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Abstract: The essential oil of Siparuna guianensis was obtained by hydrodistillation. The identification
of the chemical compounds was performed by gas chromatography coupled with mass spectrometry
(GC/MS). Antimicrobial activity was investigated for four microorganisms: Streptococcus mutans
(ATCC 3440), Enterococcus faecalis (ATCC 4083), Escherichia coli (ATCC 25922), and Candida albicans
(ATCC-10231). The studies of doping and molecular dynamics were performed with the molecule
that presented the highest concentration of drug–target proteins, 1IYL (C. albicans), 1C14 (E. coli),
2WE5 (E. faecalis), and 4TQX (S. mutans). The main compounds identified were: Curzerene (7.1%),
γ-Elemene (7.04%), Germacrene D (7.61%), trans-β-Elemenone (11.78%), and Atractylone (18.65%).
Gram positive bacteria and fungi were the most susceptible to the effects of the essential oil. The results
obtained in the simulation showed that the major compound atractylone interacts with the catalytic
sites of the target proteins, forming energetically favourable systems and remaining stable during the
period of molecular dynamics.
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1. Introduction

Fungi and bacteria can cause various pathologies in humans. Leprosy [1], tuberculosis [2],
bacterial dysentery [3], gonorrhea [4], urinary tract infection, endocarditis [5,6], onychomycosis [7],
mucormycosis [8], and candidiasis [9] are examples of diseases that these microorganisms can cause.
In some cases, the symbiosis between bacteria and fungi increases the virulence of bacteria, because
fungi such as C. albicans elevates the production of exopolysaccharides, which can become an ideal
shelter for S. mutans, thus making it difficult to control this microorganism [10]. Another important
factor is the resistance that microorganisms are developing to traditional antibiotics, since this poses a
threat to public health and is associated with high rates of morbidity and mortality [11]. In this sense,
natural products, more specifically essential oils, can become a viable alternative for the control of
fungi and bacteria [12,13].

The plants that produce essential oils (EOs) have been an object of study for years, since their EOs
present varied biological activities [14], such as cytotoxic, antimicrobial, antioxidant [15], anti-inflammatory,
anti-proliferative [16–18], antibacterial, antifungal [19–24], antiviral [25,26], anticonvulsant [27,28],
analgesic [29], and neuroprotective properties [30]. As a result, they are increasingly attracting the
attention of many industry segments [31]. Essential oils consist of a complex mixture of volatile organic
substances, often involving 50, 100, or even more isolated components, and that contain chemical groups
such as hydrocarbons, alcohols, aldehydes, ketones, acids, and esters [32].

Siparuna guianensis was the first Siparuna species described and illustrated by Aublet [33]. This plant
is present from Nicaragua to Paraguay, and in Brazil, this species is known by several names, such as
negramina, folha-santa, marinheiro, capitiú, mata-cachorro, catingoso, limão-bravo, cicatrizante-das-guianas,
catingueira-de-paca, and fedegoso. In many countries of America, leaves of S. guianensis are widely
used as a drink to combat stomach pains [34] and this activity may be related to the compounds
present in its essential oil [35,36]. In addition, there is little research that reports on the antimicrobial
activity of Siparuna guianensis essential oil, [37] including a chemotype found in Tocantins, Brazil.
In this context, the objective of this work was to evaluate the chemical composition, antimicrobial
activity and simulate the mechanisms of interaction of the major chemical constituent present in the
essential oil of Siparuna guianensis, using doping techniques and molecular dynamics.

