(3)             | 0.3470(3)            | 0.3130 (3)   | 0.0408 (8)<br>0.072* |
| П2/А<br>1127D | -0.0040                | 0.5045               | 0.2410       | 0.072*               |
| H2/B          | -0.0326                | 0.3603               | 0.3033       | 0.072*               |
| H2/U          | -0.1892                | 0.0001               | 0.3289       | 0.075*               |
| 028           | -0.1394 (3)            | 0.3076 (3)           | 0.4682 (2)   | 0.0499 (8)           |
| H28A          | -0.2332                | 0.3720               | 0.4864       | 0.075*               |

| H28B | -0.0774 | 0.2940 | 0.5275 | 0.075* |
|------|---------|--------|--------|--------|
| H28C | -0.1432 | 0.2272 | 0.4566 | 0.075* |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Al1 | 0.0220 (4)  | 0.0301 (4)  | 0.0366 (4)  | -0.0095 (3)  | -0.0072 (3)  | -0.0015 (3)  |
| A12 | 0.0225 (4)  | 0.0305 (4)  | 0.0322 (4)  | -0.0090 (3)  | -0.0017 (3)  | -0.0079 (3)  |
| 01  | 0.0195 (8)  | 0.0269 (9)  | 0.0283 (9)  | -0.0090 (7)  | -0.0039 (7)  | -0.0031 (7)  |
| N1  | 0.0210 (10) | 0.0268 (11) | 0.0276 (11) | -0.0090 (9)  | -0.0056 (8)  | -0.0026 (8)  |
| C1  | 0.0198 (12) | 0.0293 (13) | 0.0224 (12) | -0.0065 (10) | -0.0025 (9)  | -0.0018 (10) |
| C2  | 0.0259 (13) | 0.0326 (14) | 0.0292 (13) | -0.0125 (11) | -0.0067 (10) | -0.0027 (10) |
| C3  | 0.0203 (12) | 0.0446 (16) | 0.0322 (14) | -0.0109 (12) | -0.0025 (10) | -0.0032 (12) |
| C4  | 0.0218 (13) | 0.0404 (16) | 0.0334 (14) | -0.0032 (12) | -0.0017 (11) | -0.0059 (12) |
| C5  | 0.0293 (14) | 0.0303 (14) | 0.0341 (14) | -0.0091 (11) | -0.0039 (11) | -0.0044 (11) |
| C6  | 0.0250 (13) | 0.0292 (13) | 0.0236 (12) | -0.0090 (11) | -0.0043 (10) | 0.0000 (10)  |
| C7  | 0.0283 (13) | 0.0297 (14) | 0.0221 (12) | -0.0126 (11) | -0.0018 (10) | -0.0030 (10) |
| C8  | 0.0346 (15) | 0.0252 (14) | 0.0379 (15) | -0.0086 (12) | -0.0028 (12) | -0.0016 (11) |
| C9  | 0.0450 (17) | 0.0295 (15) | 0.0391 (16) | -0.0216 (13) | -0.0042 (13) | 0.0010 (11)  |
| C10 | 0.0357 (15) | 0.0413 (16) | 0.0344 (15) | -0.0243 (13) | -0.0035 (12) | 0.0034 (12)  |
| C11 | 0.0264 (13) | 0.0343 (15) | 0.0323 (14) | -0.0139 (11) | -0.0028 (11) | 0.0007 (11)  |
| C12 | 0.0267 (13) | 0.0262 (13) | 0.0238 (12) | -0.0124 (11) | -0.0028 (10) | -0.0013 (10) |
| C13 | 0.0182 (11) | 0.0239 (12) | 0.0274 (13) | -0.0078 (10) | -0.0012 (9)  | -0.0028 (9)  |
| C14 | 0.0227 (12) | 0.0235 (12) | 0.0261 (12) | -0.0113 (10) | -0.0041 (10) | 0.0028 (9)   |