2. Results and Discussion

2.1. Yield and Chemical Composition

The moisture content of the S. guianensis sample was 13.58% and the volume of essential oil obtained in
the hydrodistillation was 0.5 mL, with a yield of 1.42% (db). Regarding the chemical profile of the essential
oil of S.guianensis, 51 compounds were identified, the most important being trans-β-Elemenone (11.78%)
and Atractylone (18.65%), followed by δ-Elemene (5.38%), β-Elemene (3.13%), β- Yerangene (4.14%),
γ-Elemene (7.04%), Germacrene D (7.61%), Curzerene (7.1%), and Germacrone (5.26%) (See Table 1).
In Figure 1, the ion chromatogram relative to the chemical composition can be observed. Cicció
and Gómez [38] analyzed the essential oil of Siparuna thecaphora obtained by hydrodistillation and
the compounds obtained in the highest concentrations were germacrene D (32.7%), α-pinene (16.3%),
β-pinene (13.8%), and e β-caryophyllene (4.1%). In a similar study with Siparuna guianensis [39],
they found myrcene (28.74%) [40], β-myrcene (13.14%), and the sesquiterpenes germacrene-D (8.68%) and
bicyclogermacrene (16.71%).

In a study related to the chemical composition of S. guianensis essential oil from southeastern
Brazil, they obtained high concentrations of capric acid (46.6%) and 2-undecane (31.7%) [41].
These compounds were not identified in other studies such as Zoghbi et al. [42], who analysed
the chemical composition of S. guianensis essential oil, collected in various cities of Northern Brazil
and identified epi-α-bisabolol (25.1%) and spathulenol (15.7%) in Moju (PA), spathulenol (22.0%),
selin-11-en-4α-ol (19.4%), β-eudesmol (10.0%), and elemol (10.0%) in leaves collected in Rio Branco
(AC), and germacrone (23.2%), germacrene D (10.9%), bicyclogermacrene (8.6%), germacrene B (8.0%)
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and atractylon (31.4%) in Belém (PA). The results found in other studies [43–45] show that the chemical
composition of the essential oil of S. guianensis varies according to the seasonality and site of collection.
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Figure 1. Ion chromatogram relative to the chemical composition S. guianensis essential oil.

Table 1. Chemical compounds identified in the essential oil of S. guianensis and their relative
concentrations (%).

Rt RIC RIL Compound PubChem CID/SID
or Chemical Structure Concentration (%)

5.817 933 932 a α-pinene 6654 0.33
7.034 978 974 a β-pinene 14896 0.04
7.375 989 988 a myrcene 31253 0.22
7.465 1008 1002 a α-phellandrene 7460 0.15
8.808 1030 1025 a sylvestrene 12304570 0.51
8.998 1044 1044 a (E)-β-ocimene 5281553 0.07

19.958 1292 1293 a undecan-2-one 8163 0.38
21.842 1331 1335 a δ-elemene 12309449 5.38
22.342 1345 1345 a α-cubebene 86609 0.48
23.317 1367 1373 a α-ylangene 442409 0.12
23.608 1373 1374 a α-copaene 442355 1.1
23.879 1381 1387 a β-bourbonene 62566 0.52
23.942 1383 1389 a β-elemene 6918391 0.55
24.258 1386 1387 a β-Cubebene 93081 3.34
24.654 1392 1402 a α-funebrene 6552024 0.03
24.967 1404 1409 a α-gurjunene 15560276 0.06
25.158 1408 1417 a (E)-caryophyllene 5281515 0.03
25.525 1417 1419 a β-ylangene 519779 4.14

26.1 1430 1434 a γ-elemene 6432312 7.04
26.242 1434 1437 a α-guaiene 5317844 0.23
26.375 1437 1439 a aromadendrene 91354 0.19
26.483 1439 1442 a guaia-6,9-diene 6427475 0.12
26.883 1449 1448 a cis-muurola-3,5-diene 51351708 1.4
27.075 1453 1452 α-humulene 5281520 0.86
27.408 1457 1458 a alloaromadendrene 10899740 0.29
27.608 1459 1461 a cis-cadina-1(6),4-diene 6431126 0.35
27.788 1466 1464 a 9-epi-(E)-caryophyllene 6429274 0.09
27.892 1471 1475 a γ-gurjunene 90805 0.49
27.925 1475 1475 a γ-muurolene 12313020 0.7
28.325 1482 1480 a germacrene D 5373727 7.61
28.55 1488 1489 a β-selinene 442393 1.61

28.642 1490 1493 a trans-muurola-4(14),5-diene 91747125 0.63
28.892 1496 1499 a curzerene 572766 7.1
28.992 1498 1500 a α-muurolene 12306047 1.2
29.125 1501 1495 a γ-amorphene 12313019 0.48
29.467 1506 1508 a germacrene A 9548705 0.02
29.525 1511 1513 a γ-cadinene 92313 0.39
29.758 1516 1522 a δ-cadinene 12306054 1.86
29.925 1521 1528 a zonarene 6428488 0.48
30.317 1530 1533 a trans-cadina-1,4-diene 91746579 0.45
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Table 1. Cont.

Rt RIC RIL Compound PubChem CID/SID
or Chemical Structure Concentration (%)

30.492 1534 1531 b selina-4(14),7(11)-diene 10655819 1.04
30.667 1539 1545 a selina-3,7(11)-diene 522296 0.25
31.375 1556 1559 a germacrene B 5281519 1.88

32.308 1582 1589 a allo-hedycaryol
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2.2. Antimicrobial Activity

The antimicrobial activity analysed by the diffusion method can be observed in Table 2.
The microorganisms presented mean inhibition halos of 11 ± 0.12 (mm), 12 ± 0.57(mm), 11 ± 0.31(mm),
and 12.5 ± 0.98 (mm) for Gram-positive Streptococcus mutans (ATCC 3440), Gram-positive Enterococcus
faecalis (ATCC-4083), Gram-negative Escherichia coli (ATCC 25922), and Candida albicans (ATCC-10231),
respectively. Streptococcus mutans (ATCC-3440) and Candida albicans (ATCC- 10231) were the most
sensitive to the effects of essential oils, with a minimum inhibitory concentration of 125 µL/mL,
whereas the bacterium Enterococcus faecalis (ATCC-4083) [36] demonstrated that the essential oil of
S. guianensis exerts an inhibitory effect on fungi, and on Gram-negative and Gram-positive bacteria.

Table 2. Antimicrobial activity of Siparuna guianensis leaf essential oil. Negative values (−) mean
no microbial growth whereas positive values (+) mean there was microbial growth under the
tested concentration.

Sample/ Dilution (µL/mL) A B C d

1 500 - - MIC -
2 250 - MIC + -
3 125 MIC + + MIC
4 62.5 + + + +
5 30.625 + + + +
6 15.3 + + + +
7 7.6 + + + +
8 3.8 + + + +
9 1.9 + + + +
10 0.95 + + + +

Mean halo, 10 µL, N = 3 11 ± 0.12 12 ± 0.57 11 ± 0,31 12.5 ± 0,98
Control 22.5 ± 0.32 28.10 ± 0.13 15.25 ± 0.58 19.42 ± 1.22

* (A) Streptococcus mutans (ATCC 3440), (B) Enterococcus faecalis (ATCC 4083); (C) Escherichia coli (ATCC 25922);
(D) Candida albicans (ATCC- 10231). Inhibition halos (mm).
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In general, Gram-positive bacteria were the most sensitive to the effects of essential oil (EO),
and this may be related to the fact that Gram-positive bacteria are more susceptible to the effects of
volatile components compared to the Gram-negative ones [48]. In the case of fungi, EOs can be a viable
alternative in the fight against the infection caused by Candida [24,49]. These biological effects can be
related to the presence of chemically active compounds such as γ-elemene, curzerene, germacrene D,
β-elemenone, and atractylon, as there are reports in the literature that corroborate this thesis [50–52].

3. Interaction Mechanism

3.1. Molecular Binding Mode

From our molecular docking results, it can be suggested that the ligand interacts favourably with
the target proteins. In Table 3, the results of the MolDock score for each complex formed are presented.

Table 3. Docking score results.