| C15 | 0.0258 (13) | 0.0310 (14) | 0.0286 (13) | -0.0106 (11) | -0.0032 (10) | -0.0014 (10) |
| C16 | 0.0192 (12) | 0.0353 (15) | 0.0275 (13) | -0.0045 (11) | -0.0044 (10) | -0.0098 (11) |
| C17 | 0.0312 (14) | 0.0365 (15) | 0.0284 (14) | -0.0001 (12) | -0.0027 (11) | -0.0055 (11) |
| C18 | 0.0433 (17) | 0.0500 (19) | 0.0288 (15) | 0.0046 (15)  | -0.0106 (13) | -0.0048 (13) |
| C19 | 0.0350 (16) | 0.064 (2)   | 0.0409 (18) | 0.0012 (16)  | -0.0165 (13) | -0.0203 (16) |
| C20 | 0.0278 (15) | 0.057 (2)   | 0.0526 (19) | -0.0130 (14) | -0.0085 (13) | -0.0239 (16) |
| C21 | 0.0234 (13) | 0.0384 (16) | 0.0377 (15) | -0.0077 (12) | -0.0043 (11) | -0.0130 (12) |
| C22 | 0.0500 (18) | 0.0384 (17) | 0.0394 (17) | -0.0088 (15) | 0.0020 (14)  | 0.0058 (13)  |
| C23 | 0.0346 (16) | 0.0386 (17) | 0.0578 (19) | -0.0208 (13) | -0.0055 (14) | -0.0047 (14) |
| C24 | 0.0261 (14) | 0.0463 (18) | 0.059 (2)   | -0.0099 (13) | -0.0006 (13) | -0.0086 (15) |
| C25 | 0.0359 (16) | 0.0481 (18) | 0.062 (2)   | -0.0137 (14) | -0.0192 (15) | -0.0092 (15) |
| C26 | 0.0395 (17) | 0.0454 (18) | 0.0518 (19) | -0.0136 (14) | -0.0099 (14) | 0.0106 (14)  |
| C27 | 0.0315 (15) | 0.0367 (17) | 0.080 (2)   | -0.0140 (13) | -0.0009 (15) | -0.0177 (16) |
| C28 | 0.0411 (17) | 0.063 (2)   | 0.0366 (16) | -0.0146 (16) | 0.0030 (13)  | -0.0062 (14) |

### Geometric parameters (Å, °)

| Al1—O1  | 1.9273 (17) | C15—H15A | 0.9600    |
|---------|-------------|----------|-----------|
| Al1—C25 | 1.972 (3)   | C15—H15B | 0.9600    |
| Al1—C26 | 1.974 (3)   | C15—H15C | 0.9600    |
| Al1—C24 | 1.980 (3)   | C16—C21  | 1.389 (4) |
| Al2—O1  | 1.8552 (17) | C16—C17  | 1.399 (4) |
| Al2-C28 | 1.944 (3)   | C17—C18  | 1.401 (4) |
| Al2-C27 | 1.954 (3)   | C17—C22  | 1.504 (4) |
| Al2—N1  | 1.993 (2)   | C18—C19  | 1.367 (5) |

| O1—C13      | 1.436 (3)   | C18—H18       | 0.9300    |
|-------------|-------------|---------------|-----------|
| N1—C14      | 1.281 (3)   | C19—C20       | 1.383 (5) |
| N1—C16      | 1.465 (3)   | С19—Н19       | 0.9300    |
| C1—C2       | 1.393 (3)   | C20—C21       | 1.403 (4) |
| C1—C6       | 1.407 (3)   | C20—H20       | 0.9300    |
| C1—C14      | 1.477 (3)   | C21—C23       | 1.499 (4) |
| C2—C3       | 1.382 (3)   | C22—H22A      | 0.9600    |
| С2—Н2       | 0.9300      | C22—H22B      | 0.9600    |
| C3—C4       | 1.382 (4)   | C22—H22C      | 0.9600    |
| С3—Н3       | 0.9300      | C23—H23A      | 0.9600    |