Targets MolDock Score

C. albicans −71.43
E. coli −87.24

E. faecalis −80.46
S. mutans −65.18

The interactions between atractylon, the primary compound from the essential oil isolated from
the leaves of Siparuna guianensis, and the catalytic site of the enzymes were analysed. The interactions
that were formed are visualized in Figure 2.
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Figure 2. Molecular interactions between ligand-receptor. (a) Molecular binding of atractylon with the
protein N-myristoyltransferase of the microorganism C. Albicans, (b) Molecular binding of atractylon
with the protein Enoyl reductase of the microorganism E. Coli, (c) Molecular binding of atractylon with
the protein Carbamate kinase of the microorganism E. faecalis, and (d) Molecular binding of atractylon
with the protein Sortase A of the microorganism S. mutans.
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In Figure 2A, it is possible to observe that the ligand performed several hydrophobic interactions
with different residues of the catalytic site of N-myristoyltransferase (C. albicans). With the Tyr225
residue, two interactions were established, one of the pi-pi types and the other of the pi-alkyl type.
Residues Phe339 and Tyr354 had pi-alkyl-type interactions with the ligand, whereas Leu394 established
alkyl interactions. Phe117 was also able to form two interactions, both of the pi-alkyl type.

With Enoyl reductase residues (E. coli), atractylon established six hydrophobic interactions. Four
of these interactions were of the alkyl type with the following residues: Met206, Met159, Lys163,
and Ala196. In addition, two additional pi-alkyl-type interactions with Tyr156 were formed.

The interaction of the ligand with the binding pocket of the enzyme Carbamate kinase (E. faecalis)
can be seen in Figure 2C. With residues Val231, Cys235, and Met268, hydrophobic interactions of the
alkyl type were formed. With Tyr238, two interactions were established, one of the pi-alkyl type and
one of the pi-pi type. With Ala264, an interaction of the same type was formed.

All interactions formed with the residues of Sortase A (S. mutans) were of hydrophobic and alkyl
types. These interactions were established with the following residues: Ile215, Val190, Ile191, Val188,
Arg213, and Val2013.

3.2. Analysis of Complexes Stability

The complexes obtained by molecular docking were used as a starting point for molecular
dynamics simulations. The root mean square deviation (RMSD) graphs were plotted in relation to
the lowest energy structure obtained for the systems, after the execution of the protocol of energy
minimization, heating, and equilibrium. To plot the RMSD of the proteins’ backbone, their Cα atoms
were used and to plot the RMSD of the ligands, their heavy atoms were used. The correspondent
graphs can be seen in Figure 3.Molecules 2018, 23, x FOR PEER REVIEW  7 of 16 

 

 
Figure 3. RMSD of systems for 100 ns of MD simulations. The black colour was used to colour the 
backbone of all proteins, whereas various colours were used for the ligand RMSD. (a) RMSD plot of 
the atractylon/N-myristoyltransferase system (C. albicans), (b) RMSD plot of the atractylon/Enoyl 
reductase system (E. coli), (c) RMSD plot of the atractylon/Carbamate kinase system (E. faecalis), and 
(d) RMSD plot of the atractylon/Sortase A system (S. mutans). 

For the systems formed with the target proteins of C. albicans, E. coli, E. faecalis and S. mutans, the 
mean RMSD obtained for the ligand was 0.65 Å, 0.62 Å, 0.66 Å, and 0.64 Å, respectively. Thus, it is 
possible to infer that during the simulations, the inhibitor remained stable at the binding site of the 
different targets during molecular dynamics. 

The target proteins showed small conformational changes as can be observed in the RMSD plots. 
These changes resulted from the accommodation of the ligands at their respective binding sites. 

The fluctuations observed in the RMSD for the proteins backbone may be the result of the 
accommodation of the ligand at the active site. The mean values for the RMSD were relatively low. 
These values for the backbone of the target proteins of C. albicans, E. coli, E. faecalis, and S. mutans 
were 1.63 Å, 1.53 Å, 1.44 Å, and 1.65 Å, respectively. 

3.3. Free Energy Calculations Using MM/GBSA Approach 

For each complex, the values of affinity energy (ΔGMM-GBSA), in addition to the values of the 
energetic contributions involved in the ligand-receptor interaction were obtained. The energy 
contributions obtained were as follows: van der Waals (ΔEvdW), polar (ΔGGB), non-polar (ΔGNP), and 
the electrostatic interactions energies (ΔEele) (Table 4). 

Table 4. Energy components and values of binding affinities. All values are in kcal/mol. 

Targets ΔEvdW ΔEele ΔGGB ΔGNP ΔGMM-GBSA 
C. albicans −22.28 −5.51 13.74 −13.11 −25.16 

E. coli −25.54 −6.88 15.96 −9.87 −26.33 
E. faecalis −19.56 −5.02 8.96 −8.22 −23.84 
S. mutans −24.35 −3.74 9.75 −9.13 −27.47 

In all systems, the free energy values demonstrated that atractylon is capable of inhibiting 
enzymatic activity. The contributions of Van der Waals were the most responsible for the interaction 

Figure 3. RMSD of systems for 100 ns of MD simulations. The black colour was used to colour the
backbone of all proteins, whereas various colours were used for the ligand RMSD. (a) RMSD plot of the
atractylon/N-myristoyltransferase system (C. albicans), (b) RMSD plot of the atractylon/Enoyl reductase
system (E. coli), (c) RMSD plot of the atractylon/Carbamate kinase system (E. faecalis), and (d) RMSD
plot of the atractylon/Sortase A system (S. mutans).



Molecules 2020, 25, 3852 7 of 15

For the systems formed with the target proteins of C. albicans, E. coli, E. faecalis and S. mutans,
the mean RMSD obtained for the ligand was 0.65 Å, 0.62 Å, 0.66 Å, and 0.64 Å, respectively.
Thus, it is possible to infer that during the simulations, the inhibitor remained stable at the binding
site of the different targets during molecular dynamics.

The target proteins showed small conformational changes as can be observed in the RMSD plots.
These changes resulted from the accommodation of the ligands at their respective binding sites.

The fluctuations observed in the RMSD for the proteins backbone may be the result of the
accommodation of the ligand at the active site. The mean values for the RMSD were relatively low.
These values for the backbone of the target proteins of C. albicans, E. coli, E. faecalis, and S. mutans were
1.63 Å, 1.53 Å, 1.44 Å, and 1.65 Å, respectively.

3.3. Free Energy Calculations Using MM/GBSA Approach

For each complex, the values of affinity energy (∆GMM-GBSA), in addition to the values of
the energetic contributions involved in the ligand-receptor interaction were obtained. The energy
contributions obtained were as follows: van der Waals (∆EvdW), polar (∆GGB), non-polar (∆GNP),
and the electrostatic interactions energies (∆Eele) (Table 4).

Table 4. Energy components and values of binding affinities. All values are in kcal/mol.

Targets ∆EvdW ∆Eele ∆GGB ∆GNP ∆GMM-GBSA

C. albicans −22.28 −5.51 13.74 −13.11 −25.16
E. coli −25.54 −6.88 15.96 −9.87 −26.33

E. faecalis −19.56 −5.02 8.96 −8.22 −23.84
S. mutans −24.35 −3.74 9.75 −9.13 −27.47

In all systems, the free energy values demonstrated that atractylon is capable of inhibiting
enzymatic activity. The contributions of Van der Waals were the most responsible for the interaction of
the ligand with the molecular targets. Moreover, the electrostatic and nonpolar contributions were
favourable for the maintenance of the complexes.