| C4—C5       | 1.384 (4)   | С23—Н23В      | 0.9600    |
| C4—H4       | 0.9300      | С23—Н23С      | 0.9600    |
| C5—C6       | 1.392 (3)   | C24—H24A      | 0.9600    |
| С5—Н5       | 0.9300      | C24—H24B      | 0.9600    |
| C6—C7       | 1.489 (3)   | C24—H24C      | 0.9600    |
| С7—С8       | 1.391 (4)   | C25—H25A      | 0.9600    |
| C7—C12      | 1.415 (3)   | C25—H25B      | 0.9600    |
| C8—C9       | 1.386 (4)   | C25—H25C      | 0.9600    |
| C8—H8       | 0.9300      | C26—H26A      | 0.9600    |
| C9—C10      | 1.384 (4)   | С26—Н26В      | 0.9600    |
| С9—Н9       | 0.9300      | С26—Н26С      | 0.9600    |
| C10-C11     | 1.381 (4)   | C27—H27A      | 0.9600    |
| C10—H10     | 0.9300      | С27—Н27В      | 0.9600    |
| C11—C12     | 1.388 (3)   | С27—Н27С      | 0.9600    |
| C11—H11     | 0.9300      | C28—H28A      | 0.9600    |
| C12—C13     | 1.538 (3)   | C28—H28B      | 0.9600    |
| C13—C14     | 1.523 (3)   | C28—H28C      | 0.9600    |
| C13—C15     | 1.534 (3)   |               |           |
| O1—Al1—C25  | 111.41 (11) | H15A—C15—H15B | 109.5     |
| O1—Al1—C26  | 107.52 (11) | C13—C15—H15C  | 109.5     |
| C25—Al1—C26 | 113.94 (15) | H15A—C15—H15C | 109.5     |
| O1—Al1—C24  | 100.23 (11) | H15B—C15—H15C | 109.5     |
| C25—Al1—C24 | 109.59 (14) | C21—C16—C17   | 123.2 (2) |
| C26—Al1—C24 | 113.30 (14) | C21-C16-N1    | 119.6 (2) |
| O1—Al2—C28  | 113.23 (12) | C17—C16—N1    | 117.1 (2) |
| O1—Al2—C27  | 116.12 (12) | C16—C17—C18   | 116.5 (3) |
| C28—Al2—C27 | 120.52 (15) | C16—C17—C22   | 122.6 (2) |
| O1—Al2—N1   | 84.06 (8)   | C18—C17—C22   | 120.8 (3) |
| C28—A12—N1  | 109.79 (12) | C19—C18—C17   | 121.7 (3) |
| C27—Al2—N1  | 106.33 (11) | C19—C18—H18   | 119.2     |
| C13—O1—Al2  | 116.20 (13) | C17—C18—H18   | 119.2     |
| C13—O1—Al1  | 128.09 (14) | C18—C19—C20   | 120.5 (3) |
| Al2—O1—Al1  | 113.45 (9)  | C18—C19—H19   | 119.7     |
| C14—N1—C16  | 121.9 (2)   | C20-C19-H19   | 119.7     |
| C14—N1—Al2  | 113.25 (16) | C19—C20—C21   | 120.4 (3) |
| C16—N1—Al2  | 124.23 (15) | С19—С20—Н20   | 119.8     |
| C2—C1—C6    | 121.0 (2)   | С21—С20—Н20   | 119.8     |
| C2—C1—C14   | 122.9 (2)   | C16—C21—C20   | 117.6 (3) |
| C6—C1—C14   | 116.0 (2)   | C16—C21—C23   | 123.0 (2) |

| C3—C2—C1     | 119.9 (2)   | C20—C21—C23   | 119.4 (3) |
|--------------|-------------|---------------|-----------|
| С3—С2—Н2     | 120.1       | C17—C22—H22A  | 109.5     |