4. Materials and Methods

4.1. Preparation and Characterization of the Siparuna guianensis Sample

The Siparuna guianensis sample was obtained in the herbarium of the Museu Paraense Emilio Goeld
(Eastern Amazon), on 09/09/2016. The geographical coordinates of the collection site were S01◦27′04.3”
and W048◦26′38.3”, with a relative humidity of 64.9% and temperature of 26.5 ◦C. The samples were
identified by Dr. Antonio Elielson Sousa da Rocha, and then, its registration number was incorporated
in the Emílio Goeldi Museum Herbarium, located in the city of Belém, Pará, Brazil, under the v-oucher
MG-165435. Before the extraction process, the sample was dried and ground and then the moisture
content was determined by infrared moisture analyser. The images of the leaves of S. guianensis can be
observed in Figure 4.
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4.1.1. Botanical Information of the Sample

Capitiú (Siparuna guianensis) belongs to the Siparunaceae Family. It is a shrub about three meters
high, the immature fruits were greenish, and the ripe ones were greenish and purplish, with short
pedunculated axillary racemes, and opposite, elliptic, and lanceolate leaves. This plant releases a
characteristic odour of fish. Leaf samples were identified and deposited in the medicinal plants
herbarium of the Museu Paraense Emílio Goeldi.

4.1.2. Extraction Procedure: Hydrodistillation

After the drying process, the leaves of S. guianensis were submitted to hydrodistillation using
a Clevenger-type extractor. For the extraction process, 40 g of the sample was used, for 10,800 s at
100 ◦C. After this procedure, anhydrous sodium sulphate (Na2SO4) was added and the essential oil
was centrifuged to be moisture-free. The essential oil yield was calculated in dry basis (db).

4.2. Analysis of Volatile Compounds

The chemical composition of the essential oils was evaluated by gas chromatography/mass
spectrometry (GC/MS) according to the methodologies by [53,54], using a Shimadzu QP-2010 plus
system under the following conditions: silica capillary column Rtx-5MS (30 m × 0.25 mm, 0.25 µm film
thickness); program temperature of 60–240 ◦C at 3 ◦C/min; injector temperature of 250 ◦C; helium as
carrier gas (linear velocity of 32 cm/s, measured at 100 ◦C); splitless injection (1 µL of a 2:1000 hexane
solution). Ionization was obtained by electronic impact technique at 70 eV, and the temperature of the
ion source and other parts was set at 200 ◦C. The quantification of volatile compounds was determined
by gas chromatography with a flame ionization detector (FID; Shimadzu, QP 2010 system-Kyoto,
Japan) under the same conditions as gas chromatography coupled to mass spectrometry (GC-MS),
except that hydrogen was used as the carrier gas. The retention index was calculated for all volatile
constituents using a homologous series of n-alkanes (C8–C20), and were identified by comparing the
mass spectra obtained experimentally and their retention indices to those found in literature [46,47].

4.3. Analysis of In vitro Antimicrobial Activity

In the microbiological assays, standard strains of Streptococcus mutans (ATCC 3440),
Enterococcus faecalis (ATCC 4083), Escherichia coli (ATCC 25922), and Candida albicans (ATCC 10231)
were used. All of them were purchased from the Osvaldo Cruz Foundation (FIOCRUZ-Rio de Janeiro,
Brazil), belonging to the base of standards of the Laboratory of Microbiological Quality Control of
Medicines of the University Center of Pará-CESUPA.

The inoculum of each microorganism was obtained from a microbial suspension of fresh culture
(maximum 24 h) in saline solution 0.85% (m/V), by comparing the inoculum turbidity with the
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MacFarland scale, equivalent to a concentration of 1.5 × 108 UFC/mL [55] in a turbidimeter (Grant bio,
Model: DEN-1Shepreth, Cambridge, UK).

The culture medium used for the disk diffusion test was soybean casein agar (SCA) and brain
Heart Infusion (BHI) broth containing 0.2% polysorbate 80 (m/V). 5% (v/v) of sheep blood was added
for the analysis of strains of Streptococcus mutans (ATCC 3440) and Enterococcus faecalis (ATCC 4083).

4.4. Evaluation of the Sample Sensitivity by the Disk Diffusion Method

Briefly, 10 mL of Soybean Casein Agar (15× 100 mm) was poured into a Petri dish. The microorganism
(106 CFU/mL) was then inoculated with the aid of a sterile swab and paper discs (6 and 8 m) impregnated
with 10 µL of oil. Positive and negative control were added onto the medium. The plates were
incubated at 30 ± 5 ◦C/24 h in an aerobic environment [22,55,56]. The analysis was performed in triplicate.
After the incubation period, the plates were revealed with triphenyltetrazolic chloride at 7 mg/mL in
bacteriological agar at 1% (w/v). The halos were measured using a pachymeter (mm) and evaluated by a
descriptive analysis.

4.5. Determination of Minimum Inhibitory Concentration (MIC)

The Minimum inhibitory concentration MIC was performed with the essential oil and was adapted
from the micro dilution proposed by [55]. The test was performed on an Elisa® plate, where a 100 µL
sample aliquot was diluted (1:2 v/v) in BHI broth containing 106 CFU/mL until 10 consecutive dilutions,
and then positive and negatives controls were added. Plates were incubated at 30 ± 5 ◦C/48 h. The test
was performed in triplicate.

After incubation, plates were revealed with 1% (m/v) bacteriological broth containing 7 mg/mL
triphenyltetrazolic chloride solution and incubated for further 30 min at 30 ± 5 ◦C for bacteria, and at
25 ± 5 ◦C for C. albicans. The maintenance of the red colour in the medium was interpreted as
microbial growth.

4.6. Statistical Analysis

The statistical analysis was performed using the application MiniTab17-State College, Pennsylvania,
USA, using the means and their respective standard deviations.

5. Molecular Docking and Dynamics Molecular Simulations

5.1. Molecular Docking

For the study of molecular docking, atractylone was selected, since it was the primary compound
from the essential oil isolated from the leaves of Siparuna guianensis. Molecular docking was used to
investigate the interaction between atractylone and essential proteins of C. albicans, E. coli, E. faecalis,
and S. mutans. The proteins used as a molecular target are essential for the metabolic pathways of
such microorganisms, in addition to being reported in the literature as targets for natural and synthetic
products that combat these pathogens [57–60].

The chemical structure of atractylon, after being designed with GaussView 5.5 software - Wallingford,
Connecticut United States, was optimized with B3LYP/6-31G* [61], using Gaussian 16
(Wallingford, CT, USA) [62]. To study the interaction mode of this molecule with target-proteins for drug
action, the software Molegro Virtual Docker 6 (Århus, Denmark, https://molegrovirtualdocker.weebly.com/)
was used [63,64]. The crystal structures of the proteins used as targets can be found in the Protein Data
Bank (www.rcsb.org), from their ID: 1IYL (C. albicans) [57], 1C14 (E. coli) [58], 2WE5 (E. faecalis) [59],
and 4TQX (S. mutans) [60]. The MolDock Score (GRID) function was used with a Grid resolution of
0.30 Å and radius of 7 Å, encompassing the entire crystallographic ligand binding cavity found in the
PDB of each protein. The MolDock SE algorithm was used with number of runs equal to 10; 1500 max
interactions, and max population size equal to 50. The maximum evaluation of 300 steps with neighbor

https://molegrovirtualdocker.weebly.com/
www.rcsb.org
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distance factor equal to 1 and energy threshold equal to 100 were used during the molecular docking
simulation. The RMSD limit for multiple cluster poses was set to < 1.00 Å.

5.2. Molecular Dynamics (MD) Simulation

The ligand parameters were constructed with the aid of the Antechamber module, using the
General Amber Force Field (GAFF) [65]. The calculations to determine the atomic charges of the ligand
were performed according to the restrained electrostatic potential (RESP) protocol using basis set
Hartree–Fock level might with the functional 6-31G* [66]. To measure the protonation status of the
amino acid residues of the receptors, the results obtained from the PROPKA program were used [67,68].