| C1—C2—H2     | 120.1       | С17—С22—Н22В  | 109.5     |
| C2—C3—C4     | 119.5 (2)   | H22A—C22—H22B | 109.5     |
| С2—С3—Н3     | 120.2       | C17—C22—H22C  | 109.5     |
| С4—С3—Н3     | 120.2       | H22A—C22—H22C | 109.5     |
| C3—C4—C5     | 121.1 (2)   | H22B—C22—H22C | 109.5     |
| C3—C4—H4     | 119.5       | C21—C23—H23A  | 109.5     |
| С5—С4—Н4     | 119.5       | С21—С23—Н23В  | 109.5     |
| C4—C5—C6     | 120.5 (2)   | H23A—C23—H23B | 109.5     |
| С4—С5—Н5     | 119.7       | С21—С23—Н23С  | 109.5     |
| С6—С5—Н5     | 119.7       | H23A—C23—H23C | 109.5     |
| C5—C6—C1     | 118.0 (2)   | H23B—C23—H23C | 109.5     |
| C5—C6—C7     | 123.6 (2)   | Al1—C24—H24A  | 109.5     |
| C1—C6—C7     | 118.4 (2)   | Al1—C24—H24B  | 109.5     |
| C8—C7—C12    | 118.8 (2)   | H24A—C24—H24B | 109.5     |
| C8—C7—C6     | 121.6 (2)   | Al1—C24—H24C  | 109.5     |
| С12—С7—С6    | 119.6 (2)   | H24A—C24—H24C | 109.5     |
| C9—C8—C7     | 120.9 (2)   | H24B—C24—H24C | 109.5     |
| С9—С8—Н8     | 119.5       | Al1—C25—H25A  | 109.5     |
| С7—С8—Н8     | 119.5       | Al1—C25—H25B  | 109.5     |
| C10—C9—C8    | 119.8 (2)   | H25A—C25—H25B | 109.5     |
| С10—С9—Н9    | 120.1       | Al1—C25—H25C  | 109.5     |
| С8—С9—Н9     | 120.1       | H25A—C25—H25C | 109.5     |
| C11—C10—C9   | 120.2 (3)   | H25B—C25—H25C | 109.5     |
| С11—С10—Н10  | 119.9       | Al1—C26—H26A  | 109.5     |
| С9—С10—Н10   | 119.9       | Al1—C26—H26B  | 109.5     |
| C10-C11-C12  | 120.7 (2)   | H26A—C26—H26B | 109.5     |
| C10-C11-H11  | 119.7       | Al1—C26—H26C  | 109.5     |
| C12—C11—H11  | 119.7       | H26A—C26—H26C | 109.5     |
| C11—C12—C7   | 119.5 (2)   | H26B—C26—H26C | 109.5     |
| C11—C12—C13  | 122.1 (2)   | Al2—C27—H27A  | 109.5     |
| C7—C12—C13   | 118.3 (2)   | Al2—C27—H27B  | 109.5     |
| O1—C13—C14   | 108.52 (18) | H27A—C27—H27B | 109.5     |
| O1—C13—C15   | 110.23 (19) | Al2—C27—H27C  | 109.5     |
| C14—C13—C15  | 111.17 (19) | H27A—C27—H27C | 109.5     |
| O1—C13—C12   | 113.07 (18) | H27B—C27—H27C | 109.5     |
| C14—C13—C12  | 103.48 (19) | Al2—C28—H28A  | 109.5     |
| C15—C13—C12  | 110.20 (19) | Al2—C28—H28B  | 109.5     |
| N1—C14—C1    | 127.7 (2)   | H28A—C28—H28B | 109.5     |
| N1—C14—C13   | 117.1 (2)   | Al2—C28—H28C  | 109.5     |
| C1—C14—C13   | 114.8 (2)   | H28A—C28—H28C | 109.5     |
| C13—C15—H15A | 109.5       | H28B—C28—H28C | 109.5     |
| C13—C15—H15B | 109.5       |               |           |