In the molecular dynamics simulations, the force field ff14SB [69] and the explicit water molecules
described by the TIP3P model [70] were used. All systems were solvated in an octahedron periodic
box, where a cutting radius of 12Å was applied in all directions from the solute. Finally, in each system,
an adequate number of counter-ions were added to neutralize the charge.

The MD simulations were performed with the Amber 16 package [71–73]. Sander. MPI was
used for the energy minimization steps, and pmemd. CUDA, for the heating, equilibrium and
MD simulations.

The energy minimization of the systems occurred in three stages. In the first step, 1500 cycles were
performed using steepest descent method and conjugate gradient algorithm, applying a harmonic
force constant of 100 kcal/mol.Å−2 on the solute. In the second step, the harmonic force constant
applied on the solute was 50 kcal/mol.Å−2 and further 500 cycles were performed using the steepest
descent method and conjugate gradient algorithm. In the last step, the restrictions were removed,
and 500 cycles were performed using the same protocol.

To raise the systems temperature from 0 to 300k, 800 ps of simulations were performed. The heating
was carried out in three stages. In the first stage, the solute was restricted with a harmonic force
constant of 50 kcal/mol.Å−2. Thus, only the solvent and the counter-ions get free to move. In the next
two steps, the harmonic force constant was removed.

To balance the complexes, 2 ns of simulations with constant temperature and with no restrictions
were performed. Then, for each complex, 100 ns of MD simulation were obtained with NVT ensemble.

The particle mesh Ewald method [74] was used for the calculation of electrostatic interactions, and the
bonds involving hydrogen atoms were restricted with the SHAKE algorithm [75]. The temperature control
was performed with the Langevin thermostat [76] within collision frequency of 2 ps−1.

5.3. Free Energy Calculations

The binding free energy was calculated using the molecular mechanics-generalized Born surface
area (MM-GBSA) approach [77–79]. For the affinity energy calculation, 500 snapshots of the last 5 ns of
the MD simulations trajectories were used.

The free energy was calculated according to the following equations:

∆Gbind = ∆H − T∆S ≈ ∆EMM + ∆Gsolv − T∆S (1)

where ∆Gbind is the free energy of the complex, which is the result of the sum of the molecular
mechanics energy (∆EMM), the desolvation free energy (∆Gsolv), and the entropy (−T∆S).

∆EMM = ∆Einternal + ∆Eelectrostatic + ∆EvdW (2)

The energy of molecular gas phase mechanics (∆EMM) can be described by the sum of the internal
energy contributions (∆Einternal), the sum of the connection, angle and dihedral energies, electrostatic
contributions (∆Eeletrostatic), and van der Waals terms (∆EvdW).

∆Gsolv = ∆GGB + ∆Gnonpol (3)
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Desolvation free energy (∆Gsolv) is the sum of the polar (∆GGB) and non-polar (∆Gnonpol)
contributions. The polar desolvation term was calculated using the implicit generalized born
(GB) approaches.

6. Conclusions

The main compounds obtained in the essential oil of Siparuna guianensis were Atractylone (18.65%),
trans-β-Elemenone (11.78%), Germacrene D (7.61%), Curzerene (7.1%), γ-Elemene (7.04%) and,
followed by δ-Elemene (5.38%), Germacrone (5.26%), β- Yerangene (4.14%), and β-Cubebene (3.34%).
The bacterium most sensitive to the effect of the essential oil was Streptococcus mutans followed by the
fungus Candida albicans. Both microorganisms had the same MIC value (125 µL / mL). In our results,
it is evidenced that atractylon interacts with all catalytic sites of the proteins and may be an inhibitor.
The energy contributions observed were the electrostatic interactions energies (∆Eele), and of the van
der Waals (∆EvdW), polar (∆GGB), and nonpolar (∆GNP) types.
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